<table>
<thead>
<tr>
<th>言語</th>
<th>森林内外の降水中の養分量について</th>
<th>流水中の養分量について</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者</td>
<td>岩坪 五郎</td>
<td>堤 利夫</td>
</tr>
<tr>
<td>引用</td>
<td>京都大学農学部演習林報告</td>
<td>京都大学農学部演習林報告</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>

1968-11-25
森林内外の降水中的養分量について (III)*
流水中の養分量について

岩 坪 五 郎・堤 利 夫

On the Amount of Plant Nutrients Supplied to the Ground by Rainwater in Adjacent Open Plot and Forests (III)
On the Amount of Plant Nutrients Contained in Run-off Water

Goro IWATSUBO and Toshio TSUTSUMI

目 次

要 旨…………………………………….. 140
はじめに…………………………………… 141

1. 実験場所と実験方法………………… 141
1-1 林外雨・林内雨・樹幹流の測定
1-2 地表流・地中流の測定
1-3 横流流出量の測定
2. 結果と考察……………………………… 142
2-1 横流に含まれる養分について
2-1-1 横流の流出量
2-1-2 横流の養分濃度
2-1-3 横流に含まれる養分量

要 旨

1. 第1・2報において、林外降水・林内降水・樹幹流に含まれる養分濃度・量・その季節の変化・1年間合計量などを測定した結果を報告した。

2. 第3報は、林外降水・林内降水・樹幹流とともに、地表流・地中流・横流流出水に含まれる養分濃度・量を測定し、(ただし、地中流は養分濃度のみ、横流流出水に関するデータは広葉樹林についてのみ)、森林生態系における水溶性養分の動態を考察した結果の報告である。分析した養分は第1・2報と同じくカリウム・カルシウム・マグネシウム・リン・硝酸態チッ素・アンモニア態チッ素である。

3. 横流流出水の養分濃度は林内降水＋樹幹流の濃度に較べて高い、かつ季節的な動きもすくなくなかった。横流流出水中に含まれる養分量は林内雨＋樹幹流に較べて高いがなかった。横流の養分量を規制する最大の因子は林外降水量と森林の関係をもつ横流流出量であった。横流の養分量と林外降水量はほぼ一次の関係をもっていた。

Contributions from JIBP-PT No.39
4. 秋・冬期には降水量がすくない上に、溶脱をうけやすい新鮮な落葉があるので、地表流・地中流の濃度がたかくなる傾向があり、とくに広葉樹林地表流にこの傾向が著しかった。一般にカリウム・カルシウム・マグネシウムでは地中流の濃度が地表流より大きいことが多く、リン・硝酸態チッ素・アンモニア態チッ素では、その逆のほうがおおかった。

5. 林外雨から地表にいたるまで、森林生態系の各部分を通じるときの降る水の流れに含まれる各養分の年平均濃度値を求め、垂直的な変化を考察した。リンを除いて、各養分濃度は林床に達したときにはそうそうたかかった。カリウム・カルシウム・マグネシウムは地表流・地中流とその濃度をたかめ、逆にリン・硝酸態一・アンモニア態チッ素は濃度が低くなる傾向があった。地中流から地表流にいたるあいだに広葉樹林における各養分濃度はじょうにしだいになった。林外降雨の濃度と地表流の濃度を比較すると、カリウム・カルシウム・マグネシウムでは、林外降雨より地表流の濃度がたかく、逆に他の三養分では林外降雨のほうがたかかった。

6. 森林生態系にとって収入である林外雨の養分量と、支出である渇流流出水の養分量を広葉樹林について比較すると、カリウム85％、カルシウム57％、マグネシウム180％、リン26％、硝酸態チッ素18％、アンモニア態チッ素8％で、マグネシウム以外の養分が支出がおおきかった。

