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ABSTRACT 

     The eastern margin of the Tibetan Plateau is marked by the Longmen Shan 

thrust belt (LSTB), which is dominated by thrust faults and thrust-related fold 

structures that is home to the 2008 Mw 7.9 thrusting-type Wenchuan earthquake. 

Although previous works demonstrated that the seismogenic fault for the 

earthquake changed coseismic slip sense from thrust-dominated slip in the 

central and southeastern segments of the LSTB to right-lateral 

strike-slip-dominated displacement along the Qingchuan fault (northeastern 

segment of the LSTB), the related structures and current activity of the 

Qingchuan fault remains unclear. Topographic analyses of 0.5-m-resolution 

WorldView imagery and Digital Elevation Model (DEM) data, field 

investigations and structural analysis of the fault zone reveal that: i) stream 

channels and late Pleistocene–Holocene terrace risers and alluvial fans are 

systematically offset dextrally along the Qingchuan fault; ii) foliations developed 

in the fault zone indicate a right-lateral strike-slip-dominated displacement; and 

iii) geological evidence and seismic data show that the Qingchuan fault is 
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currently active as the main seismogenic fault dominated by a right-lateral 

strike-slip with an average slip rate of ca. 3–5 mm/yr. Our results demonstrate 

that the spatial change in slip sense along the LSTB from thrust-dominated in the 

central and southwestern sectors to right-lateral strike-slip-dominated in the 

northeastern sector is mainly caused by a change in the orientation of fault 

geometry from NE-SW to ENE-WSW along the LSTB. 

 

Keywords: Longmen Shan thrust belt, Qingchuan fault, 2008 Wenchuan 

earthquake, right-lateral strike-slip, slip sense, Tibetan Plateau
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1. Introduction 

     The Longmen Shan thrust belt (LSTB) separates the Tibetan Plateau to the 

west from the Sichuan Basin to the east, and is dominated by thrust faults and 

folds, where the 2008 Mw 7.9 thrusting-type Wenchuan earthquake occurred (Fig. 

1). Our previous studies revealed that the 2008 earthquake produced a 

285–300-km-long surface rupture zone, including a ca. 60-km-long segment 

along the Qingchuan fault in the northeastern sector of the LSTB (Lin et al., 2009, 

2010a–c, 2012; Lin and Ren, 2009; Jia et al., 2010; Lin, 2011). In the 5 years 

since the 2008 Mw 7.9 Wenchuan earthquake, the understanding of the coseismic 

ground deformation features along the major active faults of the central and 

southwestern sectors of the LSTB (Lin et al., 2009, 2010a–c, 2012; Shen et al., 

2009; Xu et al., 2009; Furuya et al., 2010; Hashimoto et al., 2010; Jia et al., 

2010; Li et al., 2010; Zhang et al., 2010; Lin, 2011; Wang et al., 2013a), and of 

Holocene activity and paleoseismicity in those sectors (e.g., Lin et al., 2010d; 

Ran et al., 2010; Wang et al., 2013b) has improved, however, only a few studies 

have examined the tectonic topography and structural features of the Qingchuan 
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fault, in the northeastern sector of the LSTB (e.g., Burchfiel et al., 2008; Fan et 

al., 2008; Lin et al., 2012). The nature of the Qingchuan fault, including the slip 

sense, slip rate, and structures of fault zone, therefore, remains unclear due to a 

lack of geologic data. This limitation hinders further assessment of the tectonic 

history and the relationship between the pre-existing active faults and 

seismogenic activity.  

In this study, to understand the nature and the deformation structures of the 

seismogenic fault within the northeastern sector of the LTSB, we integrated 

geomorphologic, geological, and seismic data including drainage patterns, offset 

terrace risers, fault zone structures, and focal mechanisms of large earthquakes 

along the Qingcuan fault.. We focus on the slip sense and recent activity of the 

Qingchuan fault and discuss the tectonic implications for the zone at the eastern 

margin of the Tibetan Plateau. This kind of study would help to improve our 

knowledge of relation between seismogenic faults and pre-existing geologic 

structures. 
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2. Seismotectonic setting 

     The study region lies in the northeastern sector of the LSTB, which 

demarcates the boundary between the eastern margin of the Tibetan Plateau and 

the Sichuan Basin (Fig. 1). The NE–SW-trending LSTB is dominated by thrust 

faults and fold structures developed mainly within pre-Mesozoic basement along 

the Longmen Shan Mountains over a distance of ca. 500 km and in a zone 30–50 

km wide (Fig. 2). The LSTB contains four major thrust faults: the 

Wenchuan-Maowen, Yingxiu-Beichuan, Guanxian-Anxian, and Qingchuan 

faults (Figs 1 and 2), all of which were ruptured by the 2008 Mw 7.9 Wenchuan 

earthquake (Lin et al., 2010a–d). Seismic and geologic data show that the ca. 

