THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 214:16 (19pp), 2014 October

© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0067-0049/214/2/16

THREE-DIMENSIONAL BOLTZMANN HYDRO CODE FOR CORE COLLAPSE IN MASSIVE
STARS. I. SPECIAL RELATIVISTIC TREATMENTS

Hirokl NAGAKURA!, KOHSUKE SUMIYOSHIZ, AND SHOICHI YAMADA>*
! Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
2 Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501, Japan
3 Advanced Research Institute for Science & Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
4 Department of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
Received 2014 July 20; accepted 2014 August 8; published 2014 September 18

ABSTRACT

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann equations for
neutrinos coupled with hydrodynamics equations. This method is meant to be applied to simulations of core-collapse
supernovae. We handle special relativity in a non-conventional way, taking account of all orders of v/c. Consistent
treatment of the advection and collision terms in the Boltzmann equations has been a challenge, which we overcome
by employing two different energy grids: Lagrangian remapped and laboratory fixed grids. We conduct a series
of basic tests and perform a one-dimensional simulation of core-collapse, bounce, and shock-stall for a 15 Mg
progenitor model with a minimum but essential set of microphysics. We demonstrate in the latter simulation that
our new code is capable of handling all phases in core-collapse supernova. For comparison, a non-relativistic
simulation is also conducted with the same code, and we show that they produce qualitatively wrong results in
neutrino transfer. Finally, we discuss a possible incorporation of general relativistic effects into our method.
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1. INTRODUCTION

Quantitative studies on the mechanism of core-collapse super-
novae (CCSNe) require detailed numerical simulations. Except
for low-mass (8—10 M) progenitors, elaborate one-dimensional
(1D) simulations under spherical symmetry have not reproduced
the supernova explosion (Sumiyoshi et al. 2005; Liebendorfer
et al. 2005; Kitaura et al. 2006; Burrows et al. 2007). In the
past decade, most of the supernova modelers have focused on
the multi-dimensional (multi-D) aspects of dynamics (see, e.g.,
Kotake et al. 2012b; Janka 2012; Burrows 2013 for recent re-
views). In the post-bounce phase, instabilities drive post-shock
accretion flows into turbulence, making dynamics intrinsically
multi-D. This may be crucial for supernova explosions, since
the non-spherical turbulent motions increase the time for ma-
terial to dwell in the gain region, enhancing its absorption of
hot neutrinos, boosting the post-shock pressure, and eventually
pushing the shock wave outward (Takiwaki et al. 2012; Dolence
et al. 2013).

As a matter of fact, we have recently witnessed shock revival
in some of the currently most advanced simulations (Burrows
et al. 2006; Marek & Janka 2009; Suwa et al. 2010; Lentz et al.
2012; Miiller et al. 2012a, 2012b; Takiwaki et al. 2014), which
has raised our hope that we will finally uncover the mechanism
behind CCSNe. Unfortunately, however, success or failure of
the supernova explosion is a delicate problem. In fact, the latest
results of multi-D simulations by different groups are still at odds
with one another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Although
various approaches, both phenomenological and ab initio, are
being undertaken at present, only better simulations, possibly
ones with a Boltzmann equation solver, that incorporate detailed
microphysics and general relativity (GR) may give a conclusive
answer.

To achieve this goal, we are developing a numerical code
for neutrino transfer, which solves the Boltzmann equations
(Sumiyoshi & Yamada 2012). Our code is based on the discrete-

ordinate S, method, which determines the finite differences
of the Boltzmann equations, deploying multi-angle and multi-
energy bins in momentum space. Using some snapshots from
three-dimensional (3D) supernova simulations, Sumiyoshi &
Yamada (2012) demonstrated the capabilities of this new code,
which implements the minimum set of neutrino reactions (see
also Sumiyoshi et al. 2014). These simulations concerned
neutrino transfer in static backgrounds, however, and no back-
reactions to matter were taken into account.

The next step should be a coupling of this code with a hy-
drodynamical one, however, this method may not be so sim-
ple. Spherically symmetric 1D computations may be easier,
since they can adopt Lagrangian formulations for both neu-
trino transfer and hydrodynamics (Mezzacappa & Bruenn 1993;
Mezzacappa et al. 2001; Liebendorfer et al. 2005; Sumiyoshi
et al. 2005, 2007). Formalisms such as these could not be ap-
plied in multi-D, however, and different formulations should be
developed for the multi-D Boltzmann hydro simulations, i.e.,
simulations that solve the Boltzmann equations and hydrody-
namical equations simultaneously in multiple dimensions.

Unlike the previous 1D codes, we adopt an Eulerian picture
in this paper. There are several reasons for making this choice.
Among other things, we have in mind that the Boltzmann
solver will be coupled with multi-D Eulerian hydrodynamics
and gravity solvers, which have been well established and widely
used in the high-energy astrophysical community. In addition,
the Eulerian picture has the benefit of easily handling the left-
hand side of the Boltzmann equation, i.e., the advection terms.
In general, Lagrangian formulations need to treat derivatives
with respect to neutrino energy, which correspond to the
Doppler effect caused by spatial and/or temporal variations
in fluid velocities. This may cause problems particularly at a
shock wave, where fluid velocities are discontinuous. For these
reasons, we have opted for the Eulerian approach.

It should be noted, however, that the Eulerian approach has its
own demerits. For example, we normally need to handle trans-
formations between the laboratory frame and the fluid restframe
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Figure 1. Left panel: incoming and outgoing neutrino fluxes at the interface between fluid elements, which are measured on the fluid restframe. Right panel: the
neutrino fluxes are displayed in the laboratory frame, in which matter is moving inward. The bottom picture shows that the incoming (yellow) fluxes are larger than

the outgoing (blue) ones at the interfaces of laboratory-fixed spatial grids.
(A color version of this figure is available in the online journal.)

defined locally, which are nothing but Lorentz transformations
for flat spacetime, since neutrino—matter interactions are best de-
scribed in the fluid restframe. Physically consistent treatments
of both advection and collision terms in the multi-D Boltzmann
solver are technically difficult particularly in the S, method,
since special relativistic (SR) effects such as Doppler shifts and
aberrations should be handled on a rather coarse grid in the
momentum space (see Section 3 for more details). Previous
studies have attempted to alleviate this difficulty by employ-
ing an expansion of basic equations up to O(v/c) (see, e.g.,
Hubeny & Burrows 2007). In CCSNe, the maximum fluid ve-
locity is around 10% of the speed of light and such a first-order
approximation may be justified. The resultant equations are
fairly complex and not easy to treat numerically, however, and
the formulation is certainly not applicable to highly relativistic
phenomena.

It should also be mentioned that several groups (Cardall
et al. 2005, 2013; Peres et al. 2014) are developing different
formulations for multi-D Boltzmann hydro simulations, which
have yet to be implemented. Ott et al. (2008) performed detailed
two-dimensional (2D) Boltzmann hydro supernova simulations
in the post-bounce phase but they ignored SR effects. As shown
later, consistent treatments of SR effects are indispensable to
obtain correct behaviors in neutrino transfer. They are also the
first step toward fully GR Boltzmann simulations, which will be
needed to study more extreme phenomena such as black hole
formations.

In this paper, we propose a novel formulation for the numer-
ical computations of multi-D SR Boltzmann transfer based on
the §,, method, which treats SR effects to all orders of v/c, where
c and v denote the speed of light and fluid velocity, respectively.
The accuracy of our new method is checked by the standard
tests as well as by a realistic simulation of spherical collapse
of a 15 M progenitor. As explained in the next section, the
appropriate treatment of SR effects is crucial for numerically
capturing neutrino trapping and the subsequent evolution up to
bounce. In this paper, we particularly focus on this issue, and
more detailed quantitative analyses of realistic supernova sim-
ulations with our Boltzmann hydro code will be reported in
subsequent papers.

This paper is organized as follows. To facilitate readers’
understanding, we first give intuitive arguments on the

importance of the SR effect from the perspective of phase space
(in Section 2), which will make clear why non-relativistic (NR)
Boltzmann hydro simulations fail to capture neutrino advections
with matter and yield qualitatively wrong distributions of neu-
trinos. In Section 3, we also emphasize that the treatment of SR
effects is not so easy practically, and we explain what the main
obstacle is. Then the basic equations and formulations are pre-
sented in Section 4. After introducing two independent energy
grids (which are essential for our SR treatment) in Section 5,
the numerical algorithms are given in Section 6. We examine
the accuracy of our new method using a series of SR Boltzmann
and Boltzmann hydro simulations in Section 7. Finally we con-
clude the paper with a summary and discussion about further
extensions of our code to a GR version in Section 8. Through-
out this paper, Greek and Latin subscripts denote spacetime
and space components, respectively. We use the metric signa-
ture of — + ++. Unless otherwise stated, we work in units with
¢ = G = 1, where G is the gravitational constant.

