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A Recursive Elimination Method for
Finite-Horizon Optimal Control Problems

of Discrete-Time Rational Systems
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Abstract—In this technical note, a method of solv-
ing finite-horizon optimal control problems involving
discrete-time rational systems is proposed. Sequences
of algebraic equations for the control input and costate
at each time are constructed backward, starting from
the terminal condition, by the recursive elimination of
variables in the optimality conditions. This recursive
elimination can be viewed as a generalization of the
classical backward sweepmethod to obtain the discrete-
time Riccati equation for finite-horizon linear quadratic
control. Sufficient conditions are given for the existence
and uniqueness of locally optimal state feedback laws
in the form of algebraic functions of the state.

Index Terms—optimal control, nonlinear systems,
discrete-time systems, Euler-Lagrange equations

I. Introduction

Optimal control has been one of the most important
problems in systems and control theory. Classical and suc-
cessful results in optimal control include linear quadratic
(LQ) control [1], which can be solved by means of the
Riccati equation. In general, optimal control problems for
nonlinear systems cannot be solved explicitly, and various
numerical methods have been proposed for solving them
in the literature.
In this technical note, as an alternative to the conven-

tional numerical methods, an algebraic method is pro-
posed for solving finite-horizon optimal control problems
(FHOCPs) of discrete-time rational systems by extending
preliminary results for polynomial systems [2]. First, the
discrete-time Euler-Lagrange equations (ELE), which es-
sentially correspond to the Karush-Kuhn-Tucker (KKT)
conditions [3], are recast as a set of algebraic equations
consisting of only polynomials. Then, a systematic method
of constructing a sequence of algebraic equations with
smaller sizes is proposed so that the unknowns (the costate
and control input) at each time can be obtained by solving
an algebraic equation involving only the variables at that
time. Since the sequence of algebraic equations for the
costate is obtained recursively starting from the terminal
condition in the ELE, the proposed method can be re-
garded as a generalization of the classical backward sweep
method [4], in which the discrete-time Riccati equation is
solved backward to obtain the costate as a function of the
state.
Once the algebraic equations are obtained so as to

determine the unknowns as implicit functions of the state
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at each time, they can be solved by any numerical method
such as by using Newton’s method pointwise for each
state. Therefore, the solutions need not be stored over a
domain in the state space. In particular, only the algebraic
equation for the control input at each time needs to be
solved to realize state feedback control.

In contrast to related approaches [5]–[10] in the lit-
erature, the present approach deals with FHOCPs for
discrete-time rational systems. Moreover, the proposed
method is not a direct application of algebraic tools such
as Gröbner bases because the particular structure of the
optimal control problem is exploited to recursively con-
struct the algebraic equations for the costates and control
inputs (for applications of Gröbner bases in control design,
see, for example, [11]). Sufficient conditions are also given
for the existence and uniqueness of locally optimal state
feedback laws in the form of algebraic functions of the
state.

Notation: A suffix k denotes the time in discrete-time
systems throughout this technical note, while i and j de-
note the components of a vector. For example, xk denotes
a vector at time k, while xi denotes the ith component
of a vector x. Similarly, xki denotes the ith component
of a vector xk. To avoid confusion in suffixes, xki is also
denoted by xk,i when necessary. For a field K and vectors
X = [X1 · · · Xn]

T and Y = [Y1 · · · Ym]T, K[X,Y ]
and K(X,Y ) denote the ring of polynomials and field
of rational functions, respectively, in the components of
X and Y over K. The same symbols are often used to
denote an indeterminate as well as an element of a certain
set. An ideal generated by g1, . . . , gℓ ∈ K[X] is denoted
by ⟨g1, . . . , gℓ⟩. That is, ⟨g1, . . . , gℓ⟩ := {s1g1 + · · ·+ sℓgℓ :
s1, . . . , sℓ ∈ K[X]}. An ideal generated by the components
of vectors Gi ∈ K[X]νi (i = 1, . . . , ℓ; νi ∈ N) is also
simply denoted by ⟨G1, . . . , Gν⟩ for brevity. For a field K,
K̄ denotes the algebraic closure of K. For an ideal I of a
polynomial ring K[X] with X = [X1 · · · Xn]

