砂防ダムの内部応力に関する研究

(種々の境界条件を与えた二次元弾性理論解について)

Studies on the Internal Stresses in the Gravity Check Dam.

栃

 \star

省

			w)		sb (н	2. Diago	
									-
	n oli gi Dila 10 da kala batan da bara da Boli neg	;	次						
緒	n my // boffinities and the second sub-transmission of the	V	寒天	ER J	にる権	莫型実験	laan paara		
Ι	弾性理論の基本式	VI	考			察			
п	分割荷重を考慮した場合の内部応力	結			言				
Ш	特殊な荷重を考慮した場合の内部応力	参	考	文	献				
IV	数 値 計 算 例	Ré	sumé						
	it seemest the stress was no difference in the rate								
	緒		言						

砂防ダム断面の安定計算については、Thiery 以来 Wehrmann に至るまで多くの研究があるが、それらはいずれも完全剛体の力学に基くものであつて、一応一般式の形でまとめられている。戦後砂防 ダムは著しくその高さを増し、最近は40m以上のものも築造されるようになつて、新しい断面決定法 及び内部応力の検討が必要となつた。前者に対しては、先に"重力式砂防ダムの3次元応力の研究"

が発表され,その応用例が出されたので、ここでは後者について検討を行うことにする。

純弾性理論より出発し、応力関数を用いて解を求める方法は、Levy 以来行われ、Fillinger は極座 標系によつてこれを求めた。我国では"土木耐震学""重力ダムの応力計算について"が先ずあげら れ、其後多くの研究がある。

筆者は砂防ダム内部応力の弾性理論解を求めるに際して,境界条件の与え方について提案し,分割 重を考慮した二次元応力や特殊な荷重を受けた場合の内部応力について,二,三の考察を試みた。

I 弾性理論の基本式

図-1 の如く,円とう座標をとつて,基本三角形断面をもつ直線重力式砂防ダムを考えると, **歪の** 成分及び釣合方程式はそれぞれ(1),(2)式で示される。

$\mathcal{E}r=\frac{\partial u}{\partial r},$	$\mathcal{E}_{\theta} = \frac{u}{r}$	$-+\frac{\partial v}{r\partial \theta},$	$\mathcal{E}_{z} = \frac{\partial w}{\partial z}$		
$\gamma r_{\theta} = \frac{\partial u}{r \partial \theta} +$	$\frac{\partial v}{\partial r} - \frac{v}{r}$	•		. bend	
$\gamma rz = \frac{\partial u}{\partial z} +$	$\frac{\partial w}{\partial r}$			······(1,	
$\gamma_{\theta z} = \frac{\partial u}{\partial z} +$	$\frac{\partial w}{r\partial \theta}$				

この釣合方程式は、弾性変形を考えて導いた Compatibility Equation と、与えられた境界条件と を用いて解けばよいのであるが、ここでは w を Constant と仮定し、二次元応力として考えること にする。

u, vは r, θ のみの関数となるから、(1)式において $\mathcal{E}_{e}=0, \gamma_{re}=0, \gamma_{\theta e}=0$ となる。 故にHooke's Law より

$$\begin{split} & \varepsilon_{z} = \frac{1}{E} \{ \sigma_{z} - \nu (\sigma_{r} + \sigma_{\theta}) \} = 0 \\ & \gamma_{rz} = \frac{1}{G} \tau_{rz} = 0 \\ & \gamma_{\theta z} = \frac{1}{G} \tau_{\theta z} = 0 \\ & \Box \quad E : 縦弾性係数 \\ & G : 横弾性係数 \\ & \nu : ポアソン比 \end{split}$$

となる。従つて plane deformation の場合も plane stress の問題と一致することがわかる。

そこで釣合方程式は次のようになる。

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\sigma_r - \sigma_{\theta}}{r} + \mathbf{R} = 0$$

$$\frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{2\tau_{r\theta}}{r} + \Theta = 0$$
(4)

上式において、R、 Θ は、wを堤体の単位重量、 K_1 を等値水平震度として、図-2より

 $\mathbf{R} = \boldsymbol{w} \, \cos \, \boldsymbol{\theta} \, + \, \mathbf{K}_{\mathbf{1}} \, \boldsymbol{w} \, \sin \, \boldsymbol{\theta}$

 $\Theta = -w \sin \theta + \mathbf{K_1} w \cos \theta$

となる。

(4)式の解として、Airy の応力関数
$$\phi(r, \theta)$$
を用い、

$$\sigma_{r} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}} - wr \cos \theta - K_{1} wr \sin \theta$$
$$\sigma_{\theta} = \frac{\partial^{2} \phi}{\partial r^{2}} - wr \cos \theta - K_{1} wr \sin \theta$$
$$\tau_{r\theta} = \frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \frac{\partial^{2} \phi}{\partial r \partial \theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} - \frac{\partial \phi}{\partial \theta}\right)$$

とおけば、これらは(4)式を満足する。

故に $r \ge \theta$ との任意の関数 ϕ を(5)式に代入すれば、釣合方程式(4)式を満足する応力成分が得られる。

.....(5)

弾性体内に生ずる応力分布を知るために今一つ必要なことは, 適合条件の満足である。 これは直交座標では,

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = 0$$
 (a)

で示される。(a)式を極座標に変換すると,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} \cdots$$
(b)

となるから

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right)$$

と (b) 式とを用いると

となる。

上式を満足する応力関数 ϕ (r, θ) の一般式は次式で与えられる。

 $\phi(r, \theta) = a_0 \log r + b_0 r^2 + c_0 r^2 \log r + d_0 r^2 \theta$ $+ a_0' + b_0' \theta + c_0' r \sin \theta + d_0' r \cos \theta + \frac{a_1}{2} r \theta \sin \theta$ $+ (b_1 r^3 + a_1' r^{-1} + b_1' r \log r) \cos \theta - \frac{c_1}{2} r \theta \cos \theta$ $+ (d_1 r^3 + c_1' r^{-1} + d_1' r \log r) \sin \theta$ (7)

$$\begin{aligned} + \sum_{n=2}^{\infty} (a_n r^n + b_n r^{n+2} + a_n' r^{-n} + b_n' r^{-n+2}) \cos n\theta \\ + \sum_{n=2}^{\infty} (a_n r^n + d_n r^{n+2} + a_n' r^{-n} + d_n' r^{-n+2}) \sin n\theta \end{aligned}$$

$$(b_n t \geq 0) = b_n r^n + d_n r^{n+2} + a_n' r^{-n} + d_n' r^{-n+2}) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^2 \theta + b_n r^3 \cos \theta + d_n r^3 \sin \theta \\ + \sum_{n=2}^{\infty} (a_n r^n + b_n r^{n+2}) \sin n\theta \\ + \sum_{n=2}^{\infty} (a_n r^n + b_n r^{n+2}) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + d_n r^n + 2) \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + 2d_n \theta - 2a_n \cos \theta + c_n \sin \theta + (n-2) d_n \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + 2d_n \theta - 2a_n \cos \theta + 2c_n \sin \theta + (n-2) d_n \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + 2d_n \theta - 2a_n \cos \theta + 2c_n \sin \theta + (n-2) d_n \sin n\theta \\ (b_n t \geq 0) = b_n r^2 + 2d_n \theta - 2a_n \cos \theta + 2c_n \sin \theta + (n-2) d_n \sin \theta \\ (b_n t \geq 0) = b_n r^2 + 2d_n \theta - 2a_n \cos \theta + 2c_n \sin \theta + (n-2) d_n \sin \theta \\ (b_n t \geq 0) = b_n r^2 + b_$$