285–300-km-long rupture zone of this earthquake occurred along the LSTB (Fig. 

1) (e.g., Lin et al., 2009, 2010a–c, 2012; Furuya et al., 2010; Jia et al., 2010; 

Hashimoto et al., 2010). Structural analyses of fault rocks show that three of the 

ruptured faults in the central and southwestern segments of the LSTB have 

moved as thrusts (Lin et al., 2010c). Previous studies reveal that these three faults, 

have reactivated throughout the late Quaternary, with slip rates of 1.0–3.0 mm/yr 
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(e.g., Li et al., 2006, 2010; Lin et al., 2010d) and probably ~1-10 mm/yr or larger 

although poorly constrained (Densmore et al., 2007). However, with respect to 

the Qinchuan fault to the NE, the kinematic behavior is less certain due to a lack 

of collection of geologic and geomorphic evidence concerning recent 

seismogenic activity on the fault (Deng, 2004). 

 Historic records document that more than 20 large earthquakes of M≥6, 

including five M≥7, occurred before the 2008 Wenchuan earthquake around and 

within the LSTB, but not on the Qingchuan fault (Editorial Board, Annals of 

Sichuan Province, 1998; CENC, 2008). Field investigations and trench 

excavations reveal that a great earthquake of M~8 occurred in the late Tang-Song 

Dynasty (AD 800–1000) and ruptured a >200-km-long thrust fault within the 

central and southwestern segments of the LSTB, along which coseismic ruptures 

also developed during the 2008 Wenchuan earthquake (Lin et al., 2010d). 

However, evidence is lacking to show that these or other large historic 

earthquakes occurred on the Qingchuan fault in the northeastern sector of the 

LSTB. 
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3. Tectonic geomorphology 

     Topographically, the Longmen Shan range reaches up to 7556 m above sea 

level (Mt. Gongga) and topographic relief more than 5 km over distances of less 

than 50 km (Fig. 1), representing one of the steepest mountain fronts along any 

margin of the Tibetan Plateau. The Qingchuan fault is developed in the 

northeastern part of the Longmen Shan range (Fig. 1), mainly within 

NE–SW-trending linear valleys (Fig. 3), and consists of several parallel to 

sub-parallel branch faults that are arrayed in a zone of <2 km in width and more 

generally <1 km (Figs 3 and 4). The topographic expression of the fault is 

characterized by straight linear traces with triangular facets, saddles, shutter 

ridges, and systematically offset or deflected stream channels (Figs 3–5). The 

triangular facets, which are mostly isosceles-triangle shaped, tend to be 

developed along the boundaries between the offset ridges and lowlands where 

the branch stream channels are also dextrally offset (Fig. 4). The offset and/or 

deflection of ridge spurs and river channels occur mainly in the mountain areas 
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where ridges are present across the fault (Fig. 3). Systematic deflection and/or 

offset of stream channels are observed at the eastern end of Bailong Lake, where 

the seismic rupture of the 2008 Wenchuan earthquake terminated (Fig. 3a and b). 

In this area, offset river channels across the fault can be restored to match 

channels of similar size (Fig. 3b and c). The deflection and/or offset amount of 

the stream channels ranges from several hundreds meters to 1.6 km (Fig. 4), and 

the restored dextral offset for the greatest number of matched stream channels is 

determined to be about 700 m (Fig. 3c). Generally, the main drainage elements 

show a combination structure that lateral offset and deflection of both ridge spurs 

and stream channels developed together across the fault as observed in the area 

between R8 and R11 (Fig. 3b, c). Similar features have also been observed along 

the San Andreas fault (e.g., Wallace, 1975). Such features make it difficult to 

accurately measure the amount of offset of drainage elements along the 

Qingchuan fault, as will be considered in the Discussion. 