T, the affine
variety defined by I is the set of elements (points) in K̄n

where all elements of I vanish and is denoted by V(I). For
I = ⟨g1, . . . , gℓ⟩ ⊂ K[X], V(I) is the set of common zeros
of g1, . . . , gℓ. The restriction of V(I) into Kn is denoted
by VK(I), i.e., VK(I) := V(I) ∩ Kn. For a scalar-valued
function V (x), we denote a row vector consisting of the
partial derivatives of V with respect to xi (i = 1, . . . , n)
as ∂V/∂x, and the column vector (∂V/∂x)T, which is the
transpose of ∂V/∂x, as ∇xV . For simple notation, a suffix
k is often omitted, such as in the use of ∇xV (xk) to denote
∇xk

V (xk).

II. Problem Formulation

We consider the discrete-time system

xk+1 = fk(xk, uk), (1)

where xk ∈ Rn and uk ∈ Rm respectively denote the state
and input for the system, and the initial state x0 is given.
The vector-valued function fk is assumed to be a rational
function of xk and uk for all k = 0, · · · , N − 1 with N a



positive integer. The performance index to be minimized
is given as

J = φ(xN ) +
N−1∑
k=0

Lk(xk, uk),

where φ and Lk are scalar-valued functions. In this tech-
nical note, we assume that ∇xφ consists of algebraic
functions and ∇xLk and ∇uLk are assumed to be rational
functions. The notion of algebraic functions is formally
defined as follows.

Definition 1: An analytic function ρ : U → R defined
on an open set U ⊂ Rn is said to be an algebraic function
if there exists a nonzero polynomial Φ(x,X) ∈ R(x)[X]
such that Φ(x, ρ(x)) = 0 holds for all x ∈ U .

Remark 1: By multiplying by some polynomial in R[x],
Φ(x,X) can always be chosen from R[x,X]. For simple
notation, we regard an algebraic function ρ as an element
of R(x), the algebraic closure of R(x), and write ρ ∈ R(x)
irrespective of its domain of definition.

It is readily shown that the set of equality constraints
given by (1) for k = 0, . . . , N−1 satisfy the linear indepen-
dence constraint qualification [3] for any feasible sequence
of states and inputs. Then, there exist Lagrange multi-
pliers satisfying the KKT conditions, i.e., the necessary
conditions for optimality, at an optimal solution. Owing
to the particular structure of the optimal control problem,
the KKT conditions lead to the following discrete-time
ELE for k = 0, . . . , N − 1:

xk+1 = fk(xk, uk), (2)

pk = ∇xHk(xk, uk, pk+1), (3)

pN = ∇xφ(xN ), (4)

∇uHk(xk, uk, pk+1) = 0, (5)

where pk is the Lagrange multiplier, called the costate (or
adjoint variable), and Hk denotes the Hamiltonian defined
as

Hk(xk, uk, pk+1) = Lk(xk, uk) + pTk+1fk(xk, uk).

The ELE (2) – (5) can be viewed as a two-point boundary-
value problem for sequences of states and costates, because
the initial state x0 is specified while the terminal condition
is imposed on pN .

In the present setting, ∇xφ(xN ) consists of algebraic
functions, and all other functions are rational functions in
the ELE. Therefore, the ELE can be rewritten as a set
of polynomial equations as described below. First, since
each component of∇xφ(xN ) is an algebraic function, there
exists FN ∈ R[xN , pN ]n such that

FN (xN ,∇xφ(xN )) = 0

holds for all xN in an open subset of Rn where ∇xφ(xN )
is defined. Next, other rational functions are expressed as

fractions of polynomials as

fk(xk, uk) = D−1
xk (xk, uk)nxk(xk, uk),

Dxk = diag[dxki] ∈ R[xk, uk]
n×n,

nxk ∈ R[xk, uk]
n,

∇xHk(xk, uk, pk+1) = D−1
pk (xk, uk)npk(xk, uk, pk+1),

Dpk = diag[dpki] ∈ R[xk, uk]
n×n,

npk ∈ R[xk, uk, pk+1]
n,

∇uHk(xk, uk, pk+1) = D−1
uk (xk, uk)nuk(xk, uk, pk+1),

Duk = diag[duki] ∈ R[xk, uk]
m×m,

nuk ∈ R[xk, uk, pk+1]
m,

where all pairs consisting of a numerator and denominator
are chosen to be coprime to each other. Then, the ELE are
rewritten as

