Prediction of clinical outcome after stereotactic body radiotherapy for non-small cell lung cancer using diffusion-weighted MRI and (18)F-FDG PET.

Author(s)
Iizuka, Yusuke; Matsuo, Yukinori; Umeoka, Shigeaki; Nakamoto, Yuji; Ueki, Nami; Mizowaki, Takashi; Togashi, Kaori; Hiraoka, Masahiro

Citation
European journal of radiology (2014), 83(11): 2087-2092

Issue Date
2014-11

URL
http://hdl.handle.net/2433/191234

This is not the published version. Please cite only the published version.
Abstract

Purpose/Objectives

To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for predicting disease progression (DP) among patients with non-small cell lung carcinoma (NSCLC) treated with stereotactic body radiotherapy (SBRT).

Materials/Methods

Fifteen patients with histologically confirmed stage I NSCLC who underwent pre-treatment DW-MRI and PET and were treated with SBRT were enrolled. The mean apparent diffusion coefficient (ADC) value and maximum standardised uptake value (SUVmax) were measured at the target lesion and evaluated for correlations with DP.

Results

The median pre-treatment ADC value was $1.04 \times 10^{-3}$ (range 0.83–1.29 $\times 10^{-3}$) mm$^2$/s, and the median pre-treatment SUVmax was 9.9 (range 1.6–30). There was no correlation between the ADC value and SUVmax. The group with the lower ADC value ($\leq 1.05 \times 10^{-3}$ mm$^2$/s) and that with a higher SUVmax ($\geq 7.9$) tended to have poor DP, but neither trend was statistically significant ($p = 0.09$ and 0.32, respectively). The
combination of the ADC value and SUV$_{\text{max}}$ was a statistically significant predictor of DP

\( (p = 0.036). \)

**Conclusion**

A low ADC value on pre-treatment DW-MRI and a high SUV$_{\text{max}}$ may be associated with poor DP in NSCLC patients treated with SBRT. Using both values in combination was a better predictor.
Introduction

Surgery is widely accepted as a standard therapy for stage I non-small cell lung cancer (NSCLC); however, some patients with stage I NSCLC are not suited for resection mainly because of their poor respiratory function.

Stereotactic body radiotherapy (SBRT) has recently been accepted as an alternative therapy for patients with stage I NSCLC who cannot undergo surgery or decline surgery [1-3]. In a previous study, medically inoperable patients were treated with peripheral T1-T2N0M0 NSCLC using SBRT [4]; the authors reported 3-year local control rates of 97.6% in a group of 55 patients with a median follow-up of almost 3 years, but distant metastasis was 22.1%. We previously reported a 3-year local control rate of 86.8% and a progression-free rate of 59.2% [5].

Histological findings are important factors for the determination of a treatment strategy and to predict clinical outcomes [6]. In lung SBRT, pathological diagnosis is confirmed in most patients before treatment is administered, however some patients undergo the treatment without histological confirmation due to the risk of adverse events caused by biopsy. Simple and less-invasive alternative methods are needed to stratify patients according to risk of disease progression (DP).

Advances in imaging technologies such as diffusion-weighted magnetic resonance imaging (DW-MRI) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) have made it possible to evaluate not only morphological aspects, but also
functional aspects including diffusion motion of water molecules and glucose metabolism
in tumours. These recently developed imaging techniques are applied to improve the
sensitivity of tumour detection and prediction accuracy of the clinical outcomes. Several
studies have analysed the utility of FDG-PET for the prognosis and prediction of
therapeutic effect after treatment of NSCLC [7-9]. The apparent diffusion coefficient
(ADC) of a tumour based on DW-MRI has been reported to be a useful indicator for early
prediction of tumour response and prognosis in other cancers treated with
chemoradiotherapy [10, 11]. To date, no study has evaluated the use of DW-MRI as a
predictor for NSCLC treated with SBRT. Several studies have found that PET might be a
useful predictor for patients with early-stage NSCLC treated with SBRT, but the results
are controversial [12-15].