 Typical geomorphic features associated with the dextral offset of river 

channels and associated fluvial terrace risers and alluvial fans are observed in the 
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Hanjiang River area at the northeastern end area of the study region, where three 

levels of terrace risers (T1–T3) are well developed along the Hanjiang River (Fig. 

5). The offset stream channels and T2 terrace riser developed across the fault can 

be restored laterally about 58 m to optimize their fit with channels of similar size 

in width and terrace risers of string shape being matched across the fault trace 

(Fig. 5b). Thus, the T2 terrace riser and branch stream channels (R12 and R13) 

across the fault are dextrally offset about 58 m since its formation. The terrace 

risers on the northern side of the fault were displaced eastward to the stream 

channel of the Hanjiang River, where the fault developed within the basement 

rock is exposed. Distinct striations including grooves developed on the fault 

plane show a slip vector plunging 15°W, indicating a horizontal /vertical slip 

ratio of ~4:1 in displacement (Fig. 6). Accordingly, the measured amount of 

right-lateral offset represents the minimum accumulated displacement of the T2 

riser, because the western margin of the T2 riser that bounded the river channel 

could have been eroded by the eastward-flowing river (Fig. 5). 
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4. Structures of fault zone 

     We investigated four representative exposures of the Qingchuan fault 

including the use of trenches to examine secondary structures and kinematic data 

(see Figs. 3a and 5a for locations).  

 

4.1. Location 1 

     Location 1 occurs along the northeastern segment of the 2008 Wenchuan 

coseismic surface rupture zone on the Qingchuan fault (Fig. 7; see Fig. 3a for 

location). Faults are exposed along a large exposure that is >100 m in length and 

30 m in height, which cut sedimentary basement rocks and alluvial deposits 

composed of interbedded sand-soil and sand-pebble layers (Fig. 7a). The main 

fault planes are marked by a thin gouge zone (3-10 cm thick) in the sand-soil 

sediments, showing yellow-brown in color (Fig 7b). Downthrown of the hanging 

wall sediments and slickenside striations (Fig. 7a) developed on a main fault 

plane bounded by the fault gouge zone (Fig. 7b and c) show a slip vector 

plunging 30°S, indicating a horizontal /vertical slip ratio of ~3:2.  
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4.2. Location 2 

     Location 2 is exposed at a construction site, where the 2008 Wenchuan 

coseismic ruptures occurred in a narrow zone (about 3 m wide) within a fault 

shear zone composed of cataclastic rocks, and four distinct fault planes show 

evidence of coseismic slip (Fig. 8a-c; Lin et al., 2012). The cataclastic rocks 

mainly consist of a wide zone of non-foliated cataclasite (>20 m in width) and a 

narrow fault breccia zone of 5-10 cm developed in the Mesozoic sedimentary 

rocks along the main fault planes. The main fault planes are marked by layers of 

fault gouge that are 2–3 cm thick, strike N10°–60°E, dip to the southeast at 

10°–70°, and show an en echelon geometry (Fig. 8a and c). Slickenside striations 

developed on the main co-seismic fault plane show a slip vector plunging ~35°N, 

indicating a horizontal/vertical slip ratio of ~4:3 (Fig. 8b and d). This oblique 

movement sense is also observed along the fault scarps at this site, where two 

small gullies oriented perpendicular to the fault scarps are offset dextrally by 35 

cm and vertically by 30 cm (Lin et al., 2012). The overprinting of co-seismic 
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surface ruptures on older cataclastic rocks including cataclasite, fault breccia, and 

fault gouge (Lin et al., 2010c), indicates a history of major faulting events within 

the Qingchuan fault zone. 