Dxk(xk, uk)xk+1 − nxk(xk, uk) = 0, (6)

Dpk(xk, uk)pk − npk(xk, uk, pk+1) = 0, (7)

FN (xN , pN ) = 0, (8)

nuk(xk, uk, pk+1) = 0, (9)

d̄k(xk, uk) :=

n∏
i=1

dxki(xk, uk)

n∏
i=1

dpki(xk, uk)

×
m∏
i=1

duki(xk, uk) ̸= 0, (10)

where the last condition (10) is imposed so that no denomi-
nator polynomial in the ELE vanishes. Repeated factors in
d̄k can be omitted as long as the zeros of d̄k are unchanged.
Moreover, the last condition (10) can also be expressed as
an equality by introducing a new scalar variable yk as

1− ykd̄k(xk, uk) = 0, (11)

which can be satisfied by some yk ∈ R if and only
if d̄k(xk, uk) ̸= 0. Now all functions in (6)–(11) are
polynomials, to which tools in commutative algebra and
algebraic geometry are applicable. The initial state x0 will
be regarded as a parameter hereafter so as to characterize
a family of solutions, rather than a particular solution, of
the ELE.

III. Elimination Method

If the ELE (2) – (5), or equivalently (6)–(11), are
decomposed into a set of independent algebraic equations
for the state, costate, and control input at each time,
then each set of algebraic equations may determine the
costate and control input as implicit functions of the state
at each time. The decomposition of the ELE into a set
of independent algebraic equations can be viewed as the
elimination of variables. For the systematic elimination
of variables in the ELE, some tools from commutative
algebra and algebraic geometry [12], [13] are introduced.

For an ideal I = ⟨g1, . . . , gℓ⟩ ⊂ R[X,Y ] with X =
[X1 · · · Xn]

T and Y = [Y1 · · · Ym]T, VR(I) ⊂ Rn ×Rm

represents the set of real-valued solutions to the algebraic
equations g1(X,Y ) = 0, . . . , gℓ(X,Y ) = 0. Note that every
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polynomial in I vanishes at any (X,Y ) ∈ VR(I). If a poly-
nomial h ∈ R[Y ] also belongs to I, then h(Y ) = 0 holds
for any (X,Y ) ∈ VR(I). That is, I ∩R[Y ] gives the set of
polynomials that vanish at the Y -coordinates of points in

VR(I). More precisely, the affine variety containing all the
Y -coordinates of points in VR(I) is characterized by the
following lemma [13].
Lemma 1: For an ideal I ∈ R[X,Y ], the following holds:

πY (VR(I)) ⊂ VR(I ∩R[Y ]),

where πY (VR(I)) denotes the projection of VR(I) on the
Y -space, i.e.,

πY (VR(I)) := {Y ∈ Rm : (X,Y ) ∈ VR(I) for some X ∈ Rn}.
It is readily shown that I ∩R[Y ] is an ideal, and I ∩R[Y ]
is called the elimination ideal of I with respect to Y .
A basis (a set of generators) of an elimination ideal can

be computed by using a Gröbner basis [12], [13], which is
a set of generators with some nice properties and whose
computation algorithm is implemented in various symbolic
computation systems. The following lemma [13] gives a
computation method for an elimination ideal.
Lemma 2 (Elimination Theorem): Let GB be a

Gröbner basis of an ideal I ⊂ R[X,Y ] with respect to
a lexicographic order such that X1 > · · · > Xn > Y1 >
· · · > Ym. Then, GB∩R[Y ] is a Gröbner basis of I∩R[Y ].
Note that any ideal of a polynomial ring over a field has

a Gröbner basis consisting of a finite number of generators
[12], [13]. It should also be noted that the number of
generators can be specified for a particular class of ideals
(see Lemma 4 in Section V).
By a simple application of Lemma 1 and Lemma 2,

algebraic equations can be obtained for the state, costate,
and control input at each time.
Algorithm 1: Define ideals ĪELE , IELE

k (k = 0, . . . , N),
and KELE

k (k = 0, . . . , N − 1) as

ĪELE := ⟨Dx0x1 − nx0, Dp0p0 − np0, nu0, 1− y0d̄0, . . . ,

Dx,N−1xN − nx,N−1, Dp,N−1pN−1 − np,N−1,

nu,N−1, 1− yN−1d̄N−1, FN ⟩
⊂ R[x0, p0, u0, y0, . . . , xN−1, pN−1, uN−1,

yN−1, xN , pN ],

IELE
k := ĪELE ∩R[xk, pk],

KELE
k := ĪELE ∩R[xk, uk].
If sequences of the states (xk)