 $(\sigma_{\theta})_{\theta=lpha}=0,$

 $\left(\boldsymbol{\tau}_{r\boldsymbol{\theta}} \right)_{\boldsymbol{\theta} = \boldsymbol{\alpha}} = 0$

とおけばよい。 また梯形荷重を考えた場合には, 上流面に対して

$$(\sigma_{\theta})_{\theta=\beta} = -w_0 h_0 - w_0 \cos\beta \cdot r,$$

下流面に対して

$$(\tau_{\theta})_{\theta=lpha}=0$$
 ,

となる。但し **w**₀:水の単位重量 **h**₀: 越流水深

次に任意の点の主応力は

$$\sigma_{1} = \frac{\sigma_{r} + \sigma_{\theta}}{2} + \sqrt{\left(\frac{\sigma_{r} - \sigma_{\theta}}{2}\right)^{2} + \tau_{r\theta}^{2}}$$
$$\sigma_{2} = \frac{\sigma_{r} + \sigma_{\theta}}{2} - \sqrt{\left(\frac{\sigma_{r} - \sigma_{\theta}}{2}\right)^{2} + \tau_{r\theta}^{2}}$$

であり,その方向は

$$\tan 2t = \frac{2\tau_{r\theta}}{\sigma_r - \sigma_{\theta}} \dots$$

である。但し*t*は其の点の導線と*σ*₂との方向のなす角を表わす。 最大剪断応力は

$$\tau_{max} = \sqrt{\left(\frac{\sigma_r - \sigma_\theta}{2}\right)^2 + \tau_{r\theta}^2} \qquad \dots \tag{12}$$

で示される。

なお, 直交座標で示される $\sigma_x, \sigma_y, \tau_{xy}$ との関係は,

$$\sigma_{x} = \cos^{2}\theta \cdot \sigma_{r} + \sin^{2}\theta \cdot \sigma_{\theta} - \sin^{2}\theta \cdot \tau_{r\theta}$$

$$\sigma_{y} = \sin^{2}\theta \cdot \sigma_{r} + \cos^{2}\theta \cdot \sigma_{\theta} + \sin^{2}\theta \cdot \tau_{r\theta}$$

$$\tau_{xy} = \frac{1}{2}\sin^{2}\theta \cdot \sigma_{r} - \frac{1}{2}\sin^{2}\theta \cdot \sigma_{\theta}$$

$$+ (1 - 2\sin^{2}\theta)\tau_{r\theta}$$

$$(13)$$

によつて与えられる。

□ 分割荷重を考慮した場合の 内部応力

分割荷重を考えた場合のダム上流面に作用す る外力として,一般にある種の制限を加えた **r** の多項式が用いられることを提案したい。

即ち

Surface force = $-A_n r^n$

とした場合は

$$A_n = w_0 - \frac{\cos^n \beta}{H^{n-1}}$$

.....(11)

.....(10)

$$a'x \cap Ede'x$$

 $\left(\tau_{r\theta}\right)_{\theta=\alpha}=0$

 $\left(\tau_{r\theta}\right)_{\theta=\beta}=0$

但し n≥1 とすればよく (図-3参照)

またその中間の値をとる場合は、それらのいくつかをとり適当な weight をつけてその weight の 合計で割つておけばよい。

例えば $-A_1r$ と $-A_2r^2$ の中間にある時は,

$$\frac{-pA_1r-qA_2r^2}{m} \qquad \qquad (\square \cup p+q=m)$$

というようにとるのである。 図-4のような場合は

 $-rac{w_0\cos^neta}{H^{n-1}}\!\!\cdot\!r^n\!+\!p\!-\!rac{p\!\cos\!eta}{H}\!\cdot\!r$

として与えることが出来る。 以上の条件のもとにおいて,境界条件は結局次のごとくになる。 上流面において

$$(\sigma_{\theta})_{\theta=\beta} = -A_0 - A_1 r - A_2 r^2 - A_3 r^3 - \dots$$
$$(\tau_{r\theta})_{\theta=\beta} = 0$$

下流面においては

 $(\sigma_{\theta})_{\theta=\sigma} = 0$

 $\left(\boldsymbol{\tau}_{r\theta}\right)_{\theta=\alpha}=0$

勿論、平面変形状態という仮定のもとで展開したのであるから、中央断面を離れるにつれて誤差は

 $\dots (14)$

94

大きくなる。

(14) 式において r² の項のみとつて考えてみると境界条件は

上流面で

$$(\sigma_{\theta})_{\theta=\theta} = -A_2 r^2, \qquad (\tau_{r\theta})_{\theta=\theta} = 0$$

下流面で

$$\left(\sigma_{\theta}\right)_{\theta=\sigma} = 0, \qquad \left(\tau_{r\theta}\right)_{\theta=\sigma} = 0$$

但し $A_2 = rac{w_0 \mathrm{cos}^2 eta}{H}, H:$ 越流水面までの高さ

(15) 式を(9) 式に代入し左右両辺の rⁿ(n=0, 1, 2, ……)の係数を等しいとおけば, r の一乗項 の係数 b₁, d₁, a₃, c₃, 及び二乗項の係数 b₂, d₂, a₄, c₄, 以外の諸係数は全部零となることがわかる。 そこで先ず r の一乗項の係数から求めよう。b₁, d₁, a₃, c₃, は次の関係を満足しなければならない。

$$\begin{aligned} \cos\beta \cdot b_1 + \sin\beta \cdot d_1 + \cos3\beta \cdot a_3 + \sin3\beta \cdot c_3 &= \frac{1}{6} \left(w \cos\beta + K_1 w \sin\beta \right) \\ \sin\beta \cdot b_1 - \cos\beta \cdot d_1 + 3\sin3\beta \cdot a_3 - 3\cos3\beta \cdot c_3 &= 0 \\ \cos\alpha \cdot b_1 + \sin\alpha \cdot d_1 + \cos3\alpha \cdot a_3 + \sin3\alpha \cdot c_3 &= \frac{1}{6} \left(w \cos\alpha + K_1 w \sin\alpha \right) \\ \sin\alpha \cdot b_1 - \cos\alpha \cdot d_1 + 3\sin3\alpha \cdot a_3 - 3\cos3\alpha \cdot c_3 &= 0 \end{aligned}$$

この式を解いて、 b_1, d_1, a_3, c_3 を求めると次式を得る。

$$b_1 = \frac{D_1}{D},$$
 $d_1 = \frac{D_2}{D},$ $a_3 = \frac{D_3}{D},$ $c_3 = \frac{D_4}{D}$

ててに

	$\cos\!eta$	$\sin\!eta$	$\cos 3eta$	$\sin 3\beta$
D	$\sin\!eta$	$-\cos\!eta$	$3 \mathrm{sin} 3 eta$	$-3 \cos 3\beta$
D=	$\cos \alpha$	$\sin\!lpha$	$\cos 3lpha$	$\sin 3lpha$
	$\sin lpha$	$-\cos \alpha$	3 sin 3 lpha	$-3\cos 3lpha$
			1	