 

4.3. Location 3 

     Location 3 is located at a fault scarp developed on the T2 terrace riser with 

a dextral offset of about 58 m (Fig. 5). The fault zone developed in the 

pre-Mesozoic marble basement rock consists of a foliated cataclasite zone of >3 

m width and a thin fault gouge zone (1-2 cm thick) (Fig. 9a). Slickenside 

striations developed on the main fault show a strike-slip sense with a minor 

thrust component (Fig. 9b). S-C fabrics observed in X-Z section [using the 

terminology of Lin (1999, 2008) in this study] cut perpendicularly to the main 

foliation of the cataclasite and parallel to surfaces containing the slickenside 

striations plunging 8°W, showing a horizontal /vertical slip ratio of ~7:1 in 

displacement (Fig. 9c and d), coincident with the offset of terrace riser and 

branch river channels at this site.      
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4.4. Location 4 

     Location 4 is a trench site on the T2 terrace riser (Fig. 5a). For observing 

the fault zone structures and determining the formation age of T2 terrace riser, 

we dug out two trenches across the fault scarp (Trenches 1 and 2, see Fig. 5 for 

locations).  

     At Trench 1, the fault zone is developed within the marble basement 

bounded and overlain by unconsolidated organic-rich soil and sand-pebble 

sediments. Network fractures within the faulted marble are filled with 

brown-gray to dark-brown unconsolidated organic-rich soil (Fig. 10). The soil is 

>1.5 m thick on the downthrown (NW) side and contains dark-brown and 

dark-gray peaty materials and exhibits a random structure without sedimentary 

layering, covering the soil-sand pebble sediments (Figs 10b, c, and 11a).  

     The injection veins commonly have a complex geometry and occur as 

intricate networks within the cataclasite and can be locally traced back to the 

source unconsolidated dark-brown and dark-gray peaty materials bounded by the 
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fault plane (Fig. 11a). The injection veins terminate sharply along the fractures, 

which are similar with that of injected fault gouge vein observed in the fault 

outcrop at Loc. 3 (Fig. 11). Injection veins of fault gouge have also been reported 

in the southwest segments of the LSTB, which are suggested to be formed by 

repeated paleoseismic faulting events (Lin et al., 2010c; Lin, 2011). Radiocarbon 

dating results for the soil-silt layer covering the alluvial soil-sand-pebble 

sediments exposed at the base of the wall show that they formed at ca. 

11000–17,000 yr BP (C02, 06–C08 in Table 1 and Fig. 10c). 

     At Trench 2, the fault zone was exposed in the marble basement (Fig. 12). 

To observe the structure of the fault zone, the trench walls were smoothed. The 

exposed fault zone is about 1 m wide between the cataclasitic marble and 

unconsolidated organic-rich soil-sand deposits (Fig. 12a and b). The foliated 

cataclasite zone is characterized by S–C fabrics observed in X–Z section (the 

base exposure wall of the Trench 2) (Fig. 12c). The S–surfaces are defined 

aggregates of marble fragments that are generally asymmetric in shape, the 

C–Surfaces are generally defined by subsidiary faults and discontinuous 
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fractures, and the C’–surfaces are defined by shear bands with fine-grained 

materials which are oblique to the C-surface (Fig. 12c). The orientations of S-C 

fabrics indicate a right-lateral strike-slip movement sense, coincident with that 

indicated by the offset T2 terrace riser (Fig. 5b) and that observed at Loc. 3 (Fig. 

9).     

 

5. Discussion 

5.1. Offset and/or deflection of river channels 

     One of the most convincing lines of evidence for strike-slip faults in 

mountainous regions is the systematic offset of stream channels along the fault 

trace (e.g., Maruyama and Lin, 2002). Previous studies have shown such 

channels deflected along faults within the LSTB (e.g., Densmore et al., 2007; 

Fan et al., 2008). 

 In the present study region, most of the deflected stream channels and 

offset ridge spurs show more complicated geomorphic configurations than those 

reported previously. These configurations, such as the combination structures of 
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lateral offset and deflection with both right-lateral and left-lateral deflection, 

make estimating the offset magnitude from deflected river channels difficult. 

One example is from the Jialing River (Fig. 2), a main branch of the Yangtze 

River, where the maximum amount of dextral offset of the Jialing River along 

the Qingchuan fault was estimated to be up to 17 km (Fan et al., 2008). However, 

our interpretations of the topographic features do not support this estimate. If the 

Jialing River was dextrally offset by 17 km, the Xihanshui and Bailong rivers 

(Fig. 2), tributaries of the Jialing River with a similar channel scale, would have 

also been dextrally offset by a similar dextral amount. However, the Xihanshui 

River crosses the Qingchuan fault without distinct deflection (Fig. 2). 

