1 Abstract

2 **Purpose/Objectives**

3	To evaluate the use of diffusion-weighted magnetic resonance imaging
4	(DW-MRI) and ¹⁸ F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for
5	predicting disease progression (DP) among patients with non-small cell lung carcinoma
6	(NSCLC) treated with stereotactic body radiotherapy (SBRT).
7	
8	Materials/Methods
9	Fifteen patients with histologically confirmed stage I NSCLC who underwent
10	pre-treatment DW-MRI and PET and were treated with SBRT were enrolled. The mean
11	apparent diffusion coefficient (ADC) value and maximum standardised uptake value
12	(SUV_{max}) were measured at the target lesion and evaluated for correlations with DP.
13	
14	Results
15	The median pre-treatment ADC value was 1.04×10^{-3} (range $0.83-1.29 \times 10^{-3}$)
16	mm ² /s, and the median pre-treatment SUV _{max} was 9.9 (range 1.6–30). There was no
17	correlation between the ADC value and SUV _{max} . The group with the lower ADC value (\leq
18	1.05×10^{-3} mm ² /s) and that with a higher SUV _{max} (≥ 7.9) tended to have poor DP, but
19	neither trend was statistically significant ($p = 0.09$ and 0.32, respectively). The

20	combination of the ADC value and SUV_{max} was a statistically significant predictor of DP
21	(p = 0.036).
22	
23	Conclusion
24	A low ADC value on pre-treatment DW-MRI and a high SUV_{max} may be
25	associated with poor DP in NSCLC patients treated with SBRT. Using both values in
26	combination was a better predictor.

27 Introduction

28	Surgery is widely accepted as a standard therapy for stage I non-small cell lung
29	cancer (NSCLC); however, some patients with stage I NSCLC are not suited for resection
30	mainly because of their poor respiratory function.
31	Stereotactic body radiotherapy (SBRT) has recently been accepted as an
32	alternative therapy for patients with stage I NSCLC who cannot undergo surgery or
33	decline surgery [1-3]. In a previous study, medically inoperable patients were treated with
34	peripheral T1-T2N0M0 NSCLC using SBRT [4]; the authors reported 3-year local control
35	rates of 97.6% in a group of 55 patients with a median follow-up of almost 3 years, but
36	distant metastasis was 22.1%. We previously reported a 3-year local control rate of 86.8%
37	and a progression-free rate of 59.2% [5].
38	Histological findings are important factors for the determination of a treatment
39	strategy and to predict clinical outcomes [6]. In lung SBRT, pathological diagnosis is
40	confirmed in most patients before treatment is administered, however some patients
41	undergo the treatment without histological confirmation due to the risk of adverse events
42	caused by biopsy. Simple and less-invasive alternative methods are needed to stratify
43	patients according to risk of disease progression (DP).
44	Advances in imaging technologies such as diffusion-weighted magnetic resonance
45	imaging (DW-MRI) and ¹⁸ F-fluorodeoxyglucose (FDG) positron emission tomography
46	(PET) have made it possible to evaluate not only morphological aspects, but also

47	functional aspects including diffusion motion of water molecules and glucose metabolism
48	in tumours. These recently developed imaging techniques are applied to improve the
49	sensitivity of tumour detection and prediction accuracy of the clinical outcomes. Several
50	studies have analysed the utility of FDG-PET for the prognosis and prediction of
51	therapeutic effect after treatment of NSCLC [7-9]. The apparent diffusion coefficient
52	(ADC) of a tumour based on DW-MRI has been reported to be a useful indicator for early
53	prediction of tumour response and prognosis in other cancers treated with
54	chemoradiotherapy [10, 11]. To date, no study has evaluated the use of DW-MRI as a
55	predictor for NSCLC treated with SBRT. Several studies have found that PET might be a
56	useful predictor for patients with early-stage NSCLC treated with SBRT, but the results
57	are controversial [12-15].
58	In this study, we evaluated whether pre-treatment DW-MRI and PET could be
59	used to predict the clinical outcome of stage I NSCLC outcomes after SBRT and
60	compared their predictive capabilities in the same tumours.
61	
62	Materials/Methods
63	Subjects
64	The eligibility criteria for lung SBRT in our hospital were as follows: (1)
65	T1a-T2aN0M0 lung tumour, (2) inoperable or refusal to undergo surgery, (3) arms could
66	be held over the head for 30 min or more, and (4) performance status of 0–2.