2. SR EFFECTS AND NEUTRINO TRAPPING

Before going into details of our SR Boltzmann formulation
and its numerical algorithm, we first give intuitive arguments
on the importance of SR effects. As will be observed below, the
ignorance of SR effects yields qualitatively wrong behaviors
in neutrino distributions. The key ingredient is the angular
distribution in phase space: isotropic distributions in the fluid
restframe become anisotropic in the laboratory frame after
Lorentz transformations, a fact that ensures the advection of
neutrinos with matter and eventually neutrino trapping.

In the following section, we will explain this process in a
simplified and idealized setup. We consider neutrino transfer in
moving matter that has uniform velocity and thermodynamic
quantities. In addition, we assume that neutrinos and matter
are strongly coupled with each other via scattering and, as a
result, the neutrino distribution function in phase space, f, is
isotropic in the fluid restframe, a situation similar to those we
see locally in the neutrino trapping phase. Then the neutrino
flux at each point vanishes in the fluid restframe and there is
no net flux traversing the fluid elements (see the left panel
in Figure 1). The neutrino number in each fluid element is
conserved as the fluid element moves at finite velocity.
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Figure 2. Left: discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial direction corresponds to neutrino
energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right: Lorentz-transformed mesh in the fluid restframe. The blue
lines correspond to the radial lines whereas the black lines are transformed from the concentric circles in the left panel. The brown dots show an isoenergy circle in

the fluid restframe for comparison. Matter is assumed to move upward in this figure.

(A color version of this figure is available in the online journal.)

This is the advection of neutrinos with matter and it should be
evident why the Lagrangian approach is advantageous in dealing
with it.

For comparison, the right panel in Figure 1 describes the same
situation except in the laboratory frame. Here, we assume that
the fluid is advected inward (or toward the left in the figure).
Since the neutrinos should be advected in the same direction
as the fluid in the laboratory frame, the incoming neutrino flux
is larger than the outgoing one, which means that the angular
distribution of neutrinos is anisotropic in this frame. From the
SR point of view, such anisotropies arise from the Doppler
shift and relativistic beaming by Lorentz transformations. The
mathematical expression of SR Boltzmann equations will be
given in Section 4.

If we neglected all SR effects, not distinguishing between the
laboratory and fluid restframes, we would not obtain the neutrino
advection with matter, which is crucial for neutrino trapping in
the collapsing phase. In fact, neutrinos would be left behind as
fluids are advected. The supernova core is not homogeneous
in reality and both matter and neutrino densities are highest at
the center. In the absence of advection, neutrinos would always
flow outward when actually they should move inward, keeping
pace with matter, and be effectively trapped in the core. As we
will show later in Section 7.5, the number density of electron-
type neutrinos becomes significantly smaller near the center
for NR simulations. This, in turn, affects the evolution of the
electron fraction and the size of inner core and eventually all the
supernova dynamics thereafter.

3. DIFFICULTIES IN HANDLING SR EFFECTS

In this section, we give more detailed intuitive explanations
about why SR treatments are not easy with the S, method, which
we employ in this paper. The main source of difficulty is scat-
tering, particularly scattering between neutrinos and nucleons
(and nuclei). There are no technical challenges, however, with
other reactions such as neutrino absorptions and emissions.’ We
hence focus only on the isoenergetic scatterings in this section.

3> Of course, non-isoenergetic scatterings of electrons and neutrinos and pair

processes are another complication, which will be addressed in future work.

As mentioned in the previous sections, our Boltzmann hydro
code is based on the Eulerian picture, and we discretize six-
dimensional phase space in the laboratory frame, as shown in
the left panel in Figure 2. In this picture, spherical coordinates
in momentum space are adopted with the azimuthal dimension
being collapsed. The radial direction corresponds to neutrino
energy. Although the picture is drawn that way, gridding in each
dimension is not necessarily uniform.

We first consider the isoenergetic scattering under the condi-
tion of fluid being at rest and, as a consequence, the laboratory
frame coincides with the fluid restframe. When a neutrino un-
dergoes isoenergetic scattering, it changes its flight direction
specified by two angles, preserving energy. In the discretized
momentum space, the neutrino moves from one bin to another
with the same radial-grid number. The important thing is that
only the angular grid number is changed. In this case, there is
no difficulty and, indeed, this method has been implemented in
Sumiyoshi & Yamada (2012) and Sumiyoshi et al. (2014).

In the presence of non-vanishing fluid velocities, the problem
becomes qualitatively different. In this case, the laboratory
frame is different from the fluid restframe and they are related
to each other via a Lorentz transformation. The point is that
the Lorentz transformation induces changes in both energy
and angles. These energy shifts and aberrations are determined
by the Doppler factor, which depends on the fluid velocity
and neutrino angles (see Section 4). This is most clearly
demonstrated in the right panel of Figure 2, in which the
spherical coordinates given in the laboratory frame are Lorentz-
transformed to the fluid restframe. It is evident that they are
no longer spherically symmetric and distorted in the latter
frame. This picture summarizes the difficulties in treating
scatterings even if they are isoenergetic. As is well known,
the neutrino distribution function, f, is a Lorentz invariant
and its values at corresponding points in different frames are
identical. The important point, however, is the fact that grid
points are shifted by Lorentz transformations and concentric
(equivalently isoenergetic) spheres in the laboratory frame are
no longer spheres in the fluid restframe. As a consequence,
some interpolations are inevitable when evaluating the collision
terms for scatterings in the fluid restframe if one were to
avoid the v/c expansion. There are, however, several challenges
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with carrying out this interpolation, particularly with regard
to neutrino energy. We briefly describe the reasons for these
challenges.

The rather low energy resolution we can afford by using
the Boltzmann code is one of the reasons. We can deploy
at most ~20 energy bins (see Kotake et al. 2012a). The
distribution function, f, depends strongly on the neutrino energy
in general. In particular, it decreases almost exponentially at high
energies. On the numerical mesh, f may change several orders
of magnitude between adjacent energy-grid points. Highly
accurate interpolations of f are hence required on the coarse
mesh. Note that since the isoenergetic scatterings between
neutrinos and nucleons and/or nuclei dominate other reactions
in CCSNe, the time step (At) of simulations is mostly determined
by these processes. If the interpolations of f are not accurate at
high energies, we might find that Ar becomes unreasonably
small because of a large number of artificial scatterings. The
fact that high-energy neutrinos have larger cross sections makes
matter worse. Not to mention, in the interpolation we further
have to take into consideration the conservation of neutrino
numbers in scatterings.

In the next section, we give the SR Boltzmann equations
then we present our plan for overcoming the challenged faced
by implementing them. We then demonstrate our successful
handling of isoenergetic scatterings in the realistic supernova
simulations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of the Boltzmann equation:

0 dp' 9 )
pl*_f + i_f = _f , ()
axt  dt dp’ 0T /ol

which is valid even in curved spacetime. In the above expression,
fi= f(x*, p")) denotes the neutrino distribution function in
phase space; x* and p* are spacetime coordinates and the four-
momentum of a neutrino, respectively. Since the latter satisfies
the on-shell condition p*p, = —m?, in which m, is a neutrino
mass, only three of the four components are independent and
this is why only spatial components appear in the second term
on the left-hand side; 7 stands for the affine parameter of the
neutrino trajectory. The left-hand side of Equation (1) expresses
a geodesic motion in the phase space, while the right-hand
side symbolically denotes the so-called collision terms, i.e., the
terms that give the rate of changes in f due to neutrino—matter
interactions.

On the spherical coordinates in flat spacetime, which are the
coordinates we employ for the laboratory frame in our Eulerian
approach, Equation (1) is cast into the following conservation
form:

of uy 3, V1 —uicosp, 8 .
Jd =7 Vo PR T ing
o T DT T g gt
Jv1—pu?sing, 9 1 0
+#—f+— [(1— 1)) f]

rsinf ¢ rou,

b
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where r, 8, and ¢ denote the spatial variables. For the three
independent components of neutrino four-momentum, we do
not use the spacial components but adopt the energy and two
angles, 6, and ¢, (see Figure 3). u, is defined as , = cos6,.
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Figure 3. Local orthonormal bases that measure neutrino momentum. As the

subscripts show, e, ey, and ey are aligned with the spatial spherical coordinates.