Furthermore, the Bailong River shows an apparent left-lateral deflection of about 

17–20 km along the Qingchuan fault, contrary to the right-lateral deflection of 

the Jialing River (Fig. 2). Therefore, these geomorphic features show that the 

main branches of the Yangtze River are not systematically offset or deflected 

along the Qingchuan fault.  

In contrast, our analysis of a set of topographic features indicates a 
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systematic deflection of the drainage system along the eastern end of the 

Qingchuan fault with 1.6 km m in a dextral sense (Fig. 4c). Accordingly, we 

infer that this offset is the maximum recognizable dextral displacement 

accumulated along the Qingchuan fault. The striations developed on the main 

fault planes observed at the outcrops near Locs 3 and 4 where the T2 terrace riser 

has been offset about 58 m in dextral along the Qingchuan fault show a slip 

vector plunging 8°–30°W (Figs 6 and 9), which indicates that the 

horizontal/vertical slip ratio is ~4:1–7:1 in displacement. In contrast, the slip 

vectors inferred from the striations measured at Locs 1 and 2 indicate a 

horizontal/vertical slip radio is ~4:3–3:2. Furthermore, S-C fabrics of the foliated 

cataclastic rocks developed within the fault zone also indicate a right-lateral 

strike-slip shear sense (Figs 9, 11 and 12), coincident with that indicated by the 

topographical features. Based on this maximum offset amount of the mountain 

ridges and river channels and the offset amount of and 58 m of the T2 terrace 

riser, and the slip sense indicated by the striations developed on the main fault 

planes and S-C fabrics, we conclude that the Qingchuan fault is a right-lateral 
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strike-slip active fault and the dextral offset has been accumulated on the fault 

since the formation of the T2 terrace in the late Quaternary.  

 

5.2. Rate of strike-slip motion 

  Estimation of slip rates across strike-slip faults requires the matching of 

displaced geomorphic and/or geologic reference markers, such as fluvial terrace 

risers, alluvial fans, and stratigraphic sequences that are datable. In the present 

study region, the three levels of terrace risers (T1, T2, and T3) along the 

Hanjiang River can be used as reference markers to estimate the slip rate along 

the Qingchuan fault. The T2 terrace riser, as well as the branch river channels 

developed within the T2 terrace riser, dextrally offset by about 58 m (Fig. 5b). 

Thus, the 58 m dextral offset accumulated since the formation of the T2 terrace 

riser. The trench investigations show that the soil-sand deposits containing peaty 

materials and covering the alluvial sand-gravel (pebble) deposits of the T2 

terrace risers and fans yield radiocarbon dating ages of ca.11000-17000 yr BP 

(Fig. 10c; Table 1). We interpret the age to mean that the T2 terrace riser formed 
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synchronously in or just before ca. 17000 yr BP. Considering the formation time 

of the peaty material and age error range, we infer that the T2 terrace riser 

formed in the period between ca.11000 to ca. 20000 yr BP. Therefore, the 

average strike-slip rate is estimated to be 3–5 mm/yr for the most recent 

movement on the Qingchuan fault at this location. 

 

5.3. Spatial change in slip sense along the active faults of the LSTB 

     Our previous studies (Lin et al., 2009, 2010a–c, 2012) showed that the 

2008 coseismic surface ruptures overprint pre-existing fault traces of the 

Qingchuan fault and that coseismic right-lateral strike-slip displacements have 

accumulated upon the Qingchuan fault. This dominance of right-lateral 

strike-slip motion along the Qingchuan fault contrasts to that observed in the 

central and southwestern sectors of the Wenchuan rupture zone where thrusting 

dominates (e.g., Lin et al., 2009; Xu et al., 2009; Jia et al., 2010; Li et al., 2010). 

The spatial change in slip sense from thrust-dominated slip in the central and 

southwestern sectors of the LSTB to right-lateral strike-slip-dominated 
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displacement in the northeastern sector of the LSTB along the Qingchuan fault 

probably reflects a change in the orientation of fault geometry from NE–SW in 

the southwestern-central sectors to ENE-WSW in the northeastern sector along 

the LSTB (Figs 1 and 13). The change in the fault orientation has been observed 

along the 2008 Wenchuan coseismic surface rupture zone along which the fault 

orientation changed from a general trend of N10°–40°E in the 

southwestern-central sectors to N45°–70° in the northeastern sector (Lin et al., 

2009, 2012). Thus, the change in fault orientation may cause a change in 

kinematic behavior including slipping sense during individual large earthquakes 

along a seismogenic fault zone. 