 $= 6 - 10\sin(\alpha - \beta)\sin^3(\alpha - \beta) - 6\cos(\alpha - \beta)\cos^3(\alpha - \beta)$

D₁, **D**₂, **D**₃, **D**₄ は行列式 **D**の第1, 第2, 第3, 第4行の各要素の代りに それぞれ(16)式の右辺の常数項をおきかえたものである。 その値は

$$D_{1} = w \left\{ \frac{1}{2} (\cos^{2}\alpha + \cos^{2}\beta) - \frac{3}{2} \sin(\alpha - \beta) \sin^{3}(\alpha - \beta) - \cos\alpha \cos\beta \cos^{3}(\alpha - \beta) \right\}$$

$$+ K_{1}w \left\{ \frac{1}{4} \sin^{2}\alpha + \frac{1}{4} \sin^{2}\beta - \frac{1}{2} \sin(\alpha + \beta) \cos^{3}(\alpha - \beta) \right\}$$

$$D_{2} = w \left\{ \frac{1}{4} \sin^{2}\alpha + \frac{1}{4} \sin^{2}\beta - \frac{1}{2} \sin(\alpha + \beta) \cos^{3}(\alpha - \beta) \right\}$$

$$+ K_{1}w \left\{ \frac{1}{2} \sin^{2}\alpha + \frac{1}{2} \sin^{2}\beta - \frac{3}{2} \sin(\alpha - \beta) \sin^{3}(\alpha - \beta) - \sin\alpha \sin\beta \cos^{3}(\alpha - \beta) \right\}$$

$$D_{3} = w \sin(\alpha - \beta) \left\{ \frac{1}{2} \sin\alpha \cdot \cos^{3}\beta - \frac{1}{2} \cos^{3}\alpha \sin\beta - \frac{1}{6} \sin^{3}\alpha \cos\beta + \frac{1}{6} \cos\alpha \sin^{3}\beta \right\}$$

.....(15)

 $\dots \dots (16)$

$$+K_{1}w\sin(\alpha-\beta)\left\{\frac{1}{2}\cos^{3}\alpha\cos\beta-\frac{1}{2}\cos\alpha\cos^{3}\beta+\frac{1}{6}\sin\alpha\sin^{3}\beta-\frac{1}{6}\sin^{3}\alpha\sin\beta\right\}$$
$$D_{4}=w\sin(\alpha-\beta)\left\{\frac{1}{2}\sin\alpha\sin^{3}\beta-\frac{1}{2}\sin^{3}\alpha\sin\beta-\frac{1}{6}\cos\alpha\cos^{3}\beta+\frac{1}{6}\cos^{3}\alpha\cos\beta\right\}$$
$$+K_{1}w\sin(\alpha-\beta)\left\{\frac{1}{2}\sin^{3}\alpha\cos\beta-\frac{1}{2}\cos\alpha\cdot\sin^{3}\beta-\frac{1}{6}\sin\alpha\cos^{3}\beta+\frac{1}{6}\cos^{3}\alpha\sin\beta\right\}$$

となる。 次に b_2 , d_2 , a_4 , c_4 は次の関係を満足しなければならない。 $\cos 2\beta \cdot b_2 + \sin 2\beta \cdot d_2 + \cos 4\beta \cdot a_4 + \sin 4\beta \cdot c_4 = -\frac{A_2}{12}$ $\cos 2\alpha \cdot b_2 + \sin 2\alpha \cdot d_2 + \cos 4\alpha \cdot a_4 + \sin 4\alpha \cdot c_4 = 0$ $2\sin 2\beta \cdot b_2 - 2\cos 2\beta \cdot d_2 + 4\sin 4\beta \cdot a_4 - 4\cos 4\beta \cdot c_4 = 0$ $2\sin 2\alpha \cdot b_2 - 2\cos 2\alpha \cdot d_2 + 4\sin 4\alpha \cdot a_4 - 4\cos 4\alpha \cdot c_4 = 0$

この式を解いて b_2 , d_2 , a_4 , c_4 を求めると次式を得る。

$$b_2 = \frac{D_1}{D},$$
 $d_2 = \frac{D_2}{D},$ $a_4 = \frac{D_3}{D},$ $c_4 = \frac{D_4}{D}$

但し

+ [$\cos 2eta$	${ m sin}2m{eta}$	$\cos 4eta$	$\sin 4eta$
5.6	$\cos 2lpha$	$\sin 2lpha$	$\cos 4lpha$	$\sin 4lpha$
)=	$2{\rm sin}2eta$	$-2 \mathrm{cos} 2 eta$	$4{\rm sin}4eta$	$-4\cos 4\beta$
]	$2{\rm sin}2\alpha$	$-2{\rm sin}2lpha$	$4 \sin 4 lpha$	$-4\cos 4\alpha$

 $= 20\sin^2(\alpha - \beta)\sin^4(\alpha - \beta) - 16 + 16\cos^2(\alpha - \beta)\cos^4(\alpha - \beta)$

D₁, **D**₂, **D**₃, **D**₄ は **D** の第1, 2, 3, 4 行の各要素の代りにそれぞれ(18) 式の右辺の常数項をおきかえたものである。

その値は

$$D_{1} = -\frac{4}{3}A_{2}\sin 2\alpha \sin 4(\alpha - \beta) + \frac{2}{3}A_{2}\cos 2\beta - \frac{2}{3}A_{2}\cos 2\alpha \cos 4(\alpha - \beta)$$

$$D_{2} = +\frac{4}{3}A_{2}\cos 2\alpha \sin 4(\alpha - \beta) + \frac{2}{3}A_{2}\sin 2\beta - \frac{2}{3}A_{2}\sin 2\alpha \cos 4(\alpha - \beta)$$

$$D_{3} = -\frac{2}{3}A_{2}\cos 2(\alpha - \beta)\cos 4\alpha + \frac{2}{3}A_{2}\cos 4\beta - \frac{1}{3}A_{2}\sin 2(\alpha - \beta)\sin 4\alpha$$

$$D_{4} = -\frac{2}{3}A_{2}\cos 2(\alpha - \beta)\sin 4\alpha + \frac{2}{3}A_{2}\sin 4\beta + \frac{1}{3}A_{2}\sin 2(\alpha - \beta)\cos 4\alpha$$

である。

故に求める応力 σr, σθ, Τrθ は次のようになる。

$$\sigma_r = r(2b_1 \cos\theta + 2d_1 \sin\theta - 6a_3 \cos 3\theta - 6c_3 \sin 3\theta - w \cos \theta - K_1 w \sin \theta)$$

 $+r^2(4a_4\cos 4\theta + 4c_4\sin 4\theta)$

 $\sigma_{\theta} = r(6b_1\cos\theta + 6d_1\sin\theta + 6a_3\cos3\theta + 6c_3\sin3\theta - w\cos\theta - K_1w\sin\theta)$

 $+12r^2(b_2\!\cos\!2\theta+d_2\!\sin\!2\theta+a_4\!\cos\!4\theta+c_4\!\sin\!4\theta)$