(A color version of this figure is available in the online journal.)

In Equation (2) and the rest of this paper, we assume that
neutrinos are massless, which is well justified as long as neutrino
oscillations are ignored.

The collision term in Equation (2), which is expressed with
the laboratory time ¢, is related to the original collision term in

Equation (1) as
s sF\P
(50)., = (). ®
8t col 3t col

where ¢®(= p’) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the fluid
restframe can be expressed with the proper time of each fluid

element (7) as
fr
EIRC A
§t col 3t col

where e"(= p’ = —u, p") denotes the neutrino energy in the
fluid restframe. Here u* is the four-velocity of matter.

The Lorentz transformation of four-momentum gives the
relation of neutrino energies in the fluid restframe and laboratory
frame as

8f1‘ — 8]by(1 _ nlb . 'U), (5)

where v, y(= (1 — v?)~/?) denote the three-velocity and
corresponding Lorentz factor of matter and n'® is the unit vector
that indicates the flight direction of a neutrino in the laboratory
frame. The factor D" = y (1 —n'® - v) in Equation (5) expresses
the Doppler shift of neutrino energy. From Equations (3)—(5),
we can obtain the relation between the collision terms in the two

frames as
SE\D SA\T
R R
St col dt col

The Lorentz transformation also gives the relation between
the flight directions in the fluid restframe and laboratory frames
as

1b
£n™ = gl [n”’ + {—y - } v] G

v2

Here n'" denotes the unit vector that specifies the flight direction
of a neutrino in the fluid restframe. Using the Doppler factor
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D™ we obtain

Ib
n L[n'b+{—y+(y—1)" v}v]. 8)

Db 2

Note that this relation no longer contains neutrino energy
and the angle transformations are decoupled from the energy
transformations. This is a great simplification, which we make
full use of in the following section, and is a consequence of the
assumption that neutrinos are massless. The solid angle element
is then transformed as

1
(D)2

Ao = dQP. )

In the Boltzmann equation, neutrino—matter interactions are
described in the collision terms. As is well known, they
are obtained most easily in the fluid restframe. We hence
evaluate the collision term in this frame and use Equation (6) to
obtain the expression in the laboratory frame. The interactions
that we take into account in this paper are the same as those in
Sumiyoshi & Yamada (2012), the minimum set for supernova
simulations. Since Sumiyoshi & Yamada (2012) worked in the
Newtonian approximation, we need the following replacements
to employ their collision terms:

5] ().

—_—— ﬁ — .

¢ 8t 8t ) ol
s — &ff

Q- QF
R. — R, (10)

where R, denotes reaction kernels.

Here we take the collision terms for the isoenergetic scatter-
ings in the laboratory frame and see how the number of neutrinos
conserved is preserved, which will be useful in the next section.
Following Sumiyoshi & Yamada (2012) and implementing the
above replacements, we can write the terms as

g " fr ofry _ _ (8fr)2/~ 'fr pfr fr o/fr
(5?) 0N = - % [ QR @ Q"
X (ffr(é‘fr, er) _ ffr(&‘fr, Q,fr)), (11)

scat

where R ~and f denote the isoenergetic scattering kernel
and neutrino distribution function f in the fluid restframe,
respectively. The integration of Equation (11) over the solid
angle Q" vanishes due to symmetric properties of the scattering
kernel: R(Q, Q) = R(Q, Q). This represents the conservation
of the number of neutrino for the isoenergetic scatterings at each

energy in the fluid restframe.

5. TWO ENERGY GRIDS

The origin of the difficulties in the treatment of SR is
the fact that the neutrino momentum space is distorted by
Lorentz transformations, i.e., the isoenergy surfaces in the
laboratory frame do not coincide with the counterparts in the
fluid restframe. We then need highly accurate interpolations in
the energy of f, taking care to conserve the number of neutrinos,
whose difficulties in the S, method were elucidated in Section 3.

We overcome these difficulties by not employing the grid
shown in the left panel of Figure 2 but the so-called Lagrangian
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remapped grid (hereafter LRG) in the laboratory frame, which is
Lorentz-transformed from the fluid restframe. It is emphasized
that LRG is the one we mainly use in our Eulerian approach.
In Figure 4, we display the schematic picture of our LRG (see
also Figure 2 for comparison). In this method, the energy grid is
constructed so that it should be isotropic in the fluid restframe.

As a consequence, it becomes anisotropic in the laboratory
frame as observed in the left panel. The energy grids obtained
that way in the laboratory frame are different from point
to point at each time and also change in time because of
inhomogeneous fluid motions. Thanks to the isotropic energy
grids in the fluid restframe, no special care is needed in the
treatment of the isoenergetic scatterings on this grid. Note that
the angular mapping is independent of energy. The angular grid
is constructed, on the other hand, so that it should be uniform
in the laboratory frame. It implies that the angular mesh is non-
uniform in the fluid restframe as shown in the right panel. In
contrast to the energy grid, the non-uniform angular grid in the
fluid restframe causes no practical problems (see Equation (32)
for the correction by angular aberration).

One might say that the Lagrangian remapping method is
simply the canonical Lagrangian approach, but there are several
differences between the two. One of the important differences
lies in the treatment of advection terms on the left-hand side
of the Boltzmann equation. As we have already mentioned in
Section 1, the advection terms are fairly complicated in the
Lagrangian approach due to the spatial inhomogeneities and
temporal changes of matter velocity. We demonstrate this in
a simplified situation in Figure 5. Here, we consider neutrinos
propagating outward (or rightward in the figure) in optically thin
matter. We further assume that the matter is moving inward (or
leftward in the figure) at velocities that are piecewise constant
with |vrer| < |vRrignt| (see the bottom panel in this figure). The
discontinuity may be regarded as a standing shock wave.

In this situation, the neutrino energy spectrum in the labora-
tory frame is uniform in space since neutrinos are not interacting
with matter at all (see the upper picture).® This is not the case in
the fluid restframe, however. It is, in fact, blueshifted at the dis-
continuity of matter velocity (see the middle picture in Figure 5).
In the Lagrangian picture, such energy shifts are expressed as
the advection in energy space and given by the partial derivative
with respect to energy on the left-hand side of the Boltzmann
equation. In the present case, there should be an infinite energy
flux at the discontinuity.” In our Lagrangian remapping method,
on the other hand, we work in the laboratory frame, in which the
energy grid is anisotropic as shown in the left panel of Figure 4
and the blueshift in the spectrum is just compensated for by the
contraction of the energy grid in the outward direction and, as
a consequence, the energy spectrum is unchanged across the
discontinuity (see the upper picture in Figure 5).

It is easily understood that the use of LRG, which is
anisotropic and spatially non-uniform, complicates the calcula-
tion of spatial and neutrino-angular advection, a problem similar
to that in the ordinary Lagrangian method. This is mitigated in
our method, however, by the introduction of yet another energy
grid, which is isotropic and identical at all spatial grid points
in the laboratory frame (referred to hereafter as the laboratory
fixed grid, or LFG; see also Section 6.4 for more details). LFG
is employed only to calculate the neutrino advection. Note that

6 It is assumed here that the boundary condition is fixed and a steady state has
been established.

7 In numerical simulations, such a discontinuity is somewhat smeared and the
flux always becomes finite.
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Figure 4. Lagrangian remapped grid in the laboratory frame (left panel) and the Lorentz-transformed grid in the fluid restframe (right panel). The energy grid is
isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.

(A color version of this figure is available in the online journal.)
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Figure 5. Schematic pictures of the energy spectra of outgoing neutrinos in
the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.

(A color version of this figure is available in the online journal.)

as long as we work in the laboratory frame, energy-derivative
terms do not appear explicitly on the left-hand side of the Boltz-
mann equation and the advection on the LFG is particularly
simple. It should be repeated that the LFG is a grid only for
temporary use to treat the neutrino advection. Accordingly, f on
the LFG, which is obtained by interpolation in our method, is
also a temporal variable. Instead, f on the LRG is the quantity
to be solved and stored in our code.

6. NUMERICAL IMPLEMENTATIONS

In this section, we explain the detailed numerical algorithm
used to implement the various elements described above in our

t=t
Step 1 Hydrodynamical evolutions
Step 2 Reconstruction of subgrid

energy spectrum
Step 3 Lagrangian Remapping
Step 4 Evaluations of Advection
and Collision Terms
Step 5 Feedbacks to matter
n+l
t=t

Figure 6. Flow chart for our Boltzmann hydro solver.
(A color version of this figure is available in the online journal.)