  Long-term Global Positioning System (GPS) data show that the Tibetan 

Plateau is currently moving eastward, perpendicular to the general trend of the 

central and southwestern sectors of the LSTB, resulting in a compressive stress 

that is leading to the formation of fold–thrust structures. However, the eastern 

margin of the Tibetan Plateau, adjacent to the northeastern sector of the LSTB, is 

moving northeastward (Fig. 13a) (Zhang et al., 2004; Gan et al., 2007). GPS data 
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acquired after the 2008 earthquake reveal that the direction of ground motion 

differs on each side of the Qingchuan fault, being anticlockwise on the 

northwestern side of the fault and clockwise on the southeastern side (Wang et al., 

2011). Right-lateral strike-slip movement is observed along the northeastern 

sector of the Qingchuan fault (Shen et al., 2009) (Fig. 13b). Analyses of 

ALOS/PALSAR (Advanced Observation Satellite/Phased-array type L-band 

Synthetic Aperture Radar) data also reveal that a major right-lateral coseismic 

slip occurred in the northeastern sector of the LSTB during the 2008 earthquake 

(Hashimoto et al., 2010). These geodetic data indicate a right-lateral 

strike-slip-dominated displacement along the Qingchuan fault, which concurs 

with our field observations. Focal mechanisms of large aftershocks (Mw ≥5) 

associated with the 2008 Wenchuan earthquake also show that the faults in the 

northeastern sector around the Qingchuan fault have a right-lateral 

strike-slip-dominated displacement sense, and the central and southwestern 

sectors of the LSTB are dominated by a thrust slip (Fig. 13b). Therefore, the 

various data indicate a transition from a thrust-dominated style of 



 23 

accommodation in the central and southwestern sectors to a right-lateral 

strike-slip-dominated style of accommodation in the northeastern sector 

(Qingchuan fault) of the LSTB. This spatial transition can also be considered to 

reflect a change in the orientation of fault geometry from NE-SW in the 

southwestern sectors to ENE-WSW in the northeastern sector along the LSTB as 

documented above. The amount of right-lateral strike-slip movement (up to 58 

m) that accumulated on the T2 terrace risers in past ~20 kyr and the large 

horizontal/vertical slip ratio of up to 7:1 in displacement along the Qingchuan 

fault, as documented above, also supports the idea that the fault has played a role 

in releasing seismic energy as a right-lateral strike-slip seismogenic fault at the 

northeastern margin of the Tibetan Plateau. 

 

6. Conclusions 

     Based on the results of topographic analysis from high-resolution 

WorldView imagery, field investigations, and trench excavations, we conclude 

that: (i) the Qingchuan fault is an active fault dominated by a right-lateral 
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strike-slip in the late Quaternary, (ii) systematic right-lateral offsets of up to ca. 

1.6 km have occurred in elements of the drainage system along the Qingchuan 

fault, (iii) the average rate of right-lateral strike-slip motion in the late 

Pleistocene-Holocene is estimated to be ca. 3–5 mm/yr, with an average value of 

4 mm/yr. Our results demonstrate that the spatial change in slip sense from 

thrusting-dominated slip in the southeastern sector to right-lateral-dominated slip 

in the northeastern sector of the LSTB along the Qingchuan fault is mainly 

caused by a change in the orientation of fault geometry from NE-SW to 

ENE-WSW along the LSTB. 
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Figure Captions 

Figure 1. Location maps showing topography of the Longmen Shan region and 

the distribution of coseismic surface ruptures of the 2008 Wenchuan earthquake 

[modified from Lin et al. (2009, 2010a)]. (a) Landsat image of the Tibetan 

Plateau and north India, showing the location of the study area. Yellow and red 

arrows indicate the direction of movement of the Tibetan Plateau and the Indian 

Plate, respectively. (b) SRTM (Shuttle Radar Topography Mission; 90 m 

resolution) color shaded-relief map showing the tectonic landforms of the 

Longmen Shan region. Red stars indicate epicenters of the 2008 Wenchuan 

earthquake [(CENC, 2008), Harvard University (Harvard, 2008), and the United 

States Geological Survey (USGS, 2008)]. 