In this study, we evaluated whether pre-treatment DW-MRI and PET could be
used to predict the clinical outcome of stage I NSCLC outcomes after SBRT and
compared their predictive capabilities in the same tumours.

**Materials/Methods**

**Subjects**

The eligibility criteria for lung SBRT in our hospital were as follows: (1)
T1a-T2aN0M0 lung tumour, (2) inoperable or refusal to undergo surgery, (3) arms could
be held over the head for 30 min or more, and (4) performance status of 0–2.
Fifteen patients with histologically confirmed NSCLC who underwent pre-treatment DW-MRI and FDG-PET and were treated with SBRT in our hospital between January and December of 2010 were included this study. This study was approved by our Institutional Review Board. The median age was 80 years (range, 70–86 years). Eleven patients were male and four were female. Patients were staged according to the Union for International Cancer Control’s TNM classification, 7th edition with CT and FDG-PET. Contrast medium was administered in the CT scan, if possible. The mean diameter of the tumours was 28 mm (range, 14–42 mm). T stages were distributed as follows: T1a in four, T1b in six, and T2a in five patients. Histological examinations included transbronchial biopsy (10 patients) or percutaneous CT-guided biopsy (5 patients) and were conducted before the pre-treatment DW-MRI and FDG-PET. The median interval between the biopsy and these imaging was 43 days (range, 17–67 days).

The detailed characteristics of all patients are shown in Table 1.

SBRT procedure

The details of the SBRT procedure were described previously [16]. The patient’s body was immobilised with an individualised vacuum pillow (BodyFIX; Elekta AB, Stockholm, Sweden). The SBRT protocol was created with a commercial treatment planning system, iPlan (BrainLab, Feldkirchen Germany). Four-dimensional computed tomography (4DCT) data were acquired in axial cine mode using a 16-slice CT scanner
(LightSpeed RT16, GE Healthcare, Waukesha, WI, USA) and real-time positioning management system (Varian Medical Systems, Palo Alto, CA, USA). An internal target volume (ITV) was determined by assessing tumour trajectory using 4DCT and tumour motion by X-ray fluoroscopy. Both techniques were employed because 4DCT is only capable of evaluating one respiratory cycle, and X-ray fluoroscopy can be used to evaluate the changes of tumour motion amplitude and duration of the respiratory cycle in several respiratory cycles. Planning target volume (PTV) was defined as ITV + margin (5mm).

Irradiation was performed with 6 MV X-ray beams from a linear accelerator (Novalis BrainLab) in multiple coplanar and noncoplanar static ports (6 to 8 ports). The dose was prescribed to the isocentre and dose distribution in PTV was homogeneous. The 70%-80% isodose lines encompassed the PTV edge. Dose distribution was calculated with the X-ray Voxel Monte Carlo method.

Prescribed doses and fractions were 48 Gy/4 fr (biologically effective dose [BED] of 105.6 Gy\text{\textsubscript{10}}) for T1a-T1b, 56 Gy/4 fr (BED 134.0 Gy\text{\textsubscript{10}}) for T2a, and 60 Gy/8 fr (BED 105.0 Gy\text{\textsubscript{10}}) for centrally located tumours within 2 cm of the trachea or proximal bronchial tree, great vessels, and other mediastinal structures, regardless of their size. Overall treatment time was 4 to 11 days.