N
k=0, costates (pk)

N
k=0,

and control inputs (uk)
N−1
k=0 satisfy the ELE, Lemma 1

implies that (xk, pk) ∈ VR(IELE
k ) (k = 0, . . . , N) and

(xk, uk) ∈ VR(KELE
k ) (k = 0, . . . , N − 1) hold. Therefore,

the generators of an ideal constructed by Algorithm 1
define an algebraic equation satisfied by any solution to
the ELE, and this equation can be used to determine
the costate or control input as an implicit function of the
state. However, the maximal degree and cardinality of the
generators of a Gröbner basis are known to be double-
exponential to the number of generators of a given ideal
in the worst case [14]. Therefore, it is computationally
preferable to compute a sequence of Gröbner bases of

ideals with fewer generators than to construct the Gröbner
basis for all the polynomials in the ELE.

IV. Recursive Elimination Method

In the case of the LQ control problem, a sequence of
optimal state feedback laws is obtained by recursively
solving the discrete-time Riccati equation backward, which
motivates the following algorithm for constructing alge-
braic equations for the costate and input recursively.

Algorithm 2 (Recursive Elimination Method):

1) Let IN := ⟨FN ⟩ ⊂ R[xN , pN ], and let k := N − 1.
2) Do while k ≥ 0

a) Define an ideal Īk ⊂ R[xk+1, pk+1, xk, uk, pk,
yk] as

Īk := ⟨Fk+1, Dxkxk+1 − nxk, Dpkpk − npk,

nuk, 1− ykd̄k⟩.

b) Define ideals Ik ⊂ R[xk, pk] and Kk ⊂
R[xk, uk] as

Ik := ⟨Fk⟩ = Īk ∩R[xk, pk],

Kk := ⟨Gk⟩ = Īk ∩R[xk, uk],

where Fk and Gk are vectors of the generators
of Īk∩R[xk, pk] and Īk∩R[xk, uk], respectively.

c) k := k − 1

Theorem 1: Suppose sequences of the states (xk)
N
k=0,

costates (pk)
N
k=0, and control inputs (uk)

N−1
k=0 satisfy the

ELE. Then, for Ik = ⟨Fk⟩ (k = 0, . . . , N) and Kk = ⟨Gk⟩
(k = 0, . . . , N − 1) obtained by Algorithm 2, (xk, pk) ∈
VR(Ik) (k = 0, . . . , N) and (xk, uk) ∈ VR(Kk) (k =
0, . . . , N − 1) hold. That is, Fk(xk, pk) = 0 (k = 0, . . . , N)
and Gk(xk, uk) = 0 (k = 0, . . . , N − 1) hold.

Proof: Suppose sequences of the states (xk)
N
k=0,

costates (pk)
N
k=0, and control inputs (uk)

N−1
k=0 satisfy the

ELE and, equivalently, (6)–(11). First, let k = N . Since
FN (xN , pN ) = 0 holds, (xN , pN ) ∈ VR(IN ) holds as
claimed. Next, suppose (xk, pk) ∈ VR(Ik) holds for some
k (0 < k ≤ N), then, from the definition of Īk−1,

(xk, pk, xk−1, uk−1, pk−1, yk−1) ∈ VR(Īk−1)

holds with yk−1 = 1/d̄k−1(xk−1, uk−1). By taking the
projections of VR(Īk−1) and by applying Lemma 1 to Īk−1,
we have

(xk−1, pk−1) ∈ π(xk−1,pk−1)(VR(Īk−1)) ⊂ VR(Ik−1),

(xk−1, uk−1) ∈ π(xk−1,uk−1)(VR(Īk−1)) ⊂ VR(Kk−1),

which completes the proof by induction.