Boltzmann hydro solver, paying particular attention to the usage
of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from ¢t = ¢" to
t"*!, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
tion (Kurganov & Tadmor 2000; Nagakura & Yamada 2008;
Nagakura et al. 2011). The code was successfully applied to
the simulations of standing accretion shock instability in the
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post-bounce phase in our previous study (Nagakura et al. 2013).
It is also noted that a series of standard tests for hydrodynam-
ical schemes (e.g., shock tube problems) were carried out in
Nagakura et al. (2011).

Although our Boltzmann solver is fully SR, the hydrodynam-
ics solver is Newtonian. As a matter of fact, it can be GR-Hydro
code (Nagakura & Yamada 2008) except for its gravity solver,
which is Newtonian and based on the MICCG technique (Na-
gakura et al. 2011). The implementation of an Einstein equation
solver is currently underway, the perspective of which will be
mentioned in Section 8.

The basic equations of Newtonian hydrodynamics in
spherical coordinates are written in the following form:

% Q+0;U) =W, +W,;, (12)
where each term is given as

NITY
ﬁpvr
. 8P Vg
0= N , (13)
J8(e+3pv?)
JV&rYe

Vepv!
V&(pv, v/ + psl)
vi — | Vev +p5é) (14)
\/E(pvtbvj + p8¢)
JEle+p+ %pvz)vj
J&pYev

0
_ 042 ) é\2 4 2P
ﬁp( ¥, +r@")" +rsin” 6(v?) +rp)
Wy = | vEo(—wort+singcosowh+ 220 [ (15
—VEPYy
—J/&pPv' Y,
0

0
Ve
Wi=| Veoe |- (16)
—./2G'
_\/El"

Note that W; corresponds to the interactions between neutrinos
and matter (the explicit expressions will be presented in Step 5)
and ,/g(= r? sin@) denotes the volume factor in the spherical
coordinates. Other variables, p, p, e, Y., v/, and ¥, are the mass
density, pressure, internal energy density, electron fraction, fluid
velocity, and Newtonian gravitational potential, respectively.
The Newtonian self-gravity is solved with the Poisson equation,

AY = drp. (17

In our central scheme, the above system of equations
use the finite difference method in space with a piecewise
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parabolic method interpolation and the total variation dimin-
ishing Runge—Kutta method is employed for time integra-
tion, which achieves second-order accuracy in both space
and time. We adopt the procedure proposed by Miiller et al.
(2010) for solving the energy equation (the fifth component
in Equation (12)), which reduces secular errors in the energy
conservation.

Throughout this paper, we use Shen’s equation of state (EOS;
Shen et al. 2011) with lepton and photon contributions added.
(see, e.g., Nagakura et al. 2013). The original EOS table is
rather coarse for the simulation of CCSNe. Indeed, we have
found that trilinear interpolations in the original table reduce
the accuracy of simulations, particularly at the transition from
inhomogeneous to homogeneous nuclear matter. We have hence
reconstructed a new EOS table by interpolating all quantities
with the tricubic Hermite functions. It is several times finer in
0, Y, and T than the original table.

6.2. Step 2: Reconstruction of Subgrid Energy Spectrum

In our Boltzmann solver, transformations between differ-
ent energy grids are frequently performed. As mentioned in
Section 3, we will be able to deploy at most ~20 energy bins,
a rather coarse resolution. We hence need a subgrid modeling
of the neutrino energy spectrum. It is also important for com-
puting flux at grid boundaries. As a matter of fact, if we did not
take into account such subgrid distributions and assumed in-
stead that neutrinos are populated uniformly in each grid, then a
large number of neutrinos could artificially leak to neighboring
grids either due to inaccurate numerical flux or by imprecise
interpolations (see also Step 4 on this issue).

In the reconstruction, one should pay adequate attention to
the following two conditions:

1. monotonicity and
2. conservation of the number of neutrinos.

The first condition is familiar in the numerical treatment of
hyperbolic systems and necessary to avoid artificial generation
of extrema in spectra, which may cause numerical instabilities.
The importance of the second condition is rather obvious. In
fact, if it were violated, neutrinos would appear or disappear
just by changing energy grids. As shown later, this condition is
particularly important in the evaluation of f on LFG. Note that
the value of f on each grid point actually represents the average
in the energy bin in our formulation.

The reconstruction procedures are schematically shown in
Figure 7, in which we construct the subgrid energy spectrum
for energy bin A in the LRG. In so doing, not only grid point
A but also the neighboring grid points B and C are utilized. We
distinguish two cases: (1) f locally takes an extreme value on
grid point A, i.e., both of the f’s on grid points B and C are either
larger or smaller than the f on grid point A and (2) when this is
not the case.

The left panels in Figure 7 correspond to the first case. As
shown in the figure, in this case, we assume a flat spectrum in
the energy bin. This is not a bad approximation since the actual
spectrum is indeed nearly flat in the vicinity of a local extremum.
In the second case, in which f changes monotonically over the
neighboring three grid points, we reconstruct a subgrid spectrum
as follows, which is shown in the right panels in Figure 7.

We first determine the value of f on the left and right
interfaces of energy bin A as the averages of adjacent grid
point values in the logarithmic scale. They are referred to as fi.
(fr), respectively. We also define f.x and fiin as the largest



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 214:16 (19pp), 2014 October

]
f ]
®
energy
Bin B Bin A BinC
f .
[}
energy

NAGAKURA, SUMIYOSHI, & YAMADA

[ ]
f L
L
energy
Bin B Bin A Bin C
L]
f \\\\LH
1 L]
energy

Figure 7. Reconstruction of the subgrid energy spectrum on LRG. The upper panels show two representative distributions of grid point values of f (blue filled circles)
for three consecutive energy bins. The lower panels present the reconstructed subgrid spectra (red lines) in bin A for the two cases. If the grid point value in energy
bin A takes a local minimum or maximum among the three grid points (left panels), then we assume a uniform subgrid spectrum. Otherwise, we construct the subgrid

spectrum iteratively (right panels). See the text for details.
(A color version of this figure is available in the online journal.)

(smallest) of fi and fr. Denoting the grid point value of f by
fm, we first construct a trial spectrum fim, as follows:

flmp(g) = m (18)
Gbn(e —en)+Gm (¢ < m),
G(e) = (19)
Gr—Gn

R —tm (6 —ém)+Gm (&> é€m),
where ¢, er, and e, are the energies at the left and right
interfaces and grid point, respectively; G, Gr, and Gy, are
the corresponding values of G given as

1 o
G; = log <ﬁ> (i =L,R, m). (20)

It is clear that this expression becomes exactly correct if
neutrinos are in thermal equilibrium and take a Fermi—Dirac
distribution.

It is obvious, however, that fim,(¢) does not ensure that the
number of neutrinos is conserved. Hence we need to modify
fimp(€). We first integrate fiyp in the energy bin to obtain the
number of neutrinos, N/;, in it. This should be equal to Na, the
true value. Using the ratio,

N,
Rrate = N_/A ) (21)

A

we scale the temporary spectrum as fimp X Rrae to Obtain a new
subgrid spectrum, which by definition satisfies the conservation
of neutrinos exactly.

The new spectrum so obtained does not satisfy the general
monotonicity condition, which requires that f should always be
between frax and fuin. Hence we apply a limiter if fin, exceeds
Smax and/or fuin: fimp is modified so that both components are
within the acceptable range. Owing to this limiter, the value of
N,'\ obtained by integrating the new subgrid spectrum again
deviates from N,. We repeat the above procedure until the
following condition is satisfied:

|1 - Rrate| < €convs (22)

where €.,y 1S @ measure of convergence and is set t0 €cony =
1073, It is important that the convergence of this iteration
is guaranteed mathematically and that no artificial extremum
emerges in the reconstructed spectrum.

6.3. Step 3: Lagrangian Remapping

Here we carry out the Lagrangian remapping of neutrino
energy grids and compute the change in f on the LRG. The
subgrid energy spectrum, which is obtained in the previous step,
plays an important role in this process.

The procedure is summarized in Figure 8. Suppose that n time
integrations have been finished and all quantities associated with
matter and neutrinos have been obtained at ¢+ = ¢". The upper
panel shows the grid point values of f'as well as subgrid spectra
in three consecutive energy bins on the LRG at + = ¢". Note
that the angular dimensions are suppressed in the figure. In Step
1, matter velocities are changed. As explained in Section 5, the
LRG is determined so that the neutrino energy grid is identical
in each instantaneous fluid restframe. We hence need to update
the LRG accordingly as shown with green lines in the middle
panel of Figure 8. It is then evident that f should be also changed
on account of the shifts of the grid boundaries. As shown in the
figure, neutrinos in the shaded areas determine the change of f
due to this remapping.