 $\tau_{r\theta} = r(2b_1\sin\theta - 2d_1\cos\theta + 6a_3\sin3\theta - 6c_3\cos3\theta)$ $+ 3r^2(2b_2\sin2\theta - 2d_2\cos2\theta + 4a_4\sin4\theta - 4c_4\cos4\theta)$ $\dots \dots (19)$

.....(18)

上式の諸係数は(17)式及び(19)式 によつて求めればよい。

Ⅲ 特殊な荷重を考慮した場

合の内部応力

前章では荷重分割を行い片持梁の受持 つ部分を Surface force と考えて内部応 力を求めたのであるが、ここではダムが z 軸方向に堤高の2倍以上長く、xy 面 で十分平面変形をすると考えられる場合 に、特殊な荷重が加つて生ずる内部応力 について考える。

砂防地域では、ダムを構築している間 に次々と堆砂していくといつたことが珍 らしくない。このような砂防ダムに加わ る外力の測定及び検討は重要な課題であ つて、伊吹氏も長年の経験から意見を述 べておられる。

.....(21)

本章は合成荷重の曲線的分布を仮定して基本三角形断面内の内部応力を算定したものである。 ダム上流面に作用する Surface force を

 $-w_0 \cos\beta \cdot r + w_0 \frac{\cos^n \beta}{H^{n-1}} \cdot r^n \qquad (但し n \ge 2)$

とおいて近似的に与えよう。(図-5参照) wo は水の比重ではなく, 合成荷重強度とする。 一例として n=3 として境界条件を与えてみると,

上流面に対しては

$$(\boldsymbol{\sigma}_{\theta})_{\theta=\theta} = -A_1 \boldsymbol{r} + A_3 \boldsymbol{r}^3, \qquad (\boldsymbol{\tau}_{r\theta})_{\theta=\theta} = 0$$

下流面に対しては

$$\left(\sigma_{\theta}\right)_{\theta=\alpha} = 0, \qquad (\tau_{r\theta})_{\theta=\alpha} = 0$$

 $(\square \cup A_1 = w_0 \cos\beta, A_3 = \frac{w_0 \cos^3 \beta}{H^2})$

となる。(21) 式を(9) 式に代入し左右両辺の $r^n(n=0,1,2,\dots)$ の係数を等しいとおけば、ro一乗項の係数 b_1 , d_1 , a_3 , c_3 , 及び三乗項の係数 b_3 , d_3 , a_5 , c_5 以外の諸係数は全部零となること がわかる。

そこで先ず rの一乗項の係数から求めよう。 b_1 , d_1 , a_3 , c_3 は次の関係を満足しなければならない。

 $\cos \mathbf{\mathcal{F}} \cdot b_1 + \sin \beta \cdot d_1 + \cos 3\beta \cdot a_3 + \sin 3\beta \cdot c_3 = \frac{1}{6}(w \cos \beta + K_1 w \sin \beta - A_1)$

 $\sin\beta \cdot b_1 - \cos\beta \cdot d_1 + 3\sin3\beta \cdot a_3 - 3\cos3\beta \cdot c_3 = 0$

 $\dots \dots (22)$ $\cos\alpha \cdot b_1 + \sin\alpha \cdot d_1 + \cos^2\alpha \cdot a_3 + \sin^2\alpha \cdot c_3 = \frac{1}{6} (w\cos\alpha + K_1 w\sin\alpha)$ $\sin\alpha \cdot b_1 - \cos\alpha \cdot d_1 + 3\sin 3\alpha \cdot a_3 - 3\cos 3\alpha \cdot c_3 = 0$ rの式を解いて b_1 , d_1 , a_3 , c_3 を求めると次式を得る。 $b_1 = \frac{D_1}{D_1},$ $d_1 = \frac{D_2}{D_3}, \qquad a_3 = \frac{D_3}{D_3},$ $c_3 = \frac{D_4}{D}$ $D = 6 - 10\sin(\alpha - \beta)\sin^3(\alpha - \beta) - 6\cos(\alpha - \beta)\cos^3(\alpha - \beta)$ $D_1 = w \left\{ \frac{1}{2} (\cos^2 \alpha + \cos^2 \beta) - \frac{3}{2} \sin(\alpha - \beta) \sin (\alpha - \beta) - \cos \alpha \cdot \cos \beta \cdot \cos (\alpha - \beta) \right\}$ + $K_1w\left\{\frac{1}{4}\sin 2\alpha + \frac{1}{4}\sin 2\beta - \frac{1}{2}\sin(\alpha+\beta)\cos^2(\alpha-\beta)\right\}$ $+A_{1}\left\{\frac{3}{2}\sin\alpha\cdot\sin(\alpha-\beta)+\frac{1}{2}\cos\alpha\cdot\cos(\alpha-\beta)-\frac{1}{2}\cos\beta\right\}$ $D_2 = w \left\{ \frac{1}{4} \sin 2\alpha + \frac{1}{4} \sin 2\beta - \frac{1}{2} \sin(\alpha + \beta) \cos 3(\alpha - \beta) \right\}$ $+K_1w\left\{\frac{1}{2}\sin^2\alpha+\frac{1}{2}\sin^2\beta-\frac{3}{2}\sin(\alpha-\beta)\sin(\alpha-\beta)\right\}$ $-\sin\alpha \cdot \sin\beta \cdot \cos(\alpha - \beta)$ $+A_{1}\left\{\frac{1}{2}\sin\alpha\cdot\cos(\alpha-\beta)-\frac{3}{2}\cos\alpha\cdot\sin(\alpha-\beta)-\frac{1}{2}\sin\beta\right\}$ $D_3 = w\sin(\alpha - \beta) \left\{ \frac{1}{2} \sin \alpha \cdot \cos \beta \beta - \frac{1}{2} \cos \beta \alpha \cdot \sin \beta \right\}$ $\dots (23)$ $-\frac{1}{6}\sin^3\alpha\cdot\cos\beta+\frac{1}{6}\cos\alpha\sin^3\beta$ + $K_1 w \sin(\alpha - \beta) \left\{ \frac{1}{2} \cos \alpha \cdot \cos \beta - \frac{1}{2} \cos \alpha \cdot \cos 3\beta \right\}$ $+\frac{1}{6}\sin\alpha\cdot\sin\beta-\frac{1}{6}\sin3\alpha\sin\beta$ $+A_{1}\left\{\frac{1}{6}\sin 3\alpha \cdot \sin(\alpha-\beta)+\frac{1}{2}\cos 3\alpha \cdot \cos(\alpha-\beta)-\frac{1}{2}\cos 3\beta\right\}$ $D_4 = w\sin(\alpha - \beta) \left\{ \frac{1}{2} \sin \alpha \cdot \sin 3\beta - \frac{1}{2} \sin 3\alpha \cdot \sin \beta \right\}$ $-\frac{1}{c}\cos\alpha\cdot\cos^{3}\beta+\frac{1}{c}\cos^{3}\alpha\cos^{3}\beta$ + $K_1 w \sin(\alpha - \beta) \left\{ \frac{1}{2} \sin 3\alpha \cdot \cos \beta - \frac{1}{2} \cos \alpha \cdot \sin 3\beta \right\}$ $-\frac{1}{c}\sin\alpha\cdot\cos 3\beta+\frac{1}{c}\cos 3\alpha\cdot\sin\beta$ $+A_{1}\left\{\frac{1}{2}\sin 3\alpha \cdot \cos(\alpha-\beta)-\frac{1}{6}\cos 3\alpha \sin(\alpha-\beta)-\frac{1}{2}\sin 3\beta\right\}$ 次に b_3 , d_3 , a_5 , c_5 は次の関係を満足しなければならない。 $\cos 3\beta \cdot b_3 + \sin 3\beta \cdot d_3 + \cos 5\beta \cdot a_5 + \sin 5\beta \cdot c_5 = \frac{1}{20}A_3$ $\cos 3\alpha \cdot \mathbf{b}_3 + \sin 3\alpha \cdot d_3 + \cos 5\alpha \cdot a_5 + \sin 5\alpha \cdot c_5 = 0$ $\dots (24)$ $3\sin 3\beta \cdot b_3 - 3\cos 3\beta \cdot d_3 + 5\sin 5\beta \cdot a_5 - 5\cos 5\beta \cdot c_5 = 0$ $3\sin 3\alpha \cdot b_3 - 3\cos 3\alpha \cdot d_3 + 5\sin 5\alpha \cdot a_5 - 5\cos 5\alpha \cdot c_5 = 0$