MRI protocol
All MRI examinations were performed using a 1.5T MR unit (Avanto, Siemens, Erlangen, Germany) with a phased-array coil. All patients were imaged in the supine position. Initially, transverse HASTE images were obtained for anatomical identification. Subsequently, both T2-weighted (TR/TE = 2100/85 ms) and DW-MR images with prospective acquisition correlation (PACE) utilising sensitivity encoding (SENSE; with a SENSE factor of 2) and echo planar imaging (EPI; with an EPI factor of 96) were obtained. The parameters used for DW-MRI were a TR/TE of 2746.3–12030.4/72–79 ms, FOV of 320 mm, slice thickness of 4.0 mm, matrix of 96 × 128 mm, band width of 1860 Hz/pixel and five excitations. All DW-MR images were acquired with MPG pulses in three directions (the x, y, and z axes) with three different b-factors (0, 500, and 1000 s/mm²). All MR images covered the entire chest. ADC maps were automatically calculated from a series of DW images according to a linear regression model based on the logarithm of signal intensities as follows:

\[ \text{ADC} = \frac{\log SI_1/\text{SI}_0}{b} \]

where \( SI_1 \) is the signal intensity with a diffusion gradient, \( SI_0 \) is the signal intensity without a diffusion gradient, and \( b \) is the gradient factor of sequences.

The ADC values of each tumour were measured by a single observer (SU) with 10 years of experience in clinical chest MRI. The mean signal intensity of the tumour was measured on an ADC map within three different circular regions of interest (ROIs) that were as large as possible. The average of these was calculated as the ADC value of the
tumour. All ROIs were established in the centre of the tumour to avoid artefacts from the
tumour/air interface or from blood flow in the surrounding large vessels. T2-weighted MR
images were also used as a reference, to avoid inclusion of necrotic areas in the ROIs. The
respiratory gating method was used for the MRI scan.

FDG-PET protocol

Patients fasted for at least 4 h before the examination, and their plasma glucose
level was checked immediately before the administration of $^{18}$F-FDG (~3.7 MBq/kg). No
patients had a plasma glucose level greater than 200 mg/dL. Approximately 1 h later,
PET/CT was performed, using a combined PET/CT scanner (Discovery ST Elite, GE
Healthcare Waukesha, WI, USA). Low-dose CT images were acquired during shallow
breathing from the upper thigh to the skull base with a 16-detector row scanner (20–100
mA, using the auto-mA setting with a noise index of 30, 120 kV, 0.6 s tube rotation, slice
thickness 3.75 mm, matrix 512×512, and a pitch of 1.75). Immediately after CT, a
whole-body PET emission scan was performed in 3D-acquisition mode with an
acquisition time of 2–3 min per bed position. The PET images were attenuation-corrected
using the CT data and were reconstructed with a 3D ordered-subsets expectation
maximisation algorithm. The respiratory gating method was not used for the PET scan.
The maximum standardised uptake values ($SUV_{max}$) were measured at the target lesion by
a single observer (YN) with more than 10 years of experience in nuclear medicine.
Follow-up

Follow-up visits were conducted at 1, 2, 3, 6, 9, and 12 months in the first year after SBRT and every 3–6 months thereafter. The plain CT scan was performed every 3 months in the first year after treatment and every 3–6 months thereafter. When DP was highly suspected by the CT scan, FDG-PET was also performed.

Local progression (LP) was diagnosed based on the recommendations for follow-up imaging established by Huang et al. [17]. Regional lymph node metastases were diagnosed based on CT. FDG-PET results were also considered in diagnosis but histological confirmation was not mandatory. DP was defined as LP, regional lymph node metastases, or distant metastases.

Statistical analysis

The correlation of ADC value and SUV_{max} with DP after SBRT was evaluated. LP and overall survival (OS) were evaluated in the same manner. To consider the impact that the tumour diameter gives the ADC value and SUV_{max}, the correlations of ADC value and SUV_{max} with tumour size were also evaluated. The cumulative incidence of DP and LP was evaluated considering competing risk of non-lung cancer death. The Kaplan–Meier method was used to estimate OS and the Grey-box test and log-rank test were used to detect differences between strata. A $p$-value < 0.05 was considered statistically significant.
Receiver operating characteristic (ROC) analyses were performed to determine appropriate thresholds of ADC value and SUV\textsubscript{max}. All statistical analyses were performed with R software (version 2.15.1, R Development Core Team)[18].

