Logic-memory device of a mechanical resonator
Atsushi Yao and Takashi Hikihara

Citation: Applied Physics Letters 105, 123104 (2014); doi: 10.1063/1.4896272
View online: http://dx.doi.org/10.1063/1.4896272
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Binary data coding with domain wall for spin wave based logic devices
J. Appl. Phys. 111, 07D130 (2012); 10.1063/1.3680089

Electrical input structures for nanomagnetic logic devices

Switching energy-delay of all spin logic devices
Appl. Phys. Lett. 98, 123510 (2011); 10.1063/1.3567772

Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses
J. Appl. Phys. 107, 014907 (2010); 10.1063/1.3277022

Mechanical mixing in nonlinear nanomechanical resonators
Logic-memory device of a mechanical resonator

Atsushi Yao1,a) and Takashi Hikihara1,b)
Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 Japan

(Received 28 July 2014; accepted 10 September 2014; published online 22 September 2014)

We report multifunctional operation based on the nonlinear dynamics in a single microelectromechanical system (MEMS) resonator. This letter focuses on a logic-memory device that uses a closed loop control and a nonlinear MEMS resonator in which multiple states coexist. To obtain both logic and memory operations in a MEMS resonator, we examine the nonlinear dynamics with and without control input. Based on both experiments and numerical simulations, we develop a device that combines an OR gate and memory functions in a single MEMS resonator.

Microelectromechanical systems or nanoelectromechanical systems (MEMS or NEMS) resonators have been developed for use as filters, frequency references, and sensor elements.1 Recently, significant research has focused on mechanical computation based on MEMS or NEMS resonators.2–17 Some studies have shown that a single mechanical resonator can be used as a mechanical 1-bit memory2,3,7,8,11–13,15 or as mechanical logic gates.6,9,10 Recently, multifunctional operation has been demonstrated in the form of a shift-register and a controlled NOT gate made from a single mechanical resonator.17 The next phase is to use a closed loop control to generate multifunction devices, which consist of memory and multiple-input gates, in a single device. The closed loop allows output and excitation signals to be fixed at a single frequency. The goal of the work presented in this letter is to develop multifunction operation from a nonlinear MEMS resonator in which multiple states coexist with closed loop control.

Nonlinear dynamical responses are commonly observed in a microelectromechanical or nanoelectromechanical resonator. The nonlinear dynamics of the resonator is well known to be described by the Duffing equation.2,8,12,18–20 Such a nonlinear resonator has hysteretic characteristics, which lead to two stable states and one unstable state, depending on the frequency,1,21 or excitation force.6,15

This letter focuses on fabricating a multifunction device that offers logic and memory (called a “logic-memory device”). To do this, we examine the nonlinear dynamics in a MEMS resonator with and without control input. In the following, we discuss the experiments and numerical simulations that allowed us to develop a device that combines multiple-input gate and memory functions in a single nonlinear MEMS resonator.

The proposed comb-drive MEMS resonator is shown in Fig. 1. The resonator consists of a perforated mass with a width, length, and thickness of 175, 575, and 25 μm, respectively.19,22,23 When the comb-drive resonator is electrically excited, the mass vibrates in the lateral direction. The vibration of the mass is detected by using a differential measurement24 in vacuum (around 10 Pa) at room temperature. The output voltage of the differential measurement is

$$V_{out} = 7.2 \text{V} \text{s}^{-1} \times f_e v_{ac} A_e \sin(4\pi f_e t + \phi_e),$$

where A_e denotes the displacement amplitude, ϕ_e is the phase, f_e is the excitation frequency, and $v_{ac} (= 0.6 \text{V})$ is the ac excitation amplitude. The vibration displacement is measured without additional sensors; therefore, the MEMS resonator is equipped with a comb drive that normally serves as a forcing actuator, but which simultaneously serves as a displacement sensor.11,16