To evaluate the numbers of neutrinos in these regions, we
use fine, the interface value of f on the old LRG at ¢t = ¢". It is
obtained as the smaller of the two interface values derived from
the subgrid spectra in the adjacent grids in order to prevent the
moving of too many neutrinos. With this fj,, and the energies
at the grid interfaces on the old (¢44) and new (€pew) LRGs, the
number of neutrinos to be moved to the adjacent grid AN, is
given by

1
AN, = fim§|(enew>3 — (010)’1AQ, (23)

where AQ is the extent of solid angle of the bin.® Note that
the conservation of the number of neutrinos is automatically
guaranteed in this process. We end this step with a construction
of the subgrid spectrum for the modified number of neutrinos
(and accordingly f) in each energy bin in the same way as in
Step 2.

8  Note again that we suppress the angular dimension in Figure 8.
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Figure 8. Lagrangian remapping. The upper panel shows the grid-center values
of f and the reconstructed subgrid energy spectra on the LRG at r = ". The
middle panel compares the LRG’s at t = " (black lines) and t = 1"*! (green
lines). Arrows indicate the shifts of grid interfaces. Neutrinos in the shaded
regions should change their affiliations to the neighboring grids (see the text
for more details). The lower panel displays the grid center values of f and the
reconstructed subgrid spectra on the new LRG at t = ¢"*!,

(A color version of this figure is available in the online journal.)

We emphasize that up to this point, no interactions of neutri-
nos with matter have been taken into account. The change in f
considered above is induced by the acceleration or deceleration
of matter (and hence of the local fluid restframe). As explained
in detail in Section 5, if such a change in matter velocity oc-
curred in optically thin matter, the neutrino energy spectrum
should not change in the laboratory frame. In our method, the
red- or blueshifts of the energy spectrum in the fluid restframe
are compensated for by the Lagrangian remapping. It should
also be noted that the energy shift is proportional to the time
step At and, as a consequence, it is small, a fact that is true even
in the shock wave. This not only justifies the above estimation
of AN, but also is a huge advantage in the use of the LRG com-
pared with other Lagrangian formulations in which large energy
shifts may occur.

6.4. Step 4: Evaluations of the Advection and Collision Terms

Now that the energy shift induced by matter motions has been
treated, the remaining task is to consider the spatial advections
and collisions of neutrinos. The latter is easy on the LRG, which
is essentially the comoving grid, and will be briefly explained at
the end of this section. The former, on the other hand, is fairly
complicated, since the LRG is not uniform in space. In contrast
to the ordinary Lagrangian formulation, in which the spatial
advection is expressed as complicated partial derivatives, our
method utilizes the fact that the advection is very simple in the
laboratory frame. The LFG, which is defined in Section 5, is the
main tool here.

As explained in Section 5, the LFG is defined so that the
energy grids are identical everywhere in space and it does not
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depend on the flight direction of a neutrino. In addition, the LFG
should have the following properties:

1. the LFG covers the union of all energy ranges in the LRG.’
2. Each energy bin in the LRG is covered by more than one
energy bin in the LFG.

These conditions are important to ensure accuracy in the
evaluation of the advection terms. Figure 9 displays an example
of the relation between the two grids in the laboratory frame.

Given LFG, we evaluate the advection term as follows. We
suppose that the nth time step has been completed and f” is
given on each LRG and the subgrid spectrum has also been
constructed according to Step 2 (see panel a in Figure 10).
Using this subgrid spectrum, which is denoted by fyp in this
section, we assign an f to each grid point in the LFG, which is
denoted as fip:

JLE = fope(LFm), (24)

where e pr, corresponds to the neutrino energy at the grid point
in the LFG (see panel (b) in the same figure, in which LFG
is presented in green while LRG is shown with black dots.).
Here we would like to emphasize again that the spatial and
angular advection'® terms on the LFG (the left-hand side of
Equation (2)) are very simple. In fact, we can employ the same
method as used in Sumiyoshi & Yamada (2012).'

Once the numerical fluxes for the spatial and angular advec-
tions are obtained on the LFG, we then calculate the corre-
sponding numerical fluxes for the LRG as follows. We take as
an example panel (b) in Figure 10. As mentioned earlier, the
LFG is finer than the LRG. Energy bin A in LRG, for instance,
is covered by three bins—C’, D’, and E'—in the LFG. Let us
look at bin E in the LFG, which overlaps with bins A and C
in the LRG. The numerical flux in the LFG should hence be
shared with the latter two bins in the LRG. For that purpose,
we introduce a factor, y and divide the numerical flux Fg into
y Fgrand (1 — y)Fg . y is defined as

Ny
= —, 25
4 NL + NR ( )
with
Nw = |(ac — &iw) [ fa). (26)

where eac is the neutrino energy at the interface of bins A and
C in the LRG and ¢y, is the energy at the left (right) boundary
of bin E’ in LFG; f) is the grid point value of f for bin A(B)
in the LRG. The numerical flux for bin A of the LRG is a sum
of the contributions from bins C’, D/, and E’ in the LFG, each
obtained in this manner.

So far, we have explained our treatment of the spatial and
angular advection terms as if the finite difference method were
applied explicitly in time. As a matter of fact, we treat them
implicitly in our method. This is important from a point of view

9 Note that the energy range covered by the LRG depends on the spatial
position and flight direction.

10 Hereafter the angular advections mean the advection of neutrinos in the 2D
momentum subspace spanning all flight directions.

! In this method the upwind and central finite differences are interpolated
according to the optical depth. In so doing, we introduce the weighting factor,
B, which is linearly interpolated from the LRG to the LFG in the present
formulation. Since B takes a value in the range of 0.5-1 and does not strongly
depend on the neutrino energy, unlike f, the simple linear interpolation is
justified.
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Figure 9. Left: energy bins in the LRG at neighboring spatial or angular points. y denotes a spatial or angular dimension whose grid points are specified by the
subscript i. The subscript j indicates the energy grid points. Right: the same as the left panel but in the LFG (red rectangles). For comparison, the energy bins and grid

points in the LRG are also displayed in gray in this panel.
(A color version of this figure is available in the online journal.)
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Figure 10. Upper panel: the subgrid energy spectrum on the LRG at t = ¢".
Lower panel: the same as the upper panel but on the LFG (shown in green).
For comparison, the LRG is displayed with dotted lines. The blue filled circles
represent the grid point values of fon the LFG.

(A color version of this figure is available in the online journal.)

of numerical stability and computational times. The detailed
procedure is as follows.
We first rewrite the Boltzmann equation (Equation (2)) as

o, Fa(f) = (%> ()

27
ot 8t @7

k

in which the second term on the left-hand side is the sum of
the spatial and angular advection terms. Since the following
treatment is common to each term in the sum, we drop the
subscript k hereafter.

In the implicit approach, both the advection and collision
terms are evaluated at ¢ = "*! and the finite difference equation

is written as
fr il Sf
[ v + R
= ad: (f ) st

fn+l
A
We note, however, that F,4, in SR is evaluated via the complex
interpolation of fbetween the LFG and the LRG and is nonlinear

Ib

(fn+l).

col

(28)

10

and highly complicated. This prevents us from even linearizing
the equation'? and the implicit treatment of advection terms
seems impossible.

It is noteworthy, however, that in the Newtonian approxima-
tion, in which no distinction is made between the fluid rest-
frame and the laboratory frame, the advection term is linear and
can be treated completely implicitly. In fact, the resultant NR
equation can be cast into the following form (see also Sumiyoshi
& Yamada 2012):

ddv (fn+1) — Afn+1 + Bf};li-ll) + Cfn+11), (29)
where Fﬁs is the NR advection term and the subscript i
symbolically indicates the spatial and angular grid points.
Coefficients A, B, and C are written as a function of the space
and flight directions. This fact suggests the following scheme
for the advection term in SR:

Fadv - ddv(f”) + ( adv (fn+1) ddV (f”))

The first term on the right-hand side is the relativistic advection
term evaluated with f” and the second term in parentheses is
a correction term. Equation (30) is only semi-implicit as is.
Hence we replace f" in Equation (30) with a trial value, f*°,
and repeatedly solve the Boltzmann equation (Equation (27)),
updating f& with f™*! obtained for f& until they coincide
with each other within a certain error. This ensures the full
implicitness of our method as explained below.