97

この式を解いて b₃、 d₃、 a₅、 c₅ を求めると次式を得る。

$$b_{3} = \frac{D_{1}}{D}, \quad d_{3} = \frac{D_{2}}{D}, \quad a_{5} = \frac{D_{3}}{D}, \quad c_{5} = \frac{D_{4}}{D}$$
但し

$$D = -30 + 34 \sin 3(\alpha - \beta) \sin 5(\alpha - \beta) + 30 \cos 3(\alpha - \beta) \cos 5(\alpha - \beta)$$

$$D_{1} = \frac{5}{4} A_{3} \sin 3\alpha \cdot \sin 5(\alpha - \beta) - \frac{3}{4} A_{3} \cos 3\beta + \frac{3}{4} A_{3} \cos 3\alpha \cdot \cos 5(\alpha - \beta)$$

$$D_{2} = -\frac{5}{4} A_{3} \cdot \cos 3\alpha \cdot \sin 5(\alpha - \beta) - \frac{3}{4} A_{3} \cdot \sin 3\beta + \frac{3}{4} A_{3} \sin 3\alpha \cdot \cos 5(\alpha - \beta)$$

$$D_{3} = \frac{3}{4} A_{3} \cdot \cos 5\alpha \cdot \cos 3(\alpha - \beta) - \frac{3}{4} A_{3} \cdot \cos 5\beta + \frac{9}{20} A_{3} \sin 5\alpha \cdot \sin 3(\alpha - \beta)$$

$$D_{4} = \frac{3}{4} A_{3} \cdot \sin 5\alpha \cdot \cos 3(\alpha - \beta) - \frac{3}{4} A_{3} \cdot \cos 5\beta + \frac{9}{20} A_{3} \cos 5\alpha \cdot \sin 3(\alpha - \beta)$$
故に求める応力 $\sigma_{r}, \sigma_{\theta}, \tau_{r\theta}$ は次のようになる。
$$\sigma_{r} = r(2b_{1} \cos \theta + 2d_{1} \sin \theta - 6a_{3} \cos 3\theta - 6c_{3} \sin 3\theta - w \cos \theta - K_{1} w \sin \theta)$$

$$+ r^{3} \{-4(b_{3} \cos 3\theta + d_{3} \sin 3\theta + 5a_{5} \cos 5\theta + 5c_{5} \sin 5\theta)\}$$

$$\sigma_{\theta} = r(6b_{1} \cos \theta + 6d_{1} \sin \theta + 6a_{3} \cos 3\theta + 6c_{3} \sin 3\theta - w \cos \theta - K_{1} w \sin \theta)$$

$$+ r^{3} \{20(b_{3} \cos 3\theta + d_{3} \sin 3\theta + a_{5} \cos 5\theta + c_{5} \sin 5\theta)\}$$

$$\nabla_{r} = r \{2(b_{1} \sin \theta - d_{1} \cos \theta + 3a_{3} \sin 3\theta - 3c_{3} \cos 3\theta)$$

$$+ r^{3} \{4(3b_{3} \sin 3\theta - 3d_{3} \cos 3\theta + 5a_{5} \sin 5\theta - 5c_{5} \cos 5\theta)\}$$

$$\boxed{\mathbb{N}^{-6}}$$

Ⅳ 数 值 計 例 算

分割荷重の場合

図-3(a)のように分割荷重が計算された場合を想定して数値計算を行つてみよう。 ダムの越流水面までの高さを*H*とし

これらの数値を (17), (19) 式に代入して、 b_1 , d_1 , a_3 , c_3 , b_2 , d_2 , a_4 , c_4 を求めると

次のようになる。

$b_1 = 0.4112$	$a_3 = -0.02920$	
$d_1 = -0.05510$	$c_3 = 0.07550$	(97)
$b_2 = -0.001600$	$a_4 = 0.001200$	(21)
$d_2 = -0.0004000$	$c_4 = 0.\ 001100$	
42		

故に求める応力は

 $\sigma_r = r(-1.5776\cos\theta - 0.1102\sin\theta + 0.1752\cos3\theta - 0.4530\sin3\theta)$ $+r^{2}(0.004800\cos 4\theta + 0.004400\sin 4\theta)$ $\sigma_{\theta} = r(0.06720\cos\theta - 0.3306\sin\theta - 0.1752\cos3\theta + 0.4530\sin3\theta)$ $+r^{2}(-0.01920\cos 2\theta - 0.004800\sin 2\theta + 0.01440\cos 4\theta + 0.01320\sin 4\theta)$ $\tau_{r\theta} = r(0.8224\sin\theta + 0.1102\cos\theta - 0.1752\sin3\theta - 0.4530\cos3\theta)$ $+r^{2}(-0.009600\sin 2\theta + 0.002400\cos 2\theta + 0.0144\sin 4\theta - 0.01320\cos 4\theta)$

となる。

いま $r=10^m$ の各点の応力を出してみると,表-1に示すようになる。 $r=20^m$ は表-2,また $r=30^m$ の各点の応力は表-3のようになる。r=30^mの値を図示して図-6に示す。

θ r=10m	12°	10°	5°	0°	-5°	-10°	-15°	-20°	-25°	-27°
Ør	-16.30	-15.83	-14.69	-13.54	-12.46	-11.47	-10.65	-10.05	-9.51	-9.38
$\sigma_{ heta}$	1.22	0.83	-0.31	-1.56	-2.82	-3.94	-4.78	-5.25	-5.24	-5.09
$ au_{r heta}$	-1.90	-2.50	-3.69	-4.51	-4.86	-4.75	-4.25	-3.38	-2.26	-1.77

θ r=20m	12°	10°	5°	0 °	-5°	-10°	-15°	-20°	-25°	-27°
σ_r	-31.25	-30.35	-28.18	-26.13	-24.31	-22.77	-21.58	-20.74	-20.05	-19.90
$\sigma_{ heta}$	2.44	1.63	-0.96	-4.08	-7.45	-10.65	-13.23	-14.91	-15.29	-15.06
$ au_{r heta}$	-3.75	-5.41	-8.75	-11.18	-12.36	-12.22	-10.94	-8.45	-5.11	-3.62