67	Fifteen patients with histologically confirmed NSCLC who underwent
68	pre-treatment DW-MRI and FDG-PET and were treated with SBRT in our hospital
69	between January and December of 2010 were included this study. This study was
70	approved by our Institutional Review Board. The median age was 80 years (range, 70-86
71	years). Eleven patients were male and four were female. Patients were staged according to
72	the Union for International Cancer Control's TNM classification, 7th edition with CT and
73	FDG-PET. Contrast medium was administered in the CT scan, if possible. The mean
74	diameter of the tumours was 28 mm (range, 14-42 mm). T stages were distributed as
75	follows: T1a in four, T1b in six, and T2a in five patients. Histological examinations
76	included transbronchial biopsy (10 patients) or percutaneous CT-guided biopsy (5
77	patients) and were conducted before the pre-treatment DW-MRI and FDG-PET. The
78	median interval between the biopsy and these imaging was 43 days (range, 17-67 days).
79	The detailed characteristics of all patients are shown in Table 1.
80	
81	SBRT procedure
82	The details of the SBRT procedure were described previously [16]. The patient's
83	body was immobilised with an individualised vacuum pillow (BodyFIX; Elekta AB,
84	Stockholm, Sweden). The SBRT protocol was created with a commercial treatment
85	planning system, iPlan (BrainLab, Feldkirchen Germany). Four-dimensional computed
86	tomography (4DCT) data were acquired in axial cine mode using a 16-slice CT scanner

87	(LightSpeed RT16, GE Healthcare, Waukesha, WI, USA) and real-time positioning
88	management system (Varian Medical Systems, Palo Alto, CA, USA). An internal target
89	volume (ITV) was determined by assessing tumour trajectory using 4DCT and tumour
90	motion by X-ray fluoroscopy. Both techniques were employed because 4DCT is only
91	capable of evaluating one respiratory cycle, and X-ray fluoroscopy can be used to evaluate
92	the changes of tumour motion amplitude and duration of the respiratory cycle in several
93	respiratory cycles. Planning target volume (PTV) was defined as ITV + margin (5mm).
94	Irradiation was performed with 6 MV X-ray beams from a linear accelerator
95	(Novalis BrainLab) in multiple coplanar and noncoplanar static ports (6 to 8 ports). The
96	dose was prescribed to the isocentre and dose distribution in PTV was homogeneous. The
97	70%-80% isodose lines encompassed the PTV edge. Dose distribution was calculated
98	with the X-ray Voxel Monte Carlo method.
99	Prescribed doses and fractions were 48 Gy/4 fr (biologically effective dose [BED]
100	of 105.6 Gy ₁₀) for T1a-T1b, 56 Gy/4 fr (BED 134.0 Gy ₁₀) for T2a, and 60 Gy/8 fr (BED
101	105.0 Gy_{10}) for centrally located tumours within 2 cm of the trachea or proximal bronchial
102	tree, great vessels, and other mediastinal structures, regardless of their size. Overall
103	treatment time was 4 to 11 days.
104	

105 MRI protocol

106	All MRI examinations were performed using a 1.5T MR unit (Avanto, Siemens,
107	Erlangen, Germany) with a phased-array coil. All patients were imaged in the supine
108	position. Initially, transverse HASTE images were obtained for anatomical identification.
109	Subsequently, both T2-weighted (TR/TE = $2100/85$ ms) and DW-MR images with
110	prospective acquisition correlation (PACE) utilising sensitivity encoding (SENSE; with a
111	SENSE factor of 2) and echo planar imaging (EPI; with an EPI factor of 96) were
112	obtained. The parameters used for DW-MRI were a TR/TE of 2746.3–12030.4/72–79 ms,
113	FOV of 320 mm, slice thickness of 4.0 mm, matrix of 96×128 mm, band width of 1860
114	Hz/pixel and five excitations. All DW-MR images were acquired with MPG pulses in
115	three directions (the x, y, and z axes) with three different b-factors (0, 500, and 1000
116	s/mm ²). All MR images covered the entire chest. ADC maps were automatically
117	calculated from a series of DW images according to a linear regression model based on
118	the logarithm of signal intensities as follows:
119	$ADC = (\log SI_1/SI_0)/b$
120	where SI_1 is the signal intensity with a diffusion gradient, SI_0 is the signal intensity
121	without a diffusion gradient, and b is the gradient factor of sequences.
122	The ADC values of each tumour were measured by a single observer (SU) with 10
123	years of experience in clinical chest MRI. The mean signal intensity of the tumour was
124	measured on an ADC map within three different circular regions of interest (ROIs) that
125	were as large as possible. The average of these was calculated as the ADC value of the

tumour. All ROIs were established in the centre of the tumour to avoid artefacts from the
tumour/air interface or from blood flow in the surrounding large vessels. T2-weighted MR
images were also used as a reference, to avoid inclusion of necrotic areas in the ROIs. The
respiratory gating method was used for the MRI scan.