 

Figure 2. Geological map of the study region, showing the geologic structures of 

the Longmen Shan region [modified from BGMRSP (1991) and Lin et al. 

(2012)]. The distribution of coseismic surface ruptures is modified from Lin et al. 

(2009). 
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Figure 3. Shuttle Radar Topography Mission (SRTM) color shaded-relief map (a) 

and remote-sensed image (from Google) (b, c) showing the tectonic landforms of 

the study region along the Qingchuan fault. (a) Coseismic surface ruptures by the 

2008 Wenchuan earthquake along the Qingchuan fault, which (see Fig. 1b for 

location). (b) Drainage channels dextrally deflected and/or offset along the 

Qingchuan fault on the western side of Bailong Lake. R1– R1’ to R8–R8’ are 

river channels that are dextrally offset along the fault trace. (c) Restored map of 

the topography along the Qingchuan fault by about 700 m displacement.  

 

Figure 4. Stereo maps compiled 0.5-m-resolution WorldView images and DEM 

data (30 m resolution) showing systematically-offset stream channels and 

terminal facets along the Qingchuan fault at eastern site of the study region (see 

Fig. 3a for location). The stream channels are dextrally offset by 0.9–1.6 km. The 

images in (a)–(c) form a continuous scene from east to west. 
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Figure 5. (a) Stereo map compiled 0.5-m-resolution WorldView images and 

DEM data (30 m resolution) (location shown in Fig. 4a); (b) restored map with 

location in Fig. 5a showing systematically-offset stream channels and alluvial 

terrace risers and fans in the Hanjiang River region. H: T2 and T3 terrace heights 

above current river channel in meters. 

 

Fig. 6. (a) Topographic features of the offset T2 terrace riser in the area around 

Location 3 (see Fig. 5a for location). (b) Fault plane where striations (white 

arrows) are present. (c) Topographic features of the offset T2 terrace riser in the 

western site of Location 3 (see Fig. 5a for location). T2a and T2b indicate the 

dextrally-offset edge of T2 terrace riser. (d) Lower hemisphere equal-area 

stereographic projection showing the orientations of striations on the fault 

surface in (b), indicating a strike-slip-dominated slip sense. Long arrow indicates 

the slip vector of hanging wall. Contour interval is 5% per 1% area.  

 

Figure 7. Photographs of representative fault outcrop at Location 1 (a, b) and 
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stereo projection of striations developed on the fault plane (c) (see Fig. 3a for 

location). (a) Overview of the outcrop exposure. Cataclasite-bearing basement 

rocks in the hanging wall of F1 fault are downthrown 20-30 m. White broken 

line indicates the top of basement rock in the hanging wall of F1 fault. Two mans 

marked by white ellipses show the scale. (b) Close-up view of secondary fault 

zone (F3) with 5–10 cm gouge zone (see Fig. 7a for location). The twisted sickle 

shown for scale is 25 cm in length. (c) Lower hemisphere equal-area 

stereographic projection for striations collected from the fault surface in Fig. 7b. 

Long arrow indicates the slip vector of hanging wall. Contour interval is 5% per 

1% area.  

 

Figure 8. (a) General view of Location 2 (see Fig. 3a for location). Note that the 

coseismic surface ruptures (indicated by red arrows) transect the 

cataclasite-bearing host rock. (b) Close-up view of a fault zone containing fault 

gouge zone where the striations are observed. (c) Close-up view showing 

ruptures transecting cataclasite. (d) Lower hemisphere equal-area stereo 
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projection of striations showing the orientations of striations on coseismic fault 

surface in (b). Long arrow indicates the slip vector of hanging wall. Contour 

interval is 5% per 1% area.  

 

Figure 9. (a) Overview of Location 3 (see Fig. 5a for location). The hammer 

shown for scale is 35 cm in length. (b) Lower hemisphere equal-area 

stereographic projection showing the orientations of striations on the coseismic 

fault plane shown in (a). Long arrow indicates the slip vector of hanging wall. 

Contour interval is 5% per 1% area. (c) Close-up view of the fault exposed in (a). 

The pen shown for scale is 14 cm in length. (d) Polished section of hand 

specimen from (c). Note that S-C fabrics show a dextral slip sense. 