**Results**

**Survival**

The median follow-up period was 28.0 (range, 6.7–37.2) months. DP was observed in nine patients. The first site of progression was local tumour in three patients, regional lymph node in two patients, and distant metastasis in four patients. Seven of the nine DP were diagnosed with CT and FDG-PET. The remaining two patients who developed lung metastases were diagnosed with plain CT.

The OS at 24 months was 52% (seven patients died, 95% confidence interval [CI], 26–74%). The cumulative incidence rates of LP and DP were 16% (two patients) and 57%, (nine patients) respectively, at 24 months.

**ADC value and SUV\textsubscript{max}**

The pre-treatment ADC values ranged from 0.83 to 1.29 × 10\textsuperscript{-3} mm\textsuperscript{2}/s (median 1.04 × 10\textsuperscript{-3} mm\textsuperscript{2}/s), and SUV\textsubscript{max} ranged from 1.5 to 30.0 (median 9.9). There was no statistically significant correlation between ADC value and SUV\textsubscript{max} (Fig. 1). Fig. 2 shows the scatter plot of tumour diameter and ADC value and SUV\textsubscript{max}. ADC value and SUV\textsubscript{max} showed weak positive correlations with tumour diameter with correlation coefficients of
0.48 and 0.50, but without statistical significance ($p = 0.64$ and 0.63, respectively).

According to the ROC analysis the appropriate threshold values for DP were $1.05 \times 10^{-3}$ mm$^2$/s for ADC value and 7.9 for SUV$_{\text{max}}$.

When dividing the patients into two groups according to the threshold ADC value of $1.05 \times 10^{-3}$ mm$^2$/s, the group with the lower ADC value had worse DP compared to patients with the higher ADC value (80% and 20%, respectively, at 24 months). There was a similar tendency in the group with the higher SUV$_{\text{max}}$ ($\geq 7.9$) to have a poor DP (60% and 40%, respectively, at 24 months). However, neither DP trend was statistically significant. ($p = 0.09$, and 0.32, respectively).

As an exploratory analysis, a combination of ADC value and SUV$_{\text{max}}$ with the same threshold values was investigated. When patients were divided into two groups (high-risk group: patients with ADC value $\leq 1.05 \times 10^{-3}$ mm$^2$/s and SUV$_{\text{max}} \geq 7.9$; and low-risk group: all other patients), the numbers of patients were well balanced between the groups (8 and 7 patients for the high- and low-risk groups, respectively). The high-risk group had significantly worse DP ($p = 0.036$). The cumulative incidence rates of DP were 75.0% (six patients) in the high-risk group and 28.6% (two patients) in the low-risk groups, respectively, at 24 months (Fig. 3). The two groups had a similar number of patients, and similar characteristics (Table 2).

The OS at 24 months was 50% (four patients died) in the high-risk group and 57% (three patients died) in the low-risk group. However, from the viewpoint of cancer specific
death, the survival rates were 60% (three patients died) in the high-risk group and 83% (one patient died) in the low-risk group. The cumulative incidence rates of LP at 24 months were 14% (one patient) in both groups. The tumour diameter, pre-treatment ADC value and $SUV_{\text{max}}$ of the patient in the high-risk group were 28 mm, $1.04 \times 10^{-3}$ mm$^2$/s and 7.9. Those of the patient in the low-risk group were 42 mm, $1.19 \times 10^{-3}$ mm$^2$/s and 13.6, respectively.

**Discussion**

To the best of our knowledge, this is the first study to evaluate the use of DW-MRI for predicting the clinical outcomes in NSCLC patients treated with SBRT. It is also the first direct comparison of FDG-PET and DW-MRI in terms of prognosis prediction for NSCLC patients who have undergone SBRT.

We found that patients presenting with stage I NSCLC and either a lower ADC value, or with a higher $SUV_{\text{max}}$ tended to have a poor DP after SBRT although the difference was not statistically significant. The use of ADC value and $SUV_{\text{max}}$ in combination was a better predictor for DP than either biological marker alone.