130

131 FDG-PET protocol

132 Patients fasted for at least 4 h before the examination, and their plasma glucose level was checked immediately before the administration of ¹⁸F-FDG (~3.7 MBg/kg). No 133 134 patients had a plasma glucose level greater than 200 mg/dL. Approximately 1 h later, 135 PET/CT was performed, using a combined PET/CT scanner (Discovery ST Elite, GE 136 Healthcare Waukesha, WI, USA). Low-dose CT images were acquired during shallow 137 breathing from the upper thigh to the skull base with a 16-detector row scanner (20–100 138 mA, using the auto-mA setting with a noise index of 30, 120 kV, 0.6 s tube rotation, slice 139 thickness 3.75 mm, matrix 512×512, and a pitch of 1.75). Immediately after CT, a 140 whole-body PET emission scan was performed in 3D-acquisition mode with an 141 acquisition time of 2–3 min per bed position. The PET images were attenuation-corrected 142 using the CT data and were reconstructed with a 3D ordered-subsets expectation 143 maximisation algorithm. The respiratory gating method was not used for the PET scan. 144 The maximum standardised uptake values (SUV_{max}) were measured at the target lesion by 145 a single observer (YN) with more than 10 years of experience in nuclear medicine.

146

147	Follow-up
-----	-----------

148	Follow-up visits were conducted at 1, 2, 3, 6, 9, and 12 months in the first year
149	after SBRT and every 3–6 months thereafter. The plain CT scan was performed every 3
150	months in the first year after treatment and every 3-6 months thereafter. When DP was
151	highly suspected by the CT scan, FDG-PET was also performed.
152	Local progression (LP) was diagnosed based on the recommendations for
153	follow-up imaging established by Huang et al. [17]. Regional lymph node metastases
154	were diagnosed based on CT. FDG-PET results were also considered in diagnosis but
155	histological confirmation was not mandatory. DP was defined as LP, regional lymph node
156	metastases, or distant metastases.
157	
158	Statistical analysis
159	The correlation of ADC value and SUV_{max} with DP after SBRT was evaluated. LP
160	and overall survival (OS) were evaluated in the same manner. To consider the impact that
161	the tumour diameter gives the ADC value and $\mathrm{SUV}_{\mathrm{max}}$, the correlations of ADC value and
162	$\ensuremath{\text{SUV}_{\text{max}}}$ with tumour size were also evaluated. The cumulative incidence of DP and LP
163	was evaluated considering competing risk of non-lung cancer death. The Kaplan-Meier
164	method was used to estimate OS and the Grey-box test and log-rank test were used to
165	detect differences between strata. A p -value < 0.05 was considered statistically significant.

166	Receiver operating characteristic (ROC) analyses were performed to determine
167	appropriate thresholds of ADC value and SUV_{max} . All statistical analyses were performed
168	with R software (version 2.15.1, R Development Core Team)[18].
169	
170	Results
171	Survival
172	The median follow-up period was 28.0 (range, 6.7–37.2) months. DP was
173	observed in nine patients. The first site of progression was local tumour in three patients,
174	regional lymph node in two patients, and distant metastasis in four patients. Seven of the
175	nine DP were diagnosed with CT and FDG-PET. The remaining two patients who
176	developed lung metastases were diagnosed with plain CT.
177	The OS at 24 months was 52% (seven patients died, 95% confidence interval [CI],
178	26–74%). The cumulative incidence rates of LP and DP were 16% (two patients) and 57%,
179	(nine patients) respectively, at 24 months.
180	ADC value and SUV _{max}
181	The pre-treatment ADC values ranged from 0.83 to $1.29\times 10^{\text{-3}}~\text{mm}^{2}/\text{s}$ (median
182	$1.04\times 10^{\text{-3}}\text{mm}^{2}\text{/s}\text{)},$ and SUV_max ranged from 1.5 to 30.0 (median 9.9). There was no
183	statistically significant correlation between ADC value and SUV_{max} (Fig. 1). Fig. 2 shows
184	the scatter plot of tumour diameter and ADC value and $\mbox{SUV}_{max}.$ ADC value and \mbox{SUV}_{max}
185	showed weak positive correlations with tumour diameter with correlation coefficients of

186 0.48 and 0.50, but without statistical significance (p = 0.64 and 0.63, respectively).