Remark 2: Although Algorithm 2 does not essentially
resolve the double-exponential complexity in the compu-
tation of Gröbner bases, it can be more efficient than
Algorithm 1 in practice, as shown in the example in
Section VI.
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V. Existence of Algebraic State Feedback Laws

Note that a state feedback law consisting of algebraic
functions is regarded as a point in R(x)

m
. Therefore, a

set of algebraic state feedback laws defined by a set of
polynomials in x and u can be regarded as an affine variety
defined by an ideal of R(x)[u] instead of R[x, u] in the

previous section. To characterize affine varieties in R(x)
m
,

additional notions of commutative algebra and algebraic
geometry are introduced for the polynomial ring R(x)[u].
The same argument also applies to R(x)[p]. The argument
x is often omitted for elements of R(x)[u] and R(x)[p]
hereafter.
For an ideal K ⊂ R[x, u], the extension of K to R(x)[u]

is the ideal generated by K over R(x)[u] and is denoted
by Ke, i.e.,

Ke = {s1G1 + · · ·+ sℓGℓ : s1, . . . , sℓ ∈ R(x)[u];

G1, . . . , Gℓ ∈ K; ℓ ∈ N}.

An ideal J ∈ R(x)[u] is called zero-dimensional if

V(J) ⊂ R(x)
m

is a finite set. Zero-dimensional ideals are
characterized by the following lemma [15], [16].
Lemma 3: Ideal J ⊂ R(x)[u] is zero-dimensional if and

only if there exists a nonzero polynomial ψi ∈ R(x)[ui] for
each i = 1, . . . ,m such that J ∩R(x)[ui] = ⟨ψi⟩.
The polynomial ψi ∈ R(x)[ui] in Lemma 3 is called the

minimal polynomial of ui with respect to J . Note that
J ∩ R(x)[ui] = ⟨ψi⟩ is an elimination ideal of J and its
generator ψi can be computed by using a Gröbner basis.
If aν ∈ J for some integer ν always implies a ∈ J , then

ideal J is called radical. For an ideal I ⊂ R(x)[u], the set
√
I = {a ∈ R(x)[u] : aν ∈ I for some ν ∈ N}

is a radical ideal and is called the radical of I. Obviously,

V(I) = V(
√
I) holds. There is an algorithm for obtaining

the radical of a zero-dimensional ideal [15], [16].
If a zero-dimensional ideal J is also a radical ideal, the

following lemma [17] gives the exact number of its gener-
ators and guarantees the nonsingularity of the Jacobian
matrix defined by them, which is useful for further char-
acterization of the elements of V(J) as implicit functions.
Lemma 4: If J ⊂ R(x)[u] is a zero-dimensional radical

ideal, it has exactly m generators G1, . . . , Gm ∈ R(x)[u],
and det[∂Gi(u

∗)/∂uj ] ̸= 0 for every u∗ ∈ V(J).
This lemma is a straightforward extension of a similar

lemma in [10] for a maximal ideal, using a characterization
of zero-dimensional radical ideals [16], [18]. Finally, the
Gröbner basis of a zero-dimensional radical ideal has a
particular structure under a mild assumption [12], [15],
which is useful for computing the generators in Lemma 4.
Now, the existence and uniqueness of costates and state

feedback laws consisting of algebraic functions of the state
are characterized under the following assumption.
Assumption 1: There exist sequences of states (x̄k)

N
k=0,

costates (p̄k)
N
k=0, and inputs (ūk)

N−1
k=0 such that the ELE

hold and

∂2Hk

∂u2
+

(
∂fk
∂x

)T

Sk+1
∂fk
∂x

> 0 (12)

holds for k = 0, . . . , N − 1, where (Sk)
N
k=1 is the solution

to the following discrete-time Riccati equation:

Sk =
∂2Hk

∂x2
+

(
∂fk
∂x

)T

Sk+1
∂fk
∂x

−

(
∂2Hk

∂x∂u
+

(
∂fk
∂x

)T

Sk+1
∂fk
∂u

)

×

(
∂2Hk

∂u2
+

(
∂fk
∂u

)T

Sk+1
∂fk
∂u

)−1

×

(
∂2Hk

∂u∂x
+

(
∂fk
∂u

)T

Sk+1
∂fk
∂x

)
(k = 1, . . . , N − 1), (13)

SN =
∂2φ

∂x2
(x̄N ). (14)

In (12) and (13), the arguments are (x̄k, ūk, p̄k+1) for par-
tial derivatives of Hk and (x̄k, ūk) for partial derivatives
of fk.