2. 三角形分布荷重の場合

1. の計算は Surface force = $-\frac{w_0 \cos^2 \beta}{H} \cdot r^2$ として行つたものであるが、これを比べるために Sur-

face force = $-w_0 \cos\beta \cdot r$ として計算を行つて みる。

境界条件としては(15)式の代りに

$$(\sigma_{\theta})_{\theta=\beta} = -A_{\mathbf{1}}\mathbf{r}, \quad (\tau_{r\theta})_{\theta=\beta} = 0$$

$$(\sigma_{\theta})_{\theta=\alpha} = 0, \quad (\tau_{r\theta})_{\theta=\alpha} = 0$$

$$\cdots (29)$$

但し $A = w_0 \cos\beta$

となる。

(29) 式を(9) 式に代入して両辺の諸係 数を等しいとおくと, **b**₁, **d**₁, **a**₃, **c**₃ は(22) 式の関係を満足し(23) 式によつて求められ る。

~そこで前述のデータと同じもので計算する と

 $\begin{array}{ccc} b_1 = 0. \ 2451 & a_3 = 0. \ 09770 \\ d_1 = -0. \ 6885 & c_3 = 0. \ 3470 \end{array} \right\} \dots (30)$

となる。これを(26)式のそれぞれ第一式に 代入すると,

$$\begin{split} \sigma_{r} &= r(-1, 9098\cos\theta - 1, 3770\sin\theta \\ &-0.5862\cos3\theta - 2, 0820\sin3\theta) \\ \sigma_{\theta} &= r(-0, 9294\cos\theta - 4, 1310\sin\theta \\ &+0.5862\cos3\theta + 2, 0820\sin3\theta) \\ \tau_{r\theta} &= r(0, 4902\sin\theta + 1, 3770\cos\theta \\ &+0.5862\sin3\theta - 2, 0820\cos3\theta) \end{split}$$

.....(31)

となる。

 $r=10^m$, $r=20^m$, $r=30^m$ の各点の応力を出してみると,表-4,表-5,表-6 に示すようになる。 また $r=30^m$ の値を図示したものを 図-7 に示す。

(11) 式より主応力の方向線図を描いてみると図-9のごとくになる。

θ r=10m	12°	10°	5°	0°	-5°	-10°	-15	-20°	-25°	-27°
σ_r	-38.51	-37.27	-31.48	-24.96	-18.10	-11.08	-4.31	+1.86	+7.02	+8.88
σθ	-0.66	-0.83	-1.81	-3.43	-5.38	-7.31	-8.86	-9.70	-9.56	-9.17
$ au_{r heta}$	+1.09	-0.69	-4.45	-7.05	-8.34	-8.25	-6.83	-4.22	-0.64	+0.99

表 一 4

A REAL PROPERTY AND A REAL	COMPANY OF THE REAL PROPERTY OF	NAME AND ADDRESS OF TAXABLE PARTY.	NAMES AND ADDRESS OF TAXABLE PARTY.	and the state of the	THE OWNER WATER COMPANY NAMED IN CO.			and the second s	the second se	the second s
θ r=20m	12°	10°	5°	0°	-5°	-10°	-15°	-20°	-25°	-27°
Ør	-77.02	-77.54	-62.96	-49.92	-36.20	-22.16	-8.62	+3.72	+14.04	+17.76
σθ	-1.32	-1.66	-3.62	-6.86	-10.76	-14.62	-17.72	-19.40	-19.12	-18.34
τrθ	+2.18	-1.38	-8.90	-14.10	-16.68	-16.50	-13.66	-8.44	-1.28	+1.98
0638H-12 80 1		04)		表 -	- 5	ul ne	70,003	- 19. jela		
θ r=30m	12°	10°	5°	0°	-5°	-10°	-15°	-20°	-25°	-27_{\circ}
Ør	-115. 54	-111.82	-94.43	-74.88	-54.29	-33.25	-12.92	5. 59	21.07	26.65
σθ	-1.99	-2.50	-5.43	-10.30	-16.15	-21.93	-26.58	-29.12	-28.67	-27.52
τrθ	+3.26	-2.06	-13.34	-21.15	-25.01	-24.75	-20.50	-12.67	-1.93	+2.99
AT NELL SE				表 -	- 6					

3. 特殊な荷重の場合

図-5(a)のよう特殊荷重が加わつた場合 を想定して数値計算を行つてみる。

ダムの越流水面までの高さ $H=40^m$ $\alpha=12^0$, $\beta=-27^0$, m=0.2126, n=0.5095, $K_1=0$ w=2.4 tons/m³

合成荷重の強度: $w_0=1.2$ tons/ m^3

とすると A_1 =1.0692, A_3 =0.0005305 となる。

これらの数値を(23)式及び(25)式に代入して、 b_1 、 d_1 、 a_3 、 c_3 、 b_3 、 d_3 、 a_5 、 c_5 を求めると次のようになる。

 $\begin{array}{c} b_{1}=0.\ 2451 & a_{3}=0.\ 09770 \\ d_{1}=-0.\ 6885 & c_{3}=0.\ 3470 \end{array} \right\} \cdots (32) \\ b_{3}=1.\ 920\times10^{-5} \\ a_{5}=-1.\ 520\times10^{-5} \\ d_{3}=-1.\ 239\times10^{-5} \\ c_{5}=-0.\ 9370\times10^{-5} \end{array} \right\} \cdots (33)$

故に求める応力は

 $\dots \dots (34)$

$$\begin{split} &\sigma_{r} = r(-1, 9098\cos\theta - 1, 3770\sin\theta - 0, 5862\cos3\theta - 2, 0820\sin3\theta) \\ &+ r^{3}(-7, 680\cos3\theta + 4, 956\sin3\theta + 30, 40\cos5\theta + 18, 74\sin5\theta) \times 10^{-5} \\ &\sigma_{\theta} = r(-0, 9294\cos\theta - 4, 1310\sin\theta + 0, 5862\cos3\theta + 2, 0820\sin3\theta) \\ &+ r^{3}(38, 40\cos3\theta - 24, 78\sin3\theta - 30, 40\cos5\theta - 18, 74\sin5\theta) \times 10^{-5} \\ &\tau_{r\theta} = r(0, 4902\sin\theta + 1, 3770\cos\theta + 0, 5862\sin3\theta - 2, 0820\cos3\theta) \\ &+ r^{3}(23, 04\sin3\theta + 14, 87\cos3\theta - 30, 40\sin5\theta + 18, 74\cos5\theta) \times 10^{-5} \end{split}$$