Several previous studies on PET in NSCLC patients treated with SBRT have been published. Various controversial results have been reported regarding the use of FDG-PET for prognosis. In a recent study of 152 patients treated with SBRT of 40 to 60 Gy in five fractions, $SUV_{\text{max}}$ was a significant predictor of OS, disease-free survival, and
LP [14], although this study included patients with pathologically unconfirmed NSCLC. Another analysis showed that pre-treatment $SUV_{\text{max}}$ was a significant predictor for disease-free survival and distant failure in 82 patients [12]. Burdick et al. evaluated the pre-treatment $SUV_{\text{max}}$ in 72 patients treated with SBRT with a median follow-up of 16.9 months, however $SUV_{\text{max}}$ did not predict OS and DP [15]. We found a correlation between $SUV_{\text{max}}$ and DP, although there was no statistically significant correlation with DP.

The conventional PET scan has several problems for evaluation of $SUV_{\text{max}}$. First, the spatial resolution of the PET scanner is low. Second, the PET image is often blurred due to respiratory motion, especially in the lower lobes of the lung and upper abdominal organs. $SUV_{\text{max}}$ is higher when measured using respiratory gating PET or CT reconstruction than when using conventional techniques in lung tumours [19]. If we had used the respiratory gating method in this study, a significant difference might have been observed.

The use of DW-MRI for predicting the therapeutic effect and prognosis is also controversial. To date, no published study has addressed DWI in early-stage NSCLC patients treated with SBRT. A few reports have discussed DW-MRI and lung cancer treated with chemoradiotherapy. Ohno et al. reported a correlation between DW-MRI and PET in a study of 64 patients with locally advanced NSCLC (stage III) treated with conventional chemoradiotherapy. They found that higher ADC and $SUV_{\text{max}}$ values were
significantly associated with poor prognosis. OS and progression-free survival of the two
groups split at an ADC value of $2.1 \times 10^{-3}$ mm$^2$/s, and a SUV$_{\text{max}}$ of 10 showed a
significant difference [20]. Several studies have suggested that the ADC value is a
predictive factor for other organs. In a study that analysed 32 patients with
hypopharyngeal or oropharyngeal squamous cell carcinoma who underwent pre-treatment
DWI and definitive chemoradiotherapy, patients with a higher ADC value (more than
median, $0.79 \times 10^{-3}$ mm$^2$/s) had a significantly lower local control rate than patients with a
lower ADC value [21]. In contrast, Micco et al. reported that lower average pre-treatment
ADC values were associated with high-risk features such as International Federation of
Gynaecology and Obstetrics (FIGO) stage and LN metastases [10]. In another study, a
lower ADC value was associated with shorter cancer-specific survival in patients with
upper urinary tract cancer treated only with surgery [11]. Our result of a lower ADC value
being associated with a poor prognosis after SBRT is in agreement with the latter reports.
Several factors may have caused the different results. First, these studies defined ADC
differently. Different measures may be used to define the ROI and evaluate the
ADC values, for example, using a minimum ADC value, a mean ADC value, or
histogram analysis, etc [22-24]. We used the mean ADC value and avoided the cystic and
necrotic areas to not affect the ADC value of the tumour. Second, the cancer type, clinical
stage, and treatment strategies were different between the studies.
Some negative correlations between ADC value and cell density have been observed in certain malignancies. Tumours with a lower ADC value are more likely to have viable proliferative cells, which are sensitive to chemotherapy and radiotherapy. Conversely, the presence of inflammatory changes, necrosis, and fibrosis influence ADC value, which is correlated with interstitial water content and low cell density in histological samples [25, 26]. The lower the ADC value, the more effective the chemotherapy and/or radiotherapy [10, 20, 27].