The ELE (2)–(5) together with (12) are the second-order
sufficient conditions for local optimality [4].

Theorem 2: Suppose Assumption 1 holds and all Iek ⊂
R(xk)[pk] (k = 0, . . . , N) and Ke

k ⊂ R(xk)[uk]
(k = 0, . . . , N − 1) obtained by Algorithm 2 are zero-
dimensional. Then, there exists a unique sequence of alge-
braic state feedback laws u∗k ∈ V(Ke

k) (k = 0, . . . , N − 1)
that are defined on some neighborhoods of xk = x̄k and
satisfy u∗k(x̄k) = ūk, and there exists a unique sequence
of algebraic costates p∗k ∈ V(Iek) (k = 0, . . . , N) that are
defined on neighborhoods of xk = x̄k and satisfy p∗k(x̄k) =
p̄k. Moreover, for any initial state in some neighborhood of
x̄0, the closed-loop trajectory (xCL

k )Nk=0 given by u∗k(x
CL
k )

gives a local optimal solution satisfying the ELE and (12)
with the costates given by p∗k(x

CL
k ).

Proof: For each ℓ = 0, . . . , N − 1, Assumption 1 im-
plies that the sequences of states (x̄k)

N
k=ℓ, costates (p̄k)

N
k=ℓ,

and inputs (ūk)
N−1
k=ℓ satisfy the second-order sufficient con-

ditions for local optimality for the optimal control problem
with a horizon for k = ℓ, . . . , N . Then, by a classical
result of sensitivity analysis [3], [19], there exists a unique
set of differentiable functions (xℓk(xℓ))

N
k=ℓ, (pℓk(xℓ))

N
k=ℓ,

and (uℓk(xℓ))
N−1
k=ℓ satisfying xℓk(x̄ℓ) = x̄k, p

ℓ
k(x̄ℓ) = p̄k,

uℓk(x̄ℓ) = ūk, and the second-order sufficient conditions
for local optimality for any xℓ in some neighborhood of x̄ℓ.
The uniqueness of a local optimal solution implies that

xℓ1k (xℓℓ1(xℓ)) = xℓ2k (xℓℓ2(xℓ)) (k = ℓ, . . . , N), (15)

pℓ1k (xℓℓ1(xℓ)) = pℓ2k (xℓℓ2(xℓ)) (k = ℓ, . . . , N), (16)

uℓ1k (xℓℓ1(xℓ)) = uℓ2k (xℓℓ2(xℓ)) (k = ℓ, . . . , N − 1), (17)

hold for any ℓ1, ℓ2 ∈ {ℓ, . . . , k} and for any xℓ in some
neighborhood of x̄ℓ. It is also obvious that xℓℓ(xℓ) = xℓ
and pℓℓ(xℓ) = pℓ hold.

Now, define u∗k(xk) := ukk(xk) and fCL
k (xk) :=

fk(xk, u
∗
k(xk)) for k = 0, . . . , N − 1. Then, xkk+1(xk) =

fCL
k (xk) holds for k = 0, . . . , N − 1 and for any xk in
some neighborhood of x̄k. This expression, together with
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(15) and x00(x0) = x0, leads to

x0k(x0) = xk−1
k ◦ · · · ◦ x01(x0)

= fCL
k−1 ◦ · · · ◦ fCL

0 (x0) (k = 0, . . . , N).

That is, (x0k(x0))
N
k=0 is the closed-loop trajectory given by

the state feedback laws (u∗k(xk))
N−1
k=0 , and xCL

k = x0k(x0)
holds. Similarly, we have

u0k(x0) = ukk(x
0
k(x0)) = u∗k(x

CL
k ) (k = 0, . . . , N − 1),

p0k(x0) = pkk(x
0
k(x0)) = p∗k(x

CL
k ) (k = 0, . . . , N),

where p∗k is defined as p∗k(xk) := pkk(xk). Therefore,
the closed-loop trajectory (xCL

k )Nk=0 and corresponding
inputs (u∗k(x

CL
k ))N−1

k=0 and costates (p∗k(x
CL
k ))Nk=0 are iden-

tical to the local optimal solution given by (x0k(x0))
N
k=0,

(p0k(x0))
N
k=0, and (u0k(x0))