となる。

r=10^m, **r**=20^m, **r**=30^m の各点の応力を出してみると,表−7,表−8,表−9 及び図−8 に示すよう になる。

θ 10° 5° 0° -5° -10° -15° -20° -25° --27° 12° r = 10 m+8.40-38.23 -36.97-31.19-24.73 -17.99-11.12-4.50+1.54+6.63 σ_r -8.52-6.91-8.31-9.06-8.89-3.35-5.14-0.96-1.86 σ_{θ} -0.81-7.88-7.96-6.55-4.08-0.68+0.87+1.17-0.56-4.21-6.71Tre 表 一 7 A 0° -10° -15° -20° -25° -27° 10° 5° -5° 12° r = 20 m-74.77 -72.16-60.26 -48.10 -35.33 -22.47 -10.16+1.17 +10.87 +14.50 σ_r -11.38 -13.33-14.26-13.79-13.13-6.22 -8.86-2.51-2.71-4.00 σ_{θ} -6.94 -11.41 -13.61-7.30-1.62+1.01-13.56 -11.39+2.87-0.32 $\tau r\theta$

表 - 8

θ r=30m	12°	10°	5°	0°	-5°	-10°	-15°	-20°	-25°	-27°
σ_r	-107.94	-103.80	-86.51	-68.75	-51.34	-34.31	-18.09	-3.01	+10.39	+15.62
σ_{θ}	-6.01	-6.01	-673	- 8.14	-9.70	-10.99	-11.76	-11.73	-10.69	-9.92
$ au_{r heta}$	+5.59	+1.49	-6.74	-12.08	-14.70	-14.84	-12.83	-8.84	-3.08	-0.30

表 — 9

V 寒天による模型実験

第一章の弾性理論の基本式において述べた如く,Body force が一定の場合には応力分布を決定すべき方程式中に材料の弾性係数を含まないことから、実験室において寒天とかゴムを用いて実験した結果は、そのままコンクリートのような他の材料に適用出来るのである。それで我国の特産であり、最も入手しやすく実験に便利な寒天による模形実験を行つてみた。

装置は 48.4 cm × 71.6 cm の 5 mm 厚ガラス2枚を巾 5 cm にはめた水槽を用い, 横にしてガラス 一枚をはづし, 頂角 39°高さ 40 cm に型わくを組んで寒天を流し込んだ。寒天は 188 cc の水に食用寒 天 4.5 g の割合で入れ, ⁸/₁₀ 煮つめたものを用いた。別にセクションペーパーにヘクト用インクで直径 3 cm の円を多く描いておき,寒天が除々に十分冷却した後それを寒天の表面に当がつてプリントを とり、ガラスをはめてボルトでしめ水槽を立てた。

次に水をダムの脊面に入れて,自重及び水圧による撓みを写真にとり,最大歪の方向を定め主応力 方向線図を作つた。(写真参照)

今回の実験では携み量が大き過ぎたため、数値計算で求めた 図-9 と 十分比較検討することが出来 なかつたが定性的な相似はみとめられた。

寒天やゴムを用いる方法のほかに最近光弾性実験装置による実験が盛んとなり, 我国でも試験結果 ¹⁰⁾ が報告されつつある。砂防ダムにおいても, 堰体踵部, 趾部, 水抜孔周辺を始め, 袖部, 水通面及び

102

岩盤接着部等に生ずる応力集中の研究には, 光弾性学的研究が役立つであろう。

Ⅵ考 察

数値計算の結果は、表 $-1 \sim 表 -9$ の通りで あるが、先ず分割荷重の結果を三角形荷重の ものと比べてみると、垂直応力 σ_r に大きな 変化がみられ、例えば $r=30^m$ の下流端で約 $\frac{1}{2.5}$, 上流端では 26.7 tons/ m^2 の引張応力に 対して 31.6 tons/ m^2 の圧縮応力に変つて十分 安全となつている。

他の σθ, Trθ については大きな差は生じて いない。このことは砂防ダムのように他の条 件から下流法が制限され,上流法の増加によ って安定を計るような場合大いに注目すべき ことであつて,特に高砂防ダムの設計に際し て一つの障害とされていた下流法下部即ちシ 部のコンクリート圧座と,上流法下部即ちシ ョウ部の引張応力の問題の解決に資する所が あると思われる。

次に合成荷荷の結果を三角形荷重のものと 比べてみると,垂直応力 σr は下流端では大 差なく,上流では 26.7tons/m²の引張応力が

15. $6 \text{tons}/m^2$ に減じている。これに対して σ_{θ} , $\tau_{1\theta}$ は大きな変化を示し、例えば $r=30^m$ の σ_{θ} は上流 端で約 $\frac{1}{1.9}$ 、下流端で約 $\frac{1}{3}$ となり、また $\tau_{r\theta}$ は $\theta = -5^\circ$ の点で約 $\frac{1}{1.7}$ となつている。これは表-10~表-12をみればわかるように、 $x=30^m$ の Sectionをとつて比べてみると一層著しくなる。

x=8	y 30m	m 6. 37	m 5. 29	m 2. 63	$\overset{\mathrm{m}}{_{0}}$	-2.63	-5.29	-8.04	m = 10.92	m −13.99	-15.28
	σ_r	-45.83	-44.16	-40.61	-37.75	-35.69	-34.38	-34.00	-34.54	-35.39	-34.99
	$\sigma_{ heta}$	-3.74	+2.45	-1.96	-7.56	-13.99	-20.66	-26.87	-32.23	-35.77	-36.58
	$ au_{r heta}$	-5.68	-8.91	-15.25	-20.00	-22.64	-22.95	-21.18	-16.72	-9.76	-6.28

```
表 - 10
```

x=30m	У	m 6. 37	m 5. 29	m 2. 63	$\begin{array}{c} m\\ 0\end{array}$	-2.63	-5.29	-8.04	m = 10.92	m -13.99	m = 15.28
σ_r		-118.11	-113.54	-94.79	-74.88	-54.23	-33.76	-13.37	+5.94	+23.14	-+29.91
σ_{θ}		-2.03	-2.54	-5.45	-10.30	-16.21	-22.27	-27.52	-30.98	-31.84	-30.88
$\tau_{r\theta}$		+3.34	-2.09	-13.39	-21.15	-25.10	-25.13	-21.23	-13.48	-2.13	+3.36

表 — 11

y x=30m	m 6. 37	m 5. 29	m 2. 63	$\stackrel{\mathrm{m}}{_{0}}$	$\begin{array}{c} { m m} \\ -2.63 \end{array}$	m 5. 29	-8.04	$^{m}_{-10.29}$		$^{m}_{-15.28}$
σ_r	-110.00	-105.14	-86.78	-68.75	-51.25	-34.87	-19.11	-4.42	+8.89	+14.32
$\sigma_{ heta}$	-6.34	-6.22	-6.76	-8.14	-9.69	-10.83	-11.07	-10.03	-7.46	-5.98
$ au_{r heta}$	+5.82	-+0.63	-6.71	-12.08	-14.66	-14.76	-12.71	-8.87	-3.67	-1.29

表 - 12

次に直交座標系の基本三角形応力分布の式より求めた数値と比べるため、一例として $x=30^m$ の Section の σ_r を (13) 式によつて σ_x に変換すると、表-13 のようになる。これによると基本三角形 の頂点を零とする三角形分布荷重が作用する場合は、内部応力はほぼ直線分布となるが、合成荷重の 場合は直線とならず、また分割荷重の場合は等分布荷重に近い傾向を示していることがわかる。