187 According to the ROC analysis the appropriate threshold values for DP were 1.05×10^{-3}

188 mm^2/s for ADC value and 7.9 for SUV_{max}.

189 When dividing the patients into two groups according to the threshold ADC value of 1.05×10^{-3} mm²/s, the group with the lower ADC value had worse DP compared to 190 191 patients with the higher ADC value (80% and 20%, respectively, at 24 months). There 192 was a similar tendency in the group with the higher $SUV_{max} (\geq 7.9)$ to have a poor DP 193 (60% and 40%, respectively, at 24 months). However, neither DP trend was statistically 194 significant. (p = 0.09, and 0.32, respectively). 195 As an exploratory analysis, a combination of ADC value and SUV_{max} with the 196 same threshold values was investigated. When patients were divided into two groups 197 (high-risk group: patients with ADC value $\leq 1.05 \times 10^{-3}$ mm²/s and SUV_{max} ≥ 7.9 ; and

- 198 low-risk group: all other patients), the numbers of patients were well balanced between
- 199 the groups (8 and 7 patients for the high- and low-risk groups, respectively). The high-risk
- group had significantly worse DP (p = 0.036). The cumulative incidence rates of DP were
- 201 75.0% (six patients) in the high-risk group and 28.6% (two patients) in the low-risk
- 202 groups, respectively, at 24 months (Fig. 3). The two groups had a similar number of
- 203 patients, and similar characteristics (Table 2).

The OS at 24 months was 50% (four patients died) in the high-risk group and 57%
(three patients died) in the low-risk group. However, from the viewpoint of cancer specific

206	death, the survival rates were 60% (three patients died) in the high-risk group and 83%
207	(one patient died) in the low-risk group. The cumulative incidence rates of LP at 24
208	months were 14% (one patient) in both groups. The tumour diameter, pre-treatment ADC
209	value and SUV_{max} of the patient in the high-risk group were 28 mm, $1.04\times 10^{\text{-3}}\ \text{mm}^{2}\text{/s}$
210	and 7.9. Those of the patient in the low-risk group were 42 mm, 1.19×10^{-3} mm ² /s and
211	13.6, respectively.
212	
213	Discussion
214	To the best of our knowledge, this is the first study to evaluate the use of
215	DW-MRI for predicting the clinical outcomes in NSCLC patients treated with SBRT. It is
216	also the first direct comparison of FDG-PET and DW-MRI in terms of prognosis
217	prediction for NSCLC patients who have undergone SBRT.
218	We found that patients presenting with stage I NSCLC and either a lower ADC
219	value, or with a higher SUV_{max} tended to have a poor DP after SBRT although the
220	difference was not statistically significant. The use of ADC value and SUV_{max} in
221	combination was a better predictor for DP than either biological marker alone.
222	Several previous studies on PET in NSCLC patients treated with SBRT have been
223	published. Various controversial results have been reported regarding the use of
224	FDG-PET for prognosis. In a recent study of 152 patients treated with SBRT of 40 to 60
225	Gy in five fractions, SUV_{max} was a significant predictor of OS, disease-free survival, and

226	LP [14], although this study included patients with pathologically unconfirmed NSCLC.
227	Another analysis showed that pre-treatment SUV_{max} was a significant predictor for
228	disease-free survival and distant failure in 82 patients [12]. Burdick et al. evaluated the
229	pre-treatment SUV_{max} in 72 patients treated with SBRT with a median follow-up of 16.9
230	months, however SUV_{max} did not predict OS and DP [15]. We found a correlation
231	between SUV_{max} and DP, although there was no statistically significant correlation with
232	DP.
233	The conventional PET scan has several problems for evaluation of SUV_{max} . First, the
234	spatial resolution of the PET scanner is low. Second, the PET image is often blurred due
235	to respiratory motion, especially in the lower lobes of the lung and upper abdominal
236	organs. SUV_{max} is higher when measured using respiratory gating PET or CT
237	reconstruction than when using conventional techniques in lung tumours [19]. If we had
238	used the respiratory gating method in this study, a significant difference might have been
239	observed.
240	The use of DW-MRI for predicting the therapeutic effect and prognosis is also
241	controversial. To date, no published study has addressed DWI in early-stage NSCLC
242	patients treated with SBRT. A few reports have discussed DW-MRI and lung cancer
243	treated with chemoradiotherapy. Ohno et al. reported a correlation between DW-MRI and
244	PET in a study of 64 patients with locally advanced NSCLC (stage III) treated with
245	conventional chemoradiotherapy. They found that higher ADC and SUV_{max} values were