The idea behind this method should be clear. If matter motion
is not very fast compared with the speed of light, which is indeed
the case in CCSNe, F,fdli(fgs) is almost equal to ng\lf(fgs), and
Fuav will be dominated by FNR(f™*!). Then this scheme is
close to the NR implicit scheme. In addition, there are other
important properties in the prescription: first, if f& coincides
with f"*! as is the case at the end of iterations, the correction
term vanishes and only F, 31}3,( &)= FaS(E( f "+1)) remains. This
property guarantees the full implicitness of our scheme. We
also mention that Az is actually limited most of time by the
requirement that f should not change by more than a few
percent in a single time step, and the correction term is a small
correction to the first term in most situations (but see below for

(30)

12 Note, however, that the collision terms can be easily treated implicitly. See
the discussion at the end of this section.
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the exceptional case.). In spite of this, we find that this correction
term significantly improves the numerical stability, enabling us
to take larger At.

Although the above method works fairly well most of the time,
it fails sometimes when the matter velocity reaches several tens
of percent of the speed of light and the correction term becomes
significantly larger than Fasd%( f%%). In such cases, the iteration
does not converge unless we reduce At. To avoid too small a
value of Ar, however, we introduce a limiter, «,
FSR(fgS) + K(F;jll‘}(fn+l) _ FNR(fgS)).

Fadv = Fadv adv (31)

in which « is determined so that the correction term does not
exceed the first term. We stress that such a prescription is just
a technique to improve the convergence and does not affect the
final result since the second term vanishes in the end anyway.

We turn to the collision terms before closing this section.
There are no new difficulties in their treatment since the LRG
is essentially the same as the fluid restframe employed in the
ordinary Lagrangian methods. There is one feature, however,
which is original in our method. The angular dimensions in mo-
mentum space are discretized in the same manner everywhere
on the LRG (see the left panel of Figure 4). This means that
the angular gridding is not uniform in the fluid restframe due
to an aberration caused by Lorentz transformation. The angular
integration for the isoenergetic scattering, as shown in Equa-
tion (11), is normally performed in the fluid restframe. In our
approach, however, this is done on the LRG in the laboratory
frame. In so doing, the aberration effect is taken into account as
the Jacobian in the following way:

fr
/A(er)dgfrZfB(Q]b)<£>dle’

Qb 32

where A is an arbitrary function of Q™ and B is defined as
B(Q"®) = A(QT(Q")). The Jacobian (dQf/dQ™") has already
been derived in Equation (9).

As mentioned earlier, the collision terms are treated fully
implicitly. The point is that the matrix structure originating from
the collision terms is exactly the same as the one for the NR
case, which implies that the numerical tools developed for our
Newtonian code (Sumiyoshi & Yamada 2012) can be utilized
for the present code as they are. As a matter of fact, thanks to
this implicit treatment of collision terms, the time steps Az in the
1D test simulation of CCSNe (see Section 7.5) are comparable
to those in our previous simulations with a 1D implicit GR
Lagrangian Boltzmann hydro code (Sumiyoshi et al. 2005).

6.5. Step 5: Feedback to Matter

Solving the Boltzmann equations in the previous step, we
now treat feedback from the neutrino—matter interactions to
hydrodynamics. The hydrodynamics equations and the equation
for conservation of the number of electrons are written as'>
—G*

Th’s‘fu = (33)

N!, = —T, (34)

where the right-hand sides correspond to the feedback and are

written as
G'= )Y Gl (35)

13 See Equations (12)—(16).
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é
Gl = /pf‘(a—f> dav,, (36)
T/ col(i)
r=r, —T;, (37)
1)
I = f(—f> dv,. (38)
ét col(i)

the invariant volume in the momentum
“1” indicates the

In these expressions,
space is denoted by dV,, and the subscript
neutrino species.

At the very end of all of the steps, we again perform Steps 2
and 3 since matter velocities are changed due to the momentum
exchange between matter and neutrinos. This closes the update
from ¢t = t" to t = t"*!. We iterate these steps as many times as
needed.

7. VALIDATION

In order to validate our new formulation of SR Boltzmann
radiation hydrodynamics, we carry out a series of code tests.
We first focus on the Boltzmann solver, i.e., the feedback to
hydrodynamics is ignored. We test the advections and collisions
separately in idealized setups in order to clearly see the code
performance in each sector. In these tests, only electron-type
neutrinos are taken into account since the treatments of SR
effects are common to other species.

We then perform SR Boltzmann hydro simulations of 1D
spherical core collapse for the 15 M progenitor. In these test
runs, we consider three species of neutrinos (v,, v,, and v,) and
implement minimal but essential microphysics. For comparison,
a NR simulation is also performed. Based on the two results, we
discuss the importance of SR effects.

7.1. Collision Term: Isoenergetic Scattering

As discussed in Section 3, the isoenergetic scattering is the
primary source of difficulties in the S, method for the SR
Boltzmann equation. This test is meant to see whether our
code can properly handle this process. This is a single zone
calculation, in which we deploy only one spatial grid and
the advection term is neglected. We are concerned only with
the collision term. Hydrodynamical quantities are assumed to
be constant in time and set as p = 10'> gcm™, T=2 MeV, and
Y, = 0.4, where p, T, and Y, denote the density, temperature,
and electron fraction, respectively. Under this thermodynamical
condition, both free nucleons and nuclei exist. Thus, we consider
the following isoenergetic scatterings:

V+N <«<— v+ N , (39

V+A<«<— Vv+A . 40)

Although we drop the advection term in this test, we set a
non-vanishing velocity as follows:

V" =1 cosby, (41)
v’ = v sin@, cos bn, 42)
v? = v sin6, singy, (43)
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Figure 11. Time evolutions of f for different angles by the isoenergetic
scatterings. ng, and ng, specify the angular grid points. The neutrino energy is
set to 60 MeV in the fluid restframe. The orange dash-dotted line indicates the
final state of fat t — oo obtained analytically.

(A color version of this figure is available in the online journal.)

where v", v/, and v? denote the radial, 0, and ¢ components,
respectively. They are assumed to be constant in time and are
controlled by three parameters, v, 6, and ¢;. In this test, we set
v=2x10cms™!, 6, = n/4, and ¢, = 7 /4, respectively.
Note that this velocity is considerably large by the CCSNe
standard.

We assume that initially, neutrinos are distributed isotropi-
cally in the laboratory frame, and they have Fermi—Dirac dis-
tributions in energy. The neutrino chemical potential can be
obtained by the assumption that neutrinos are in chemical equi-
librium with matter. Since matter has a non-vanishing velocity,
neutrinos are initially anisotropic in the fluid restframe. Then, f
should evolve toward an isotropic distribution in the latter frame
due to isoenergetic scattering.

t=10s
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For this test, momentum space is covered with a grid of
N¢(= 20) points in energy and Ny, (= 6) x Ny (= 6) points in
angles. The gridding of the LRG has been explained in detail in
Section 5 and Figure 4 (see also Sumiyoshi & Yamada 2012 for
the construction of angular grid).

We show the numerical results in Figures 11-15. Figure 11
displays the evolutions of f for different angles but with the
same energy (¢ = 60 MeV) in the fluid restframe. As is
expected, initially different values of f are changed by the
isoenergetic scatterings and converge to a certain value by
the time + ~ 107> s. Note that we work on the LRG in
the laboratory frame and these results are obtained by the
Lorentz transformation to the fluid restframe. The final isotropic
distribution, fis, can be obtained analytically from the initial
condition, f;, since isoenergetic scatterings do not change the
number of neutrinos:

Y Fni(e®(e™), QPOY(DIPD)T3AQID)
Z<(le(i))—3(Ale(i))

fiso(e™) = ., (44)

where the subscript i specifies the angular grid points. It is
evident from the figure that the correct results are obtained
numerically.

Figure 12 shows the angular evolution of f on an isoenergy
surface with e = 60 MeV in the fluid restframe. In the figure,
wire-framed pictures are drawn as follows: for each angular
grid point, a node is placed at a distance proportional to the
value of fin the corresponding direction, the neighboring nodes
are then connected by lines, and we use the normalization in
which the maximum distance should be unity. As a consequence,
an isotropic distribution corresponds to the unit sphere in this
figure.

At the beginning (top left panel), the wire frame is elongated
in one direction, indicating that the angular distribution is highly
anisotropic. As time passes, however, it changes shapes and
eventually ( ~ 107> s) becomes isotropic although it may

t=5x10""s

05 ¢ 7{1""’}-\

1-1

Figure 12. 3D presentations of fin the fluid restframe at different times. Only the angular distributions are shown for neutrinos with an energy of 60 MeV in the fluid

restframe. See the text for more details on the construction of wire frames.
(A color version of this figure is available in the online journal.)
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Figure 14. Energy spectra for different flight directions in the fluid restframe at two different times (left: t = 0 s, right: # = 107> s). Note that the floor value of fis

set as 10~1%, which is observed at high energies.