砂防ダムは一般に梯形断面をしていて、基本三角形断面とはおよそかけ離れた感があるが、堤高が 30^m~40^m 或はそれ以上になると、計画越流水面を頂点とする基本三角形を考え、越流水深だけ頂部 を切つて天端巾とすれば十分となる場合が多い。不十分な場合は上流側に附加するか或は図-10 の如 くすることが考えられる。勿論袖部の影響は別に考慮しなければいけない。

このように附加を行うと、内部応力は基本三角形の頂部が変るため誤差を生じてくるが、

-		19
75	-	10
- 20-		

Company of the					
2月5月2月2	У	$\sigma_x - 1$	$\sigma_x - 2$	$\sigma_x - 3$	$\sigma_x - 4$
anbatti の が の に な の 和 思 は の に の の の の の の の の の の の の の	m 6. 37	-114.47	-40.38	-107.90	-112.45
「固定端の広力	m 5. 29	- 109.46	-39.71	-102.37	-106.06
一の新面珠会	m 2. 63	-91.78	-37.66	- 82. 89	-90.39
带合化比级于	0^{m}	-74.88	-37.75	-68.75	-74.96
8. 6788155.45 e	$-\frac{m}{2.63}$	-58.30	-39.46	-53.48	-59.53
(21), (24)	$-{5.29}^{ m m}$	-42.00	-41.81	-39.20	-43.86
Substitue The stress	$-\frac{m}{8.04}$	-24 93	-44.11	-24.93	-27.71
※は壊葬業件の 従来の三角形	-10.92	-7.03	-45.02	-10.77	-10.78
来出ならこで	-13.99	+11.26	-43.56	+3.03	+7.33
2.4.7	-15.28	+20.11	-40.40		+14.89

 $\sigma_x - 1: x = 30$ mの各点の σ_x で三角形荷重の場合

 $\sigma_x - 2 : x = 30$ mの各点の σ_x で分割荷量の場合

 $\sigma_x - 3: x = 30$ mの各点の σ_x で合成荷重の場合

 $\sigma_x - 4: x = 30$ mの各点の σ_x で物部氏の式より求めた値

これに対する修正方法としては、取除かれ或は附加される荷重を基本三角形頂部に作用する任意の 集中荷重と曲げモーメントに置き換えて考える近似計算法がある。コウ水時に起る転石の衝撃による 影響等も同じように置きかえて考えることが出来よう。

以上述べた理論とその計算には、堤底においても堤内と相似的な応力が起つているという即ち堤体 の弾性係数と岩盤のそれとが等しいといつた大きな仮定がおいてある。しかし実際には固定端の応力 は異なり、それが上部に及ぼす影響も無視することは出来ない。

この点に関しては、Wolf, Vogs 或は石原, 丹羽両氏その他の研究がある。

また Uplift については、これを考慮するとあまりに断面が大きくなるので、砂防ダムの断面決定 にあたつては従来無視する傾向があつた。しかし本川に構築し基礎が砂質のような場合には必ず Uplift を考慮すべきであつて、今後の調査研究が望まれる。

なお、峡谷等に構築され堤体全体を一体として考える場合は、温度応力を考える必要があろう。 12) 13) 最後に砂防ダムの大きな特色の一つである水抜孔周辺の応力については後日発表する心算である。

結 言

砂防ダムの基本三角形断面に作用する外力によつて起される内部応力について,筆者は境界条件の 色々な与え方を提案し,それらの一般式を導き,数値計算を行つてその具体例を示し,従来の三角形 分布荷重による結果と比較検討することによつて,堤内応力の分布状態を明らかにすることが出来 た。

本論文は高砂防ダムの設計を合理化する上に役立つものと思う。

この研究を行うにあたつて、終始御指導を戴いた遠藤博士に厚く御礼申し上げる次第である。

参考文献

- 1) 村上恵二:砂防堰堤断面式の種類とその一般式について 京大演報, 17, 1942.
- 2) A. Wehrmann : Die Überströmten Querwerke der Wildbachverbauung. 1950.
- 3) 遠藤隆一:重力式砂防堰堤における3次元応力の研究 京大演報, 23, 1954.
- 4) 遠藤隆一, 郷原有殖, 栃木省二: 御鍋ダムの応力に関する研究 新砂防, 16, 1955.
- 5) 物部長穂:土木耐震学 P.151 1952.
- 6) 石原藤次郎,小西一郎:重力堰堤の応力計算について 土木学会誌, 22, 3, 1932.
- 7) S. Timoshenko : Theory of Elasticity, P. 277, 1934.
- 8) 同 上 P.114
- 9) 伊吹正紀:砂防特論 P. 89, 1955.
- 10) 丹羽義次:堰堤基本三角形断面内の応力状態に関する光弾性学的研究 土木学会誌, 39, 1954.
- 11) 石原藤次郎,丹羽義次:堰堤々体及び基礎の接触線附近の応力について,土木学会誌,論文集,1949.
- 12) 栃木省二:水抜孔周辺に生ずる応力集中と鉄筋による補強について 65回日林講 1956.
- 13) 栃木省二:ハイポトロコイド座標を用いた水抜孔周辺の応力計算,新砂防,

14) 丹羽義次: 堆砂圧による重力堰堤の内部応力につい, 土木学会論文集, 6, 1951.

15) Hinds, Creager, Justin : Engineering for Dams. Vol. II, Concrete Dam. 1950.

16) 同上村幸雄訳: コンクリートダム 1955.

- 17) 米国内務省開拓局編,近藤泰夫訳:重力ダム 1954.
- 18) Green, Zerna: Theoretical Elasticity 1954.

Résumé

General solution of the two-dimensional problem in polar coordinetes can be used for polynomial distributions of load on the faces of a check-dam.

By calculating the stress components from Eq. (7) in the usual way, we find Eq. (9).

Thus each power of r is associated with four arbitrary parameters so that, if the applied stresses on boundaries, $\theta = \alpha$ and $\theta = \beta$, are given as polynomials in r, the stresses in the check-dam included between

these boundaries are determined.

If, for instance, the boundary conditions are Eq. (21), we have, by equating coefficients of powers of r, Eqs. (22) \sim (25).

Substituting in Eq. (9), we obtain Eq. (26).

Let us consider, as a numerical example, the case shown in Fig 5 (a).

The notations are as follows. H : Height of check-dam. H=40m $\alpha = 12^{\circ}$, $\beta = -27^{\circ}$ w : Unit weight of check-dam. w_0 : Unit load $A_1 = w_0 \cos \beta = 1.0692$ $A_3 = \frac{w_0}{H^2} \cos^3 \beta = 53.05 \times 10^{-5}$

A normal pressure $-w_0 \cos \beta \cdot \mathbf{r} + w_0 \frac{\cos^3 \beta}{H^2} \cdot \mathbf{r}^3$ is acting on the face $\theta = -27^\circ$ of check-dam and the other face $\theta = 12^\circ$ is free from forces. Using only the second and third lines in the expressions (9) for $\sigma_r, \sigma_{\theta}$ and $\tau_{r\theta}$ the equations for determining the constants b_1 , d_1 , a_3 , c_3 , b_3 , d_5 and c_5 are Eqs.

(22), (24), from which we find (32), (33). Substituting in Eqs. (26), we obtain Eqs. (34).

The stress component for any other term in the polynominal load distribution may be obtained in a similar manner.