 

Figure 10. P Trench 1 at Location 4 (see Fig. 5a for location). (a) Overview of 

trench. The tape measure shown for scale is 2 m in length. (b) West exposure 

wall. Grid interval is 1 m. (c) Sketch of (b). Note network soil veins injected into 

the fault-fracture zone of the marble footwall rock. 
14

C dating ages are shown in 
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Table 1. 

 

Figure 11. (a) Injection soil veins exposed in Trench 1 at Location 3. Grid 

interval is 1 m. (b) Injection gouge vein exposed at Location 4. The twisted 

sickle shown for scale is 25 cm in length. Note that both the injection veins of 

soil and fault gouge can be traced back to the source materials bounded by the 

fault plane.  

 

Figure 12. Photographs of the wall exposed in Trench 2 at Location 4.   (a) 

Fault boundary between the marble basement and surface soil-clay deposits 

observed on the southwest wall. Grid interval is 1 m. (b) Foliated cataclasite zone 

observed in the marble basement rock of northeast wall. (c) Close-up view of 

fault zone observed at the base exposure of the trench shown in (a).  

 

Figure 13. Surface displacement inferred from GPS measurements of the eastern 

margin of the eastern Tibetan plate around the LSTB. (a) Displacement vectors 
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with respect to the Eurasia fixed reference frame indicate the direction of 

movement of the Tibetan Plateau and of the LSTB before the 2008 Wenchuan 

earthquake [GPS data are from Zhang et al. (2004) and Gan et al. (2007)]. (b) 

Coseismic slip distribution and movement sense of the ground surface around the 

LSTB caused by the 2008 Wenchuan earthquake [GPS data are from Wang et al. 

(2011), focal mechanism data from Tian et al., (2013)]. 



Figure1
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167504&guid=83564fde-32e9-4bf8-b3f6-3148924ccea2&scheme=1


Figure2
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167505&guid=3b6d9113-dd89-41ad-9cca-13a8688e4318&scheme=1


Figure3
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167506&guid=ac7c938e-199c-400e-88ed-4d9fe4ef9b39&scheme=1


Figure4
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167507&guid=4fdc7ce0-7677-4c9a-b99f-b7b261d8a147&scheme=1


Figure5
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167508&guid=1994e530-a83d-45df-b3c7-ac50ffa8174b&scheme=1


Figure6
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167509&guid=5fe28452-df40-4ca3-a34f-f1dfb321d5bf&scheme=1


Figure7
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167510&guid=c4c607f4-fbde-4c55-a3b7-871018c7e18a&scheme=1


Figure8
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167511&guid=354c5b0c-13be-4545-af60-7a51554f7665&scheme=1


Figure9
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167512&guid=398fd87d-0298-44f5-92b9-bc7226511265&scheme=1


Figure10
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167513&guid=1b22dcf7-39c1-435b-92af-0350f953f1a4&scheme=1


Figure11
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167514&guid=dc564119-51fb-4ea4-9300-49260b60a275&scheme=1


Figure12
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167515&guid=cdd30d0c-7704-4b50-ab53-5134080cbe54&scheme=1


Figure13
Click here to download high resolution image

http://ees.elsevier.com/sg/download.aspx?id=167516&guid=625d0aad-3d1c-4c01-ae1e-9f421c8752a2&scheme=1


Table 1. Results of 
14

C dating.   

Sample noa). Lab no. Material 14
C age (yr BP) b) Calendar year range (2) c) 

C02 Beta-320142 organic soil 10,980 ± 50 11,990–11,600 yr BP 

C06 Beta-320146 organic soil 13,940 ± 60 17,070–16,890 yr BP 

C07 Beta-320147 organic soil 9,290 ± 50 10,640–10,630 yr BP 

C08 Beta-320148 organic soil 12,590 ± 60 15,090–14,590 yr BP 

a)
Samples were analyzed at Beta Analytic Inc. USA, via accelerator mass spectrometry (AMS). 

b)
Radiocarbon ages were measured using accelerator mass spectrometry referenced to the year A.D. 1950. 

Analytical uncertainties are reported at 2σ. 

c)
Dendrochronologically calibrated calendar age by Method A from CALIB Radiocarbon Calibration 

Version 6.1 (Stuiver et al., 2003). 

Table1
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