Figure 2(a) shows the amplitude frequency response (without control input u_c). The MEMS resonator produces a hysteretic response: the curves differ for increasing and decreasing frequency sweeps. The nonlinear dynamics of the MEMS resonator is qualitatively modeled as follows:

$$\frac{d^2x}{dt^2} + \frac{2\pi f_0}{Q} \frac{dx}{dt} + (2\pi f_0)^2 x + 2\pi x^3 = 4.0 \text{m}(V_0^2)^{-1} \times (V_{dcn} + u_n) \sin(2\pi f_n t),$$

(1)

FIG. 1. Schematic of MEMS resonator, measurement system, and control system that relates to logic inputs. The nonlinear MEMS resonator, fabricated using silicon-on-insulator technology, is actuated by an ac excitation voltage v_{ac} with a dc bias voltage V_{dc}. When the MEMS resonator is excited, the mass vibrates in the X-direction. In the measurement system, the output voltage V_{out} depends on the amplitude and phase of the displacement in the nonlinear MEMS resonator. The control system is implemented with a feedback input and logic inputs. The feedback input is given as the slowly changing dc voltage V_{dc}, to which the output voltage V_{out} is converted by an analog multiplier and a low-pass filter (see Ref. 11 for more details). The time constant of the low-pass filter is set to about 0.47 s. The logic inputs, represented by two dc voltages (L_{in1} and L_{in2}), are added to the dc bias voltage V_{dc}. As a result, the excitation force under control becomes proportional to $V_{dc} + u_c = V_{dc} + L_{in1} + L_{in2} - K_e V_{out}$. Here L_{in1} and L_{in2} denote the input signals, which serve as the logic inputs, u_c is the control input, and $K_e (=11 \text{V}^{-1})$ is the feedback gain in the experiments.

a)Electronic mail: yao@dove.kuee.kyoto-u.ac.jp
b)Electronic mail: hikihara.takashi.2n@kyoto-u.ac.jp

© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896272]
where \(x \) denotes the displacement, \(f_n \) is the excitation frequency, \(f_0 (\approx 8.6644 \text{ kHz}) \) is the resonance frequency, \(Q (\approx 25,000) \) is the quality factor, \(x_3 (\approx 7.06 \times 10^{16} \text{ (sm)}^{-2}) \) is the nonlinear mechanical spring constant, \(V_{dcn} \) is the dc bias voltage, and \(u_n \) is the control input. The parameters are obtained based on our reported parameter estimation method.\(^{25}\) Fig. 2(b) shows the amplitude as a function of excitation frequency for the resonator as determined by numerical simulations at \(V_{dcn} = 150 \text{ mV} \) and \(u_n = 0 \text{ mV} \). At any given frequency in the hysteretic region, the MEMS resonator exhibits two coexisting stable states. In the following experiments and simulations, the excitation frequency is fixed at 8.6654 kHz.

Figure 3(a) shows the experimentally determined hysteretic behavior as a function of dc bias voltage \(V_{dc} \) at \(u_e = 0 \text{ mV} \). The corresponding numerical results are shown in Fig. 3(b) with respect to numerical dc bias voltage \(V_{dcn} \). The hysteresis region exists at 95 mV < \(V_{dc} < 275 \text{ mV} \) in Fig. 3(a) and 105 mV < \(V_{dcn} < 245 \text{ mV} \) in Fig. 3(b). The difference of hysteresis regions is caused by noise in Fig. 2(a). The nonlinear MEMS resonator has stable regions (solid line) that are completely separated by an unstable region (dashed line). These stable regions, which correspond to large and small amplitude vibrations, define the two states of the single-output logic or memory device in a single MEMS resonator. In the numerical simulations and experiments, a displacement amplitude greater than 3.0 \(\mu \text{m} \) is regarded as a logical “1”; a value less than 3.0 \(\mu \text{m} \) is regarded as a logical “0” for logic and memory output. Hereinafter, the numerical and experimental dc bias voltages (\(V_{dcn} \) and \(V_{dc} \)) are fixed at 150 mV.