246	significantly associated with poor prognosis. OS and progression-free survival of the two
247	groups split at an ADC value of $2.1 \times 10^{\text{-3}} \text{ mm}^{2}\text{/s},$ and a SUVmax of 10 showed a
248	significant difference [20]. Several studies have suggested that the ADC value is a
249	predictive factor for other organs. In a study that analysed 32 patients with
250	hypopharyngeal or oropharyngeal squamous cell carcinoma who underwent pre-treatment
251	DWI and definitive chemoradiotherapy, patients with a higher ADC value (more than
252	median, 0.79×10^{-3} mm ² /s) had a significantly lower local control rate than patients with a
253	lower ADC value [21]. In contrast, Micco et al. reported that lower average pre-treatment
254	ADC values were associated with high-risk features such as International Federation of
255	Gynaecology and Obstetrics (FIGO) stage and LN metastases [10]. In another study, a
256	lower ADC value was associated with shorter cancer-specific survival in patients with
257	upper urinary tract cancer treated only with surgery [11]. Our result of a lower ADC value
258	being associated with a poor prognosis after SBRT is in agreement with the latter reports.
259	Several factors may have caused the different results. First, these studies defined ADC
260	value differently. Different measures may be used to define the ROI and evaluate the
261	ADC values, for example, using a minimum ADC value, a mean ADC value, or
262	histogram analysis, etc [22-24]. We used the mean ADC value and avoided the cystic and
263	necrotic areas to not affect the ADC value of the tumour. Second, the cancer type, clinical
264	stage, and treatment strategies were different between the studies.

265	Some negative correlations between ADC value and cell density have been		
266	observed in certain malignancies. Tumours with a lower ADC value are more likely to		
267	have viable proliferative cells, which are sensitive to chemotherapy and radiotherapy.		
268	Conversely, the presence of inflammatory changes, necrosis, and fibrosis influence ADC		
269	value, which is correlated with interstitial water content and low cell density in		
270	histological samples [25, 26]. The lower the ADC value, the more effective the		
271	chemotherapy and/or radiotherapy [10, 20, 27].		
272	Tumour size, patient gender, and operability are other prognostic factors suggested		
273	for early stage NSCLC treated with SBRT [5, 28. 29]. Our results suggest that the		
274	functional imaging modalities such as DW-MRI and PET could be a good predictor of		
275	clinical outcomes.		
276	A limitation of this study is that the sample size was small. We introduced internal		
277	fiducial markers to a part of lung cancer patients in October 2010 to improve tumour		
278	localization during SBRT. The fiducial markers were made of gold and were inserted into		
279	bronchiole near the tumour [30]. Then, we stopped patient enrolment into the present		
280	study because of a concern that the gold markers might spoil image quality of DW-MRI.		
281	Despite of the small number, the present study indicated pre-treatment DW-MRI could be		
282	a predictor for clinical outcomes. A future study is warranted to prospectively evaluate the		
283	additional role of DW-MRI to FDG-PET before lung SBRT.		

284	The present study did not evaluate ADC values after SBRT. There are some		
285	studies investigating the use of DW-MRI for predicting therapeutic effect of		
286	chemoradiation by comparing ADC values before and after treatment. Liu et al reported		
287	the percentage ADC value change after 1 month correlated positively with size reduction		
288	after 2 months of chemoradiation in 17 patients with cervical cancer [27]. Another study		
289	reported the ADC value at the time of 20 Gy was significantly higher in responders		
290	compared to non-responders in 27 patients with primary clinical T4 oesophageal		
291	carcinoma treated with chemoradiation [31]. We are planning a study to evaluate		
292	usefulness of DW-MRI in evaluation of the tumour response after SBRT and in		
293	distinction of treatment-related change from recurrence.		
294	The consideration of more intensive therapy to prevent disease progression especially in		
295	high-risk patient is warranted. For example, dose escalation such as peripheral dose		
296	prescription and heterogeneous distribution, or systemic chemotherapy. However, early		
297	stage NSCLC patients treated with SBRT are often elderly and cannot tolerate		
298	chemotherapy. Thus, dose escalation is considered an appropriate strategy.		
299			
300	Conclusion		
301	A low ADC value on pre-treatment DW-MRI and higher SUV_{max} may be associated with		
302	DP in NSCLC patients after SBRT. The combined use of ADC value and SUV_{max} is a		

303 better predictor for DP.