N−1
k=0 , which satisfy the second-

order sufficient conditions for local optimality, namely, the
ELE and (12).
Finally, it remains to show that the state feedback law

u∗k(xk) and the costate p∗k(xk) are algebraic functions and
belong to V(Ke

k) and V(Iek), respectively. For any xk in
some neighborhood of x̄k, xk, p

∗
k(xk), and u∗k(xk) belong

to a local optimal solution satisfying the ELE. Therefore,
Theorem 1 implies that (xk, p

∗
k(xk)) ∈ VR(Ik) (k =

0, . . . , N) and (xk, u
∗
k(xk)) ∈ VR(Kk) (k = 0, . . . , N − 1)

hold. Since Iek and Ke
k are zero-dimensional, Lemma 3

implies the existence of the minimal polynomial of each
uki and pki with respect to Ke

k and Iek, respectively. Let
ψki be the minimal polynomial of uki (i = 1, · · · ,m) with
respect to Ke

k. By Remark 1, ψki can be chosen from
R[xk, uki] so that ψki ∈ Kk also holds. Then, for any xk
in the neighborhood of x̄k, (xk, u

∗
k(xk)) ∈ VR(Kk) implies

that ψki(xk, u
∗
ki(xk)) = 0. That is, every component u∗ki is

a root of a polynomial ψki ∈ R[xk, uki], and, equivalently,
is an algebraic function. Moreover, (xk, u

∗
k(xk)) ∈ VR(Kk)

also implies that u∗k is an element of R(xk)
m

such that
every polynomial in Kk vanishes at u∗k and, therefore,
every polynomial in Ke

k also vanishes at u∗k, which means
u∗k ∈ V(Ke

k). The same argument also applies to show
p∗k ∈ V(Iek).
If the assumptions in Theorem 2 are satisfied, Lemma

4 guarantees that
√
Ke

k ∈ R(xk)[uk] (k = 0, . . . , N −
1) have exactly m generators as

√
Ke

k = ⟨Ḡe
k⟩, where

Ḡe
k ∈ R(xk)[uk]

m. Lemma 4 also guarantees that

∂Ḡe
k(xk, u

∗
k)/∂u ∈ R(xk)

m×m
is nonsingular at each u∗k ∈

V(Ke
k) = V(

√
Ke

k). Then, for xk in an open and dense sub-
set of Rn, ∂Ḡe

k(xk, u
∗
k(xk))/∂u ∈ Rm×m is nonsingular.

Therefore, Newton’s method or the continuation method
is applicable to Ḡe

k(xk, uk) = 0 to find u∗k(xk) ∈ Rm for
xk ∈ Rn. The same argument also applies to

√
Iek and pk.

Alternatively, one can also use minimal polynomials
of uki (i = 1, . . . ,m) to calculate u∗k(xk). For example,
if Ke

k is zero-dimensional, its radical
√
Ke

k is also zero-
dimensional and, by Lemma 3, contains minimal poly-
nomials ψki ∈ R(x)[uki] of uki (i = 1, . . . ,m) such
that

√
Ke

k ∩ R(x)[uki] = ⟨ψki⟩ holds. Therefore, the ith
component of u∗k ∈ V(Ke

k) is a root of ψki, and the value of
u∗ki(xk) ∈ R for some xk ∈ Rn can be found by solving the

univariate algebraic equation ψki(uki) = 0. In particular,
the continuation method can also be used. Note that each
component u∗ki(xk) can be computed independently of
other components.

VI. Example

Consider the following single-input two-dimensional sys-
tem:

xk+1 =

[
xk2

−xk1 + uk

1+xk1

]
,

together with the performance index

J =
1

2
∥x4∥2 +

3∑
k=0

1

2
(∥xk∥2 + ∥uk∥2),

for which the recursive elimination method (Algorithm
2) in Section IV is applied. It is obvious that the trivial
solution to the ELE, uk = 0 (k = 0, . . . , N −1), (xk, pk) =
(0, 0) (k = 0, . . . , N), satisfies the second-order sufficient
conditions for local optimality because the linearization
around (xk, uk) = (0, 0) gives a standard LQ control
problem with positive definite weights for the state and
input. Consequently, Assumption 1 in Theorem 2 holds.