We now discuss the nonlinear dynamics with control input as a logic operation. Fig. 1 shows the control system to perform the logic operation. The switching between two coexisting stable states was done by a displacement feedback control in the nonlinear MEMS resonator.\(^{11}\) Based on the results, the feedback control is performed. The logic inputs are applied to the MEMS resonator in the form of two dc voltages (\(L_{in1} \) and \(L_{in2} \)). In the experiments, the control input \(u_e \) is described as follows:

\[
u_e = L_{in1} + L_{in2} - K_e V_{ave}^2, \tag{2}\]

where \(K_e \) denotes the feedback gain and \(V_{ave}^2 \) is a slowly changing dc voltage that depends on the displacement.\(^{11}\)

The corresponding numerical control input \(u_n \) is described as follows:\(^{12}\)

\[
u_n = L_{inn1} + L_{inn2} - K_n A_{ave}^2, \tag{3}\]

\[
A_{ave}^2 = \frac{A_{n1}^2 + A_{n2}^2 + \cdots + A_{nm1}^2 + \cdots + A_{nmM}^2}{M}, \tag{4}\]

where \(L_{inn1} \) and \(L_{inn2} \) denote the input signals that are the logic inputs, \(K_n \) is the feedback gain, \(m \) is a natural number,
M is the average number, and A_{avg} is the displacement amplitude of the previous m period within $1 \leq m \leq M$ for the numerical simulations. In this case, A_{ave}^2 is the average of A_{rms}^2. K_n is set to $1.42 \times 10^{10} \text{Vm}^{-2}$ and M is set to 22 000.

Figure 4 shows the numerically obtained steady states when the control input is applied to the MEMS resonator. The control input can induce a modulation of the resonator’s amplitude and thus change the logical value of the output. In Fig. 4(a) (Fig. 4(b)), the initial state of memory output is a large amplitude solution (logical “1” for memory output) (b) Initial state is the small amplitude solution (logical “0” for memory output).

To execute a memory operation in a MEMS resonator, we must consider the nonlinear dynamics without the control input. When the control input is not applied, every initial state corresponds to the convergence to either the small amplitude (black) or large amplitude (white) solutions, as shown in Fig. 5. In the nonlinear MEMS resonator, the small and large amplitude solutions have each basin of attraction.

FIG. 4. Amplitude modulation systematically varied in input signals L_{inn1} and L_{inn2} at $f_n = 8.6654$ kHz and $V_{\text{dc}} = 150$ mV (numerical results). The light (dark) region corresponds to more than (less than) 3.0 μm in displacement amplitude, corresponding to a logical “1” (logical “0”) output. For an OR gate, input signals are set to 150.0 mV and 37.5 mV, as shown by the four circles with light (aqua) color: (a) Initial state is set to the large amplitude solution (logical “1” for memory output) (b) Initial state is the small amplitude solution (logical “0” for memory output).

FIG. 5. Calculated convergence conditions (final state) when the control input shown in Fig. 4 is off. The white (black) region corresponds to convergence to a logical “1” (logical “0”) for memory output. Light (aqua) circles show the logic input in our simulations, as in Fig. 4: (a) Numerical results corresponding to Fig. 4(a), (b) Numerical results corresponding to Fig. 4(b). Around each solution. The convergence conditions depend on the two basins of attraction. The light region (displacement amplitude greater than 3.0 μm) in Fig. 4 corresponds to white region in Fig. 5 and vice versa. When the control input is not applied, the MEMS resonator maintains its original logic output. Thus, the nonlinear MEMS resonator works as the memory device by storing the logic information.