305 References 306 [1] Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin 307 P. Comparison of the effectiveness of radiotherapy with photons, protons and 308 carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol 309 2010;95(1):32-40. 310 [2] Onimaru R, Shirato H, Shimizu S, Kitamura K, Xu B, Fukumoto S, et al. Tolerance of 311 organs at risk in small-volume, hypofractionated, image-guided radiotherapy for 312 primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 313 2003;56(1):126-35. 314 [3] Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, et al. 315 Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small 316 cell lung cancer: updated results of 257 patients in a Japanese multi-institutional 317 study. Journal of thoracic oncology : official publication of the International 318 Association for the Study of Lung Cancer 2007;2(7 Suppl 3):S94-100. 319 [4] Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. 320 Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 321 2010;303(11):1070-6. 322 [5] Matsuo Y, Shibuya K, Nagata Y, Takayama K, Norihisa Y, Mizowaki T, et al. 323 Prognostic factors in stereotactic body radiotherapy for non-small-cell lung cancer. 324 Int J Radiat Oncol Biol Phys 2011;79(4):1104-11. 325 [6] Rezaei MK, Nolan NJ, Schwartz AM. Surgical pathology of lung cancer. Seminars 326 in respiratory and critical care medicine 2013;34(6):770-86. 327 [7] Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG 328 uptake as a biologic prognostic factor for recurrence in patients with surgically 329 resected non-small cell lung cancer. Journal of nuclear medicine : official 330 publication, Society of Nuclear Medicine 2002;43(1):39-45. 331 [8] Sunaga N, Oriuchi N, Kaira K, Yanagitani N, Tomizawa Y, Hisada T, et al. 332 Usefulness of FDG-PET for early prediction of the response to gefitinib in 333 non-small cell lung cancer. Lung Cancer 2008;59(2):203-10. 334 [9] Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. 335 Positron emission tomography in non-small-cell lung cancer: prediction of 336 response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 337 2003;21(14):2651-7. 338 [10] Micco M, Vargas HA, Burger IA, Kollmeier MA, Goldman DA, Park KJ, et al. 339 Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic 340 biomarkers in patients with cervical cancer. European journal of radiology 2014.

304

341	[11] Yoshida S, Kobayashi S, Koga F, Ishioka J, Ishii C, Tanaka H, et al. Apparent		
342	diffusion coefficient as a prognostic biomarker of upper urinary tract cancer: a		
343	preliminary report. European radiology 2013;23(8):2206-14.		
344	[12] Clarke K, Taremi M, Dahele M, Freeman M, Fung S, Franks K, et al. Stereotactic		
345	body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): is FDG-PET		
346	a predictor of outcome? Radiother Oncol 2012;104(1):62-6.		
347	[13] Hoopes DJ, Tann M, Fletcher JW, Forquer JA, Lin PF, Lo SS, et al. FDG-PET and		
348	stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer.		
349	Lung Cancer 2007;56(2):229-34.		
350	[14] Takeda A, Sanuki N, Fujii H, Yokosuka N, Nishimura S, Aoki Y, et al. Maximum		
351	standardized uptake value on FDG-PET is a strong predictor of overall and		
352	disease-free survival for non-small-cell lung cancer patients after stereotactic body		
353	radiotherapy. Journal of thoracic oncology : official publication of the		
354	International Association for the Study of Lung Cancer 2014;9(1):65-73.		
355	[15] Burdick MJ, Stephans KL, Reddy CA, Djemil T, Srinivas SM, Videtic GM.		
356	Maximum standardized uptake value from staging FDG-PET/CT does not predict		
357	treatment outcome for early-stage non-small-cell lung cancer treated with		
358	stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2010;78(4):1033-9.		
359	[16] Takayama K, Nagata Y, Negoro Y, Mizowaki T, Sakamoto T, Sakamoto M, et al.		
360	Treatment planning of stereotactic radiotherapy for solitary lung tumor. Int J		
361	Radiat Oncol Biol Phys 2005;61(5):1565-71.		
362	[17] Huang K, Dahele M, Senan S, Guckenberger M, Rodrigues GB, Ward A, et al.		
363	Radiographic changes after lung stereotactic ablative radiotherapy (SABR)can		
364	we distinguish recurrence from fibrosis? A systematic review of the literature.		
365	Radiother Oncol 2012;102(3):335-42.		
366	[18] Team RdC. R: A Language and Environment for Statistical Computing. In: R		
367	Foundation for Statistical Computing, 2012		
368	[19] van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Ollers M. Optimal		
369	gating compared to 3D and 4D PET reconstruction for characterization of lung		
370	tumours. European journal of nuclear medicine and molecular imaging		
371	2011;38(5):843-55.		
372	[20] Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Aoyama N, Onishi Y, et al.		
373	Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of		
374	tumor treatment response and patient survival in patients with non-small cell lung		
375	cancer receiving chemoradiotherapy. AJR American journal of roentgenology		
376	2012;198(1):75-82.		
377	[21] Ohnishi K, Shioyama Y, Hatakenaka M, Nakamura K, Abe K, Yoshiura T, et al.		
378	Prediction of local failures with a combination of pretreatment tumor volume and		
379	apparent diffusion coefficient in patients treated with definitive radiotherapy for		