Tumour size, patient gender, and operability are other prognostic factors suggested for early stage NSCLC treated with SBRT [5, 28, 29]. Our results suggest that the functional imaging modalities such as DW-MRI and PET could be a good predictor of clinical outcomes.

A limitation of this study is that the sample size was small. We introduced internal fiducial markers to a part of lung cancer patients in October 2010 to improve tumour localization during SBRT. The fiducial markers were made of gold and were inserted into bronchiole near the tumour [30]. Then, we stopped patient enrolment into the present study because of a concern that the gold markers might spoil image quality of DW-MRI. Despite of the small number, the present study indicated pre-treatment DW-MRI could be a predictor for clinical outcomes. A future study is warranted to prospectively evaluate the additional role of DW-MRI to FDG-PET before lung SBRT.
The present study did not evaluate ADC values after SBRT. There are some studies investigating the use of DW-MRI for predicting therapeutic effect of chemoradiation by comparing ADC values before and after treatment. Liu et al reported the percentage ADC value change after 1 month correlated positively with size reduction after 2 months of chemoradiation in 17 patients with cervical cancer [27]. Another study reported the ADC value at the time of 20 Gy was significantly higher in responders compared to non-responders in 27 patients with primary clinical T4 oesophageal carcinoma treated with chemoradiation [31]. We are planning a study to evaluate usefulness of DW-MRI in evaluation of the tumour response after SBRT and in distinction of treatment-related change from recurrence.

The consideration of more intensive therapy to prevent disease progression especially in high-risk patient is warranted. For example, dose escalation such as peripheral dose prescription and heterogeneous distribution, or systemic chemotherapy. However, early stage NSCLC patients treated with SBRT are often elderly and cannot tolerate chemotherapy. Thus, dose escalation is considered an appropriate strategy.

**Conclusion**

A low ADC value on pre-treatment DW-MRI and higher SUV\(_{\text{max}}\) may be associated with DP in NSCLC patients after SBRT. The combined use of ADC value and SUV\(_{\text{max}}\) is a better predictor for DP.
References


[31] Imanishi S, Shuto K, Aoyagi T, Kono T, Saito H, Matsubara H. Diffusion-weighted magnetic resonance imaging for predicting and detecting the
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>11/4</td>
</tr>
<tr>
<td>Age (years), median (range)</td>
<td>80, (70–86)</td>
</tr>
<tr>
<td>Performance status 0/1</td>
<td>11/4</td>
</tr>
<tr>
<td>Operability</td>
<td></td>
</tr>
<tr>
<td>Operable/Inoperable</td>
<td>7/8</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
</tr>
<tr>
<td>Never smoker/ex-smoker</td>
<td>2/13</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma/SCC/NSCLC nos</td>
<td>7/6/2</td>
</tr>
<tr>
<td>Size of tumour (mm), median (range)</td>
<td>30, (14–42)</td>
</tr>
<tr>
<td>T stage</td>
<td></td>
</tr>
<tr>
<td>T1a/T1b/T2a</td>
<td>4/6/5</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Peripheral/Central</td>
<td>9/6</td>
</tr>
<tr>
<td>RUL/RML/RLL/LUL/LLL</td>
<td>4/1/4/3/3</td>
</tr>
<tr>
<td>Prescribed dose</td>
<td></td>
</tr>
<tr>
<td>48 Gy/56 Gy/60 Gy</td>
<td>5/4/6</td>
</tr>
</tbody>
</table>

Abbreviations: SCC = squamous cell carcinoma; NSCLC nos = non-small cell lung cancer, not otherwise specified; RUL = right upper lung; RML = right middle lung; RLL = right lower lung; LUL = left upper lung; LLL = left lower lung. T stage was revised according to the 7th edition of the TNM classification for lung cancer.
Table 2. Patients’ characteristics in the high- and low-risk groups.

The high-risk group consisted of patients with an apparent diffusion coefficient (ADC) value $\leq 1.05 \times 10^{-3} \text{ mm}^2/\text{s}$ and maximum standardised uptake values ($\text{SUV}_{\text{max}}$) $\geq 7.9$.