(A color version of this figure is available in the online journal.)

not appear so. This is due to the rather low resolution in
this computation. Indeed, Figure 13, which presents the result
for a higher resolution (Ny, = 12, Ny, = 12) more clearly
isotropic of the final distribution. We also remind the reader
that the angular grid is not uniform in the fluid restframe due
to an aberration (it is uniform in the laboratory frame; see
Section 5).

As an alternative presentation of isotropy, in Figure 14 we
show the initial and final energy spectra for two different angles
in the fluid restframe. As demonstrated clearly in this figure,
the initially different spectra converge at the end, implying
that neutrino distributions become isotropic at all energies. In
Figure 15 we show the same evolution in the laboratory frame,
which is actually the frame we use for simulations. Contrary to
the previous case, the initially identical spectrum for different
angles is separated as time passes in the laboratory frame,
indicating that the final distribution is anisotropic in this frame
as it should be.

13

7.2. Collision Term: Emission, Absorption,
and Isoenergetic Scattering Combined

To the isoenergetic scatterings, we add emissions and absorp-
tions on nucleons and nuclei:

e +p<— v, +n, (45)
et +n < v, +p, (46)
e +A<— v, +A. A7

The initial condition and computational setup are the same as
those in the previous test.

Figure 16 shows the evolution of f for different angles but
with the same energy (¢ = 60 MeV) in the fluid restframe,
which corresponds to Figure 11. At first, the isoenergetic
scatterings cause the distribution in the fluid restframe to reach
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Figure 15. Same as Figure 14 but in the laboratory frame.

(A color version of this figure is available in the online journal.)
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Figure 16. Same as Figure 11 but including emission and absorption processes.
(A color version of this figure is available in the online journal.)

isotropy as in the previous case. By the time r ~ 1073 s, the
neutrino distribution is almost isotropic. Note that this is not a
Fermi-Dirac distribution, i.e., neutrinos have not yet achieved
chemical equilibrium with matter via emissions and absorptions.
Equilibrium is eventually established at # ~ 10~* s for this level
of energy for neutrinos. Neutrinos with other levels of energy
undergo similar evolutions and reach Fermi—Dirac distributions
at different times. We stress again that this computation is done
on the LRG and the distribution in the fluid restframe is obtained
via a Lorentz transformation.

7.3. Advection Term: 1D Advection through
a Discontinuity in Matter

We now turn to the advection term. Note that this is the main
source of difficulty in using the ordinary Lagrangian methods.
Our formulation treats the spatial and angular advections in the
laboratory frame but employs interpolations between two grids
(LRG and LFG) as detailed in Section 6.4. It is hence important
to confirm that the scheme indeed works properly.

Here, we consider the advection in matter that has a discon-
tinuous velocity distribution. This is certainly the most difficult
situation for our method. In contrast to the previous tests, we
cut off all neutrino—matter reactions, assuming that the matter
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is optically thin, and consider the advection term alone. Note
that in this case, the energy spectrum of neutrinos is unchanged
as they propagate through the discontinuity in the laboratory
frame whereas it undergoes a discontinuous change there in the
fluid restframe (see also Figure 5). We further assume spherical
symmetry in this test, i.e., we omit derivative terms with respect
to 6, ¢, and ¢, in Equation (2).

The computational setup is as follows. To avoid geometri-
cal complications, we consider the advection in a wafer-thin
spherical shell: the computational domain covers the range of
103 < r < (108 + 10°) cm by a uniform radial grid of six bins.
The matter velocity is piecewise constant with a discontinuity
between the third and fourth grid points: v = 0 for the first three
grid points and v = —2 x 10'°cms~! for the rest of the grid
points. These velocities are again fixed during the computation.
We inject outgoing neutrinos from the radial inner boundary
with the Fermi—Dirac distribution, which is the same as in the
previous tests, and we follow the subsequent evolution until a
steady state is obtained. We deploy an LRG of N, = 20 and

Ny, = 6.
Figure 17 shows that the energy spectra for outgoing neutrinos
(ng, = 6) in the vicinity of the velocity discontinuity in the

laboratory frame (left panel) and in the fluid restframe (right
panel). As is expected, neutrinos advect without any change of
their spectrum when they pass through the discontinuity in the
laboratory frame. We can also see in this figure that the energy
bins for the outer two radial grid points are shifted from those
for the inner two. The right panel shows the same spectrum
but observed in the fluid restframe. Due to the negative radial
velocity in the outer region, neutrinos are blueshifted there (see
also Figure 5). As demonstrated clearly in this test, our new
formulation can reproduce the results just as expected without
any numerical problems.

7.4. Advection Term: 3D Advection

This test is meant to check the multi-D advection in the op-
tically thin matter with an inhomogeneous non-radial velocity
distribution. We assume that the neutrino distribution is spheri-
cally symmetric in space. This is no problem, since the matter
is optically thin and there is no interaction between the matter
and neutrinos. This poses a challenge in our method, however,
since the LRG is not spherically symmetric in space and, as a
consequence, there is no guarantee that the neutrino distribution



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 214:16 (19pp), 2014 October

A T ]
1 =

R
N,
0.01 Y -

0.0001 ] ]
1e-06
1e-08

1e-10 -

nr=2
Hn=3
nr=4
n=>5

1e-12

1e-14

10 100

energy (MeV)

NAGAKURA, SUMIYOSHI, & YAMADA

001 | ]
0.0001 | " 1
1e-06 I ]
1e-08 | ]
fe-t0 | |
tet2 | .

1e-14 | .

1e-16 . . R —

energy (MeV)

Figure 17. Energy spectra of outgoing neutrinos at different radii in the vicinity of the discontinuity in the laboratory frame (left) and in the fluid restframe (right). n,

specifies the radial grid point. Note that the floor value of fis set to be 10713,
(A color version of this figure is available in the online journal.)

remains spherically symmetric in our formulation. This test is
hence a good diagnostic of our handling of the spatial advection.

The 3D velocity distribution is set in a similar way to that in
the previous test, Equation (43), but with an additional spatial
dependence:

V' (r, 6, ¢) = v(r, 6, ) cosby, (48)
V(r, 6, ¢)=v(r,0,¢) sinb, cosd, (49)
vo(r, 0, ¢) = v(r, 0, $) sinb, singy,. (50)

We again set a non-vanishing non-radial velocity by choosing
Op = /4, and ¢, = /4. v(r, 6, ¢) is given as follows:

u(r, 0, ¢) =2 x 10" cos A, (r)
x cosh cos¢  (cms '),
¥ — I'min
A(r)=2m x ——Tmn

"max — F'min

61V}

where rpax and rpin denote, respectively, the maximum and
minimum radii of the computational region, which is the
spherical shell with rpin = 108 < 7 < Fpax = 108 +10° cm,
0 <6 <mand 0 < ¢ < 2w. We deploy to this computational
domain an LRG with N, = 6, Ny = 4, Ny 6, N,
20, Ng, = 6, Ny, = 6. In the following, we demonstrate that
the neutrino distribution remains spherically symmetric with
this small number of spatial and angular grid points. We inject
from the inner boundary outgoing neutrinos with the same
Fermi—Dirac distribution employed in the previous tests. The
simulation is continued until the neutrino distribution becomes
steady.

We summarily display the results of this test in Figure 18.
The upper left panel shows the energy spectra for different
ng,’s (with ng, = 6 being fixed) at n, = 6 and ny = 1 in the
laboratory frame. Note that if the neutrino distribution is exactly
spherically symmetric, these spectra should coincide with each
other. As seen in this figure, they agree quite well despite the
fact that they are computed on the LRG, which is not spherically
symmetric. The upper right panel is the same as the upper left,
but for ng, = 4. Note that these neutrinos propagate in a non-
radial direction. Again their spectra depend on ¢, very weakly.
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Finally, in the bottom panel we display the energy spectra at a
different radial location n, = 6. This time, ng, = 6 and ng, =1
are fixed and ny is varied. We can also confirm in this case
that all energy spectra are in good agreement. It is emphasized
again that these results are not trivial and, in fact, the test is very
severe, since we assume here very fast matter motions (~60%
of the speed of light) with large inhomogeneities. We thus think
that our new method works satisfactorily.