The results shown in Figs. 4 and 5 indicate that MEMS resonator works as a combined logic-memory device. The logic and memory operations can be programmed by adjusting the resonator’s operating parameters (input signals). In the numerical simulations, when the input signal (L_{inn1} or L_{inn2}) is set to 150.0 mV (37.5 mV), the logic input is regarded as logical 1 (logical 0). The logic inputs (0, 0) of input signals (L_{inn1}, L_{inn2}) have a value of 75.0 mV, (0, 1) and (1, 0) have a value of 187.5 mV, and finally (1, 1) have 300.0 mV, as shown by the light (aqua) circles in Figs. 4 and 5. The output of the device is a logical “0,” when the logic inputs are (0, 0), which correspond to a value of 75.0 mV. However, when the logic inputs are set to (0, 1), (1, 0), or (1, 1), the output corresponds to a logical “1.” Therefore, the single MEMS resonator combines the function of an OR gate and memory.

These logic and memory operations can be demonstrated experimentally in a single MEMS resonator. The operations are confirmed for the behavior of device at clock evolution. The calculated time evolutions of the device are shown in Fig. 6(a) and the corresponding experimental time evolutions are shown in Fig. 6(b). The calculated results are consistent with the experimental results. When electrical noise and surges appear in Fig. 6(b), no logic faults occur and the memory operations are not perturbed. The experimental modulation of the amplitude and the convergence conditions will be examined in more detail in a future presentation. When the excitation frequency changes, it is anticipated that desired operations of OR gate and memory cannot be achieved. Nevertheless, this work demonstrates both experimentally and numerically a combined device of OR gate and memory functions in a single MEMS resonator.

Here, we estimate an instantaneous power of the MEMS resonator. In Fig. 1, when the voltages of right electrode are excited by $v_1 = V_{\text{dc}} + v_{\text{ace}} \sin 2\pi f_t$ and the left by $v_2 = V_{\text{dc}} - v_{\text{ace}} \sin 2\pi f_t$, the right and left compartment capacitors (C_1 and C_2) are given by $C_1 = 5.75 \times 10^{-9} \text{Fm}^{-1} \times (l + A_\text{c} \sin (2\pi f_t + \phi))$ and $C_2 = 5.75 \times 10^{-9} \text{Fm}^{-1} \times (l - A_\text{c} \sin (2\pi f_t + \phi))$, where A_c denotes the displacement amplitude and $l (= 100 \mu m)$ is the initial overlap between the fingers.

The power of the MEMS resonator p is described by $p = v_1 \partial(C_1 v_1)/\partial t + v_2 \partial(C_2 v_2)/\partial t$. In this study, h_{ace}^2 is much greater than $A_\text{c} V_{\text{dc}} v_{\text{ace}}$. Thus, the power is estimated as $1.13 \times 10^{-8} \sin 2\pi f_t W$.

In conclusion, we numerically and experimentally demonstrated a multifunctional device consisting of a nonlinear MEMS resonator. We confirmed that when a control input is applied to a nonlinear MEMS resonator, two equal-amplitude regions exist because of the adjustment of the feedback input. Therefore, a single MEMS resonator can work as an OR gate. We also used numerical simulations to show that in the absence of the control input, the nonlinear MEMS resonator maintains its original logical state. Thus, this resonator also serves as a memory device. Therefore, we demonstrate a
combination of an OR gate and a memory device in a single MEMS resonator. Mahboob et al. have developed a device that combines a controlled NOT gate and memory functions in a single resonator at 2 K. In this letter, we realize a logic-memory device with the logic inputs given as two dc voltages that do not depend on the phase. By considering the closed loop and bias inputs, these results open the way to further research in high and multi functionality in single and coupled resonators, which may take the form of multiple-input gates such as three- or four-input logic gates and memory.

We are grateful to Professor S. Naik (Weber State University, USA) for his support in the design of MEMS resonators and Mr. Y. Umezaki (Graduate Student, Kyoto University) for discussions about parameter settings. This work was partly supported by the Global COE of Kyoto University, Regional Innovation Cluster Program “Kyoto Environmental Nanotechnology Cluster,” and the JSPS KAKENHI (Grant-in-Aid for Exploratory Research) No. 21656074. One of the authors (A.Y.) was supported by the Grant-in-Aid for JSPS Fellows No. 26462.

1. V. Kaajakari, Practical MEMS (Small Gear Publishing, 2009).