Algorithm 2 yields a sequence of ideals Ik ⊂ R[xk, pk]
as follows:

I4 = ⟨p41 − x41, p42 − x42⟩,
I3 = ⟨(x431 + 4x331 + 8x231 + 8x31 + 4)p31 − 2x531

− 8x431 − 16x331 − 15x231 − 6x31, p32 − 2x32⟩,
I2 = ⟨(x421 + 4x321 + 10x221 + 12x21 + 9)p21 − · · · ,

(x422 + 4x322 + 8x222 + 8x22 + 4)p22 − · · · ⟩.

Ideals I1 and I0 are omitted here due to the limitation of
space. Ideal I1 is generated by two polynomials: one is fifth
degree in p11 and the other is first degree in p12. Ideal I0
is also generated by two polynomials: one is fifth degree
in p01 and the other is fifth degree in p02. In this example,
every ideal Ik is generated by two polynomials, one in
R[xk, pk1] and the other in R[xk, pk2]. Therefore, Lemma
3 implies that every Iek ⊂ R(xk)[pk] is zero-dimensional
and is generated by the same polynomials as Ik. All Iek
are also radical because their generators are square-free
[12]. Then, the costate p∗k can be obtained explicitly by
Theorem 2 for k = 2, 3, 4.

Algorithm 2 also yields a sequence of ideals Kk ⊂
R[xk, uk] as follows:

K3 = ⟨(x231 + 2x31 + 2)u31 − x231 − x31⟩,
K2 = ⟨(x221 + 2x21 + 3)u21 − 2x221 − 2x21⟩,
K1 = ⟨(x211 + 2x11 + 4)u511 + · · · ⟩,
K0 = ⟨(x201 + 2x01 + 5)u501 + · · · ⟩.

In this case, every ideal Kk is generated by a single
polynomial in R[xk, uk]. Therefore, Ke

k ⊂ R(xk)[uk] is
also generated by the same polynomial and, according to
Lemma 3, is zero-dimensional. Moreover, every generator
of Kk is square-free, which implies that Ke

k is also radical.
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Then, the optimal state feedback laws u∗k(xk) for k =
2, 3 can be obtained explicitly as roots of Ke

2 and Ke
3 ,

respectively. For k = 0, 1, 2, since the degrees of the
generators of Ke

k are greater than or equal to 5, the
optimal state feedback laws cannot be obtained explicitly.
However, these generators give exact algebraic equations
that determine u∗k(xk), which can be solved by the method
described in the previous section. For example, the func-
tion u∗0(x0) is shown in Fig. 1.
In this example, Algorithm 2 and Newton’s method

are implemented for the symbolic computation of the
ideals and for the numerical computation of the state
feedback law, respectively, using Mathematica on a PC
(CPU: Intel Core i7-3520M 2.90 GHz, RAM: 7.88 GB).
The computational time for Algorithm 2 to obtain the
sequences of ideals Ik and Kk is 1.0 s. On the other hand,
the computational time for obtaining the corresponding
ideals IELE

k and KELE
k in Algorithm 1 is 77.9 s. Therefore,

Algorithm 2 is computationally more efficient than the
simple application of the elimination method to all the
ELE.
The maximum computational time required to numer-

ically obtain each control input in Fig. 1 is 0.73 ms
with an average time of 0.67 ms. On the other hand,
when Newton’s method is used to solve all the ELE, the
maximum computational time required to obtain the same
control input is 2.5 ms and the average time is 1.8 ms.
Therefore, the proposed method is computationally more
efficient than solving all the ELE numerically when real-
time computation of the state feedback law is necessary at
each time.

Fig. 1. Optimal state feedback law u∗
0(x0).

VII. Conclusion

In this technical note, a recursive elimination method
has been proposed for solving the ELE in FHOCPs of
discrete-time rational systems. At the expense of restrict-
ing the system to consist of rational functions, some tools
from commutative algebra and algebraic geometry are
applied. Instead of the numerical solution or symbolic
manipulation of all the ELE as a whole, sequences of

algebraic equations for the control input and costate at
each time are constructed backward, starting from the
terminal condition in the ELE. There is no approximation
involved in the construction of the algebraic equations,
in contrast to most conventional approaches to nonlinear
optimal control problems. Sufficient conditions were given
for the existence and uniqueness of locally optimal state
feedback laws in the form of algebraic functions. It was
shown in the example that the proposed method can be
computationally more efficient than dealing with all the
ELE as a whole.
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