The other patients were in the low-risk group. The two groups were not different statistically.

<table>
<thead>
<tr>
<th></th>
<th>High-risk group (n = 8)</th>
<th>Low-risk group (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>6/2</td>
<td>5/2</td>
</tr>
<tr>
<td>Age (years), median</td>
<td>72–86, 80</td>
<td>70–83, 80</td>
</tr>
<tr>
<td>Performance status 0/1</td>
<td>6/2</td>
<td>5/2</td>
</tr>
<tr>
<td>Operability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operable/Inoperable</td>
<td>4/4</td>
<td>3/4</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker/ex-smoker</td>
<td>0/8</td>
<td>2/5</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma/SCC/NSCLC nos</td>
<td>4/3/1</td>
<td>3/3/1</td>
</tr>
<tr>
<td>Size of tumour (mm), median (range)</td>
<td>28.5(17–35)</td>
<td>30(14–42)</td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1a/T1b/T2a</td>
<td>2/3/3</td>
<td>2/3/2</td>
</tr>
<tr>
<td>Prescribed dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 Gy/56 Gy/60 Gy</td>
<td>3/2/3</td>
<td>2/2/3</td>
</tr>
</tbody>
</table>

Abbreviations: SCC = squamous cell carcinoma; NSCLC nos = non-small cell lung cancer, not otherwise specified. T stage was revised according to the 7th edition of the TNM classification for lung cancer.
Figures

Fig. 1. Scatter plot of the apparent diffusion coefficient (ADC) value and maximum standardised uptake (SUV\text{max}). There was no statistical correlation between ADC value and SUV\text{max} (r = 0.046).

Fig. 2. Scatter plot of the apparent diffusion coefficient (ADC) value and tumour diameter (A) and maximum standardised uptake (SUV\text{max}) and tumour diameter (B). There was no statistical correlation (p=0.64 and 0.63, respectively).

Fig. 3. Cumulative incidence of disease progression (DP) according to apparent diffusion coefficient (ADC) value (A), maximum standardised uptake (SUV\text{max}) (B), and the combination of ADC value and SUV\text{max} (C). The group with the lower ADC value and higher SUV\text{max} tended to have worse prognosis, although this result was not significantly significant (p = 0.09 and 0.32, respectively). When applying an optimal cut-off value of the ADC and SUV\text{max}, the lower ADC value and higher SUV\text{max} group had a significantly poorer prognosis (p = 0.036); the combination was a strong predictor for DP.
Fig. 1. Scatter plot of the apparent diffusion coefficient (ADC) value and maximum standardised uptake ($SUV_{\text{max}}$). There was no statistical correlation between ADC value and $SUV_{\text{max}}$ ($r = 0.046$).
Fig. 2. Scatter plot of the (A) apparent diffusion coefficient (ADC) value and tumour diameter and (B) maximum standardised uptake (SUV\textsubscript{max}) and tumour diameter. There was no statistical correlation ($p=0.64$ and 0.63, respectively).
Disease progression

Cumulative incidence

- ADC<=1.05
- ADC>1.05

months

(A)
Disease progression

Cumulative incidence

months

SUV_{max} \geq 7.9
SUV_{max} < 7.9
Fig. 3. Cumulative incidence of disease progression (DP) according to apparent diffusion coefficient (ADC) value (A), maximum standardised uptake (SUV$_{\text{max}}$) (B), and the combination of ADC value and SUV$_{\text{max}}$ (C). The group with the lower ADC value and higher SUV$_{\text{max}}$ tended to have worse prognosis, although this result was not significantly significant ($p = 0.09$ and 0.32, respectively). When applying an optimal cut-off value of
the ADC and SUV\textsubscript{max}, the lower ADC value and higher SUV\textsubscript{max} group had a significantly poorer prognosis ($p = 0.036$); the combination was a strong predictor for DP.