380	hypopharyngeal or oropharyngeal squamous cell carcinoma. Journal of radiation
381	research 2011;52(4):522-30.
382	[22] Heo SH, Shin SS, Kim JW, Lim HS, Jeong YY, Kang WD, et al. Pre-Treatment
383	Diffusion-Weighted MR Imaging for Predicting Tumor Recurrence in Uterine
384	Cervical Cancer Treated with Concurrent Chemoradiation: Value of Histogram
385	Analysis of Apparent Diffusion Coefficients. Korean journal of radiology : official
386	journal of the Korean Radiological Society 2013;14(4):616-25.
387	[23] Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, et al. Lung
388	carcinoma: diffusion-weighted mr imagingpreliminary evaluation with apparent
389	diffusion coefficient. Radiology 2007;243(2):570-7.
390	[24] Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, et al.
391	Diffusion-weighted magnetic resonance imaging for diagnosing malignant
392	pulmonary nodules/masses: comparison with positron emission tomography.
393	Journal of thoracic oncology : official publication of the International Association
394	for the Study of Lung Cancer 2008;3(4):358-64.
395	[25] Manenti G, Di Roma M, Mancino S, Bartolucci DA, Palmieri G, Mastrangeli R, et al.
396	Malignant renal neoplasms: correlation between ADC values and cellularity in
397	diffusion weighted magnetic resonance imaging at 3 T. La Radiologia medica
398	2008;113(2):199-213.
399	[26] Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness
400	of diffusion-weighted MRI with echo-planar technique in the evaluation of
401	cellularity in gliomas. Journal of magnetic resonance imaging : JMRI
402	1999;9(1):53-60.
403	[27] Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y. Diffusion-weighted imaging in
404	predicting and monitoring the response of uterine cervical cancer to combined
405	chemoradiation. Clinical radiology 2009;64(11):1067-74.
406	[28] Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, et al. Outcome in
407	a prospective phase II trial of medically inoperable stage I non-small-cell lung
408	cancer patients treated with stereotactic body radiotherapy. J Clin Oncol
409	2009;27(20):3290-6.
410	[29] Dunlap NE, Larner JM, Read PW, Kozower BD, Lau CL, Sheng K, et al. Size
411	matters: a comparison of T1 and T2 peripheral non-small-cell lung cancers treated
412	with stereotactic body radiation therapy (SBRT). The Journal of thoracic and
413	cardiovascular surgery 2010;140(3):583-9.
414	[30] Ueki N, Matsuo Y, Nakamura M, et al. Intra- and interfractional variations in
415	geometric arrangement between lung tumours and implanted markers. Radiother
416	Oncol 2014;110(3):523-8.
417	[31] Imanishi S, Shuto K, Aoyagi T, Kono T, Saito H, Matsubara H.
418	Diffusion-weighted magnetic resonance imaging for predicting and detecting the

419 early response to chemoradiotherapy of advanced esophageal squamous cell
420 carcinoma. Digestive surgery 2013;30(3):240-8.