7.5. SR Boltzmann Hydro Simulations: The Spherical
Collapse of 15 M, Progenitor

So far we have tested the advection and collision separately
in simplified setups. In reality, however, they are non-linearly
coupled with each other and dictate the neutrino transfer
and, as a consequence, the dynamics of CCSNe. In order to
confirm that our new method is indeed applicable to realistic
simulations of CCSNe, we conduct here a 1D spherically
symmetric Boltzmann hydro simulation for the collapse of
15 M, progenitor (a non-rotating star with the solar metallicity
referred to as s15.0 in Woosley et al. 2002). We employ an LRG
with N, = 300, N. = 20, Ny, = 8 covering the computational
domainof 0 < r < 4x 108 cm. For comparison, we also perform
an NR simulation for the same setup. Although the simulation is
continued after bounce until the shock wave is stalled, we focus
here on the collapsing phase, since the infall velocity is largest
and SR effects are most clearly discernible.

Figure 19 shows that the evolution of the number density of v,
at the center for both the SR and NR simulations. Initially these
two simulations follow almost the same evolutionary path. After
the central density reaches p. ~ 10'? gcm™3, however, they start
to deviate and become different by more than a factor of ~4 at
pe ~ 10" gecm™3. During the latter period, neutrinos undergo
isoenergetic scatterings on nuclei called coherent scatterings
and, as shown, this is in fact the source of the discrepancy.

In order to clearly see the SR effects from the matter motion,
the left panels of Figure 20 show the radial component of the
amount of flux, i.e., the energy-integrated first-angular moment
of f,, in the laboratory frame, as a function of radius:

F'(r) = / cos 6, f(r, Q®, e™dQ®a v, (52)
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central matter density instead of the time is used to parameterize the evolutions.

(A color version of this figure is available in the online journal.)

where d V;b denotes the volume element of energy space in
the laboratory frame. The upper panel corresponds to the time
when the central density reaches p. = 10'> gcm™> whereas the

bottom one shows the result at the time of p, = 10" gcm’3,
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respectively. On the right panels, matter velocities are displayed
as a function of time.

As is evident in the left panels, the amount of flux behaves
qualitatively differently in the SR and NR cases: F” in the
SR simulation is negative in the inner region (r < 60 km),
whereas it is positive everywhere in the NR. Simply put,
neutrinos are moving in the opposite direction if SR is ignored.
This is understood as follows (see also Section 2). Matter is
optically thick to neutrinos in the inner region and neutrinos
tend to diffuse outward as observed in the NR simulation.
On the other hand, the matter is infalling and tends to drag
neutrinos inward; this is made possible by frequent interactions
between the matter and neutrinos. In fact, as demonstrated in
Sections 7.1 and 7.2, scatterings and emissions/absorptions
render the neutrino distribution isotropic in the fluid restframe
and, as a consequence, produce a flux in the direction of the
velocity in the laboratory frame after Lorentz transformation; if
SR is neglected, neutrinos are isotropically distributed even in
the laboratory frame and no dragging occurs; this is the cause
for the discrepancy. Note that this dragging (and hence SR) is
crucially important for neutrino trapping as shown next.

In Figure 21, we display the radial distribution of the
lepton fraction at two different times: when the central density
reaches p. = 10" and 10'* gcm™3. The left panel presents the
results of the SR simulation, while the right panel gives the
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(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

NR counterpart. We can immediately recognize a remarkable NR case, on the other hand, the lepton fraction is decreased even
difference. In the SR simulation, two lines are almost the same, in the central region while it is increased in the outer region. This
in particular for M, < 0.6 My, where M, denotes the mass means that neutrinos are diffusing outward in the Lagrangian
coordinate. This means that the lepton number is conserved in frame even after neutrino trapping, which is consistent with
each fluid element as it should be after neutrino trapping. For the what we observed in the number flux above.
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Figure 22. Mass shell trajectories in the post-bounce phase. The thick line shows
the trajectory of shock wave.

In the Lagrangian method, the lepton number conservation
after neutrino trapping is handled almost trivially. Our Boltz-
mann hydro solver is based on the Eulerian picture, in which
Y, evolves as a function of radius even after neutrino trapping.
Only when SR is taken into account appropriately can we repro-
duce the correct evolutions. The results of this test simulation
are hence the clearest evidence that our new method properly
handles neutrino advection. Incidentally, we have also made a
comparison with the result of 1D Lagrangian GR simulations
(Sumiyoshi et al. 2005)'* and confirmed reasonable agreement
between them (although not shown here).

Finally, we present the mass shell trajectories during the post-
bounce phase (until 150 ms after the bounce) in Figure 22.
After bounce, the shock wave propagates outward initially
through optically thick matter and generates a neutronization
burst of v, when it breaks out of the neutrino sphere and
is eventually stagnated at a certain radius in optically thin
matter. These phases are, in general, numerically difficult for
our method since neutrino distributions evolve quite rapidly,
both optically thick and thin regions are involved, and a shock
wave, i.e., a discontinuity in matter velocities, exists. In spite of
these difficulties, our SR Boltzmann hydro code has run stably
without problems. Although we have to wait for more detailed
quantitative analyses of this model and others in multi-D, which
will be reported elsewhere as a follow-up to this paper, the results
shown so far indicate that our new code will be applicable to
realistic CCSNe simulations.

8. SUMMARY AND POSSIBLE EXTENSIONS
OF THE FORMULATION

In this paper, we have presented a novel method for nu-
merically solving the SR Boltzmann equation in the laboratory
frame based on the S, method, which overcomes technical dif-
ficulties inherent in the conventional approaches irrespective of
the Lagrangian or Eulerian pictures. Our method is hybrid, de-
ploying LRGs in the laboratory frame. The employment of the
LRG simply solves the difficulties in the treatment of scatter-
ing, which plagues the conventional Eulerian approaches. As a
trade-off, the numerical treatment of the advection term becomes
complicated as in the ordinary Lagrangian approaches.

14 In the comparison, we turn off the electron scattering in the Lagrangian GR
simulation. Note that the GR effect is negligible for ¥; before bounce.

18

NAGAKURA, SUMIYOSHI, & YAMADA

This problem is mitigated by the use of the LFG, which is
nothing but the ordinary grid fixed to the laboratory frame and
adopted in the conventional Eulerian approaches. The advection
becomes simplest on the LFG. We have developed a scheme for
the interpolation between the LRG and LFG, which ensures that
the number of neutrinos is conserved.

By carrying out a series of code tests, we have demonstrated
that our new method works as expected, correctly handling
both the collision and advection terms. With the same code,
we have also conducted 1D CCSNe simulations from core col-
lapse through bounce until shock stall for a realistic progen-
itor model of 15 M with the minimal set of microphysics.
We have paid particular attention to the collapsing phase, in
which matter velocities reach maximum and our code faces the
greatest challenge. We have found that the neutrino dragging
due to matter motions, which is crucially important in neutrino
trapping, is correctly captured in the SR simulation but not
in the NR one. We have also observed only in the SR computa-
tion that the lepton fraction as a function of the Lagrangian mass
coordinates does not change with time in the optically thick re-
gion. These results clearly indicate that the adequate treatment
of SR effects is critically important to correctly obtain the lepton
fraction.

The simulation was continued until the shock wave generated
at bounce was stalled in the core. We have found no problem in
the later phase, either, and we are now confident that our new
method is applicable to the realistic simulation of CCSNe. In
fact, we have already started such simulations in 2D and their
results will be reported, together with further tests in multi-D,
in our forthcoming paper. We finally stress that our method
could be applied to other more relativistic phenomena such as
photon transfer in active galactic nuclei or gamma-ray bursts,
since SR effects are taken into account to all orders of v/c in
our Boltzmann code. These possibilities will be studied in the
future.

We have also commented on the extension of our formulation
to GR Boltzmann hydro simulations. We have recently pub-
lished a paper on the conservative form of the GR Boltzmann
equation (Shibata et al. 2014), which, in flat spacetime, would
reduce to the one used in the current study. It turns out that our
Lagrangian remapping method can be extended to this form of
GR Boltzmann equation with some modifications. As shown
in Equation (21) of that paper, GR modifies only the advec-
tion terms with the collision terms being essentially unchanged
from the SR case. In the GR case, the choice of LFG is non-
trivial. We may be able to use a local tetrad with a time-like unit
vector, n“, orthogonal to the spatial hypersurface of ¢ = const.
Then one important difference from the SR case is that n* de-
pends on space and time, which implies that the GR Boltzmann
equation has energy-derivative terms on the left-hand side even
in the laboratory frame, which is nothing but gravitational red-
shift. We note, however, that these terms may not pose problems
since the gravitational field changes only gradually both in time
and space. Such an extension is currently underway and will be
published elsewhere.
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