Sex (male/female)	11/4	
Age (years), median (range)	80, (70–86)	
Performance status 0/1	11/4	
Operability		
Operable/Inoperable	7/8	
Smoking status		
Never smoker/ex-smoker	2/13	
Histology		
Adenocarcinoma/SCC/NSCLC nos	7/6/2	
Size of tumour (mm), median (range)	30, (14–42)	
T stage		
T1a/T1b/T2a	4/6/5	
Location		
Peripheral/Central	9/6	
RUL/RML/RLL/LUL/LLL	4/1/4/3/3	
Prescribed dose		
48 Gy/56 Gy/60 Gy	5/4/6	
Abbreviations: SCC = squamous cell carcinoma; NSCLC nos = non-small cell lung cancer, not otherwise		

Table 1. Patients' characteristics (n =15)

lung; LLL = left lower lung. T stage was revised according to the 7th edition of the TNM classification for lung cancer.

specified; RUL = right upper lung; RML = right middle lung; RLL = right lower lung; LUL = left upper

Table 2. Patients' characteristics in the high- and low-risk groups.

The high-risk group consisted of patients with an apparent diffusion coefficient (ADC) value $\leq 1.05 \times 10^{-3} \text{ mm}^2/\text{s}$ and maximum standardised uptake values (SUV_{max}) \geq 7.9. The other patients were in the low-risk group. The two groups were not different statistically.

	High-risk group (n	Low-risk group
	= 8)	(n = 7)
Sex (male/female)	6/2	5/2
Age (years), median	72–86, 80	70–83, 80
Performance status 0/1	6/2	5/2
Operability		
Operable/Inoperable	4/4	3/4
Smoking status		
Never smoker/ex-smoker	0/8	2/5
Histology		
Adenocarcinoma/SCC/NSCLC nos	4/3/1	3/3/1
Size of tumour (mm), median (range)	28.5(17–35)	30(14-42)
T stage		
T1a/T1b/T2a	2/3/3	2/3/2
Prescribed dose		
48 Gy/56 Gy/60 Gy	3/2/3	2/2/3

Abbreviations: SCC = squamous cell carcinoma; NSCLC nos = non-small cell lung cancer, not otherwise specified. T stage was revised according to the 7^{th} edition of the TNM classification for lung cancer.

Figures

Fig. 1. Scatter plot of the apparent diffusion coefficient (ADC) value and maximum standardised uptake (SUV_{max}). There was no statistical correlation between ADC value and SUV_{max} (r = 0.046).

Fig. 2. Scatter plot of the apparent diffusion coefficient (ADC) value and tumour diameter (A) and maximum standardised uptake (SUV_{max}) and tumour diameter (B). There was no statistical correlation (p=0.64 and 0.63, respectively).

Fig. 3. Cumulative incidence of disease progression (DP) according to apparent diffusion coefficient (ADC) value (A), maximum standardised uptake (SUV_{max}) (B), and the combination of ADC value and SUV_{max} (C). The group with the lower ADC value and higher SUV_{max} tended to have worse prognosis, although this result was not significantly significant (p = 0.09 and 0.32, respectively). When applying an optimal cut-off value of the ADC and SUV_{max}, the lower ADC value and higher SUV_{max} group had a significantly poorer prognosis (p = 0.036); the combination was a strong predictor for DP.

Figures

Fig. 1. Scatter plot of the apparent diffusion coefficient (ADC) value and maximum standardised uptake (SUV_{max}). There was no statistical correlation between ADC value and SUV_{max} (r = 0.046).

Fig. 2. Scatter plot of the (A) apparent diffusion coefficient (ADC) value and tumour diameter and (B) maximum standardised uptake (SUV_{max}) and tumour diameter. There was no statistical correlation (p=0.64 and 0.63, respectively).

Disease progression 1.0 ADC<=1.05 and SUVmax=>7.9 ADC>1.05 or SUVmax<7.9 0.8 Cumulative incidence 0.6 0.4 0.2 0.0 Τ 12 0 6 24 30 42 18 36 months

(C)

Fig. 3. Cumulative incidence of disease progression (DP) according to apparent diffusion coefficient (ADC) value (A), maximum standardised uptake (SUV_{max}) (B), and the combination of ADC value and SUV_{max} (C). The group with the lower ADC value and higher SUV_{max} tended to have worse prognosis, although this result was not significantly significant (p = 0.09 and 0.32, respectively). When applying an optimal cut-off value of

the ADC and SUV_{max}, the lower ADC value and higher SUV_{max} group had a significantly poorer prognosis (p = 0.036); the combination was a strong predictor for DP.