はじめに

第1・2報12において、筆者らは、裸の地表（林外降雨）・林内雨・樹幹流に含まれる養分濃度・量を測定し、その季節の変化・降水量との関係、1年間合計量を検討した。

これより、森林生態系にとって外部からの収入である林外降雨に含まれる養分量が、森林の生長にとって無視しえないほどの量にのび、また植物体から溶脱される養分を含む、林内雨・樹幹流の養分量は森林での物質循環において重要な意義をもっていることを指摘した。

林内雨・樹幹流として林床に達した降雨は、蒸発散よりその量を減じつつ、地表流・地中流として流下し、最後に渇流水として森林生態系外に流出する。この渇流水に含まれる系外への流出する養分量は森林にとって支出である。

本報告にあたって、ご指導をうけた京都大学四手井橋英教授、1963年11月まで共同研究者であった林業試験場丸山明雄技官、試験区の設置、試料の採取などにご配慮をいただいた京都大学演習林上賀茂試験地の各位に厚く御礼申し上げる。また同試験地内に設置された渇流の水質検査の水位記録ならびにその検査表の使用を好意してくださった、京都大学農学部農業工学教室地学改良学及び農地造成学研究室のご厚意に深く感謝する。

1. 実験場所と実験方法

1.1 林外雨・林内雨・樹幹流の測定。　

第1・2報におけると全く同じ、京都大学演習林上賀茂試験地の気象観測用露場と、ヒノキ林、常緑落葉混交広葉樹林において実験をおこなった。試料の採取・分析方法も、前報におけると同じである。

1.2 地表流・地中流の測定。

1辺50cm、深さ10cmの正六角形の合成樹脂製ワクを林床に埋め、その下端より合成樹脂製チューブで、地表を流下する水を受け、採取・分析した。このワクをヒノキ林に5コ、広葉樹林に3コ設
置した。
深さ10cm長さ360cmの合成樹脂製角鋲を、種の中に設け、上縁が地下10cmになるように埋めて、これを入れる水を採取・分析した。これをヒノキ林・ラスベリに各2つずつ設置した。試料は毎月1～2度採取し、ひと月毎にまとめて分析した。これらによって集められる水を、いわゆる地表流・地中流とみなすべきか否かについては問題があるが、これについては後述する。

1.3 湖流の流出量の測定。
量水堰堤の設置されている湖流は流域面積4.399haを有し、流域延長250m流域平均幅136.5m、流域形状係数0.42、流域平均山腹長33m、流域平均勾配28°30′の流域特性値をもつものである。流域の一部に各種のマツ類の植林があるが、大部分は、本実験に用いた常緑落葉果樹を主成分に、物性が、穀生性に属する粗板岩である。
量水堰堤は刃形円形堰（内径10cm）および刃形短形堰（越流幅200cm）を複合した鉄製堰板よりできている。試料はこの堰堤より越流したものを5リットル、合成樹脂製ビンに採取し、分析した。試料を採取した間隔は毎日のはあいから、1週間に1度のはあいまでである。流出量は、前述したように京都大学農学部農業工学教室より、実験期間の流出水位記録を借用して計算した。
分析した養分元素は第1・第2報におけると同く、林外雨・林内雨・樹幹流・地表流・地中流・湖流流出水を通じて、カリウム・カルシウム・マグネシウム・リン・硝酸態一・アンモニア態一CH素であり、分析方法も同じである。

2. 結果と考察
2.1 湖流に含まれる養分について
2.1.1 湖流の流出量
湖流の水に含まれる養分濃度の分析は1961年7月より1963年4月まで行なった。しかしこの実験期間中、1年間連続して流出量のデータが得られたのは、1962年5月より翌年4月までの期間のみであるので、本報告ではこの期間の湖流水の養分濃度・量について報告する。なお湖流水の分析は行なっていないが1966年5月から翌年4月までの各月の流出量を比較に用いた。Table 1 なお流出量は降水量との比較のため流出体積を流出面積で除し、mmで表面した。

62年5月から63年4月の間平均降水量1462.6mmは上資源試験地の平均年降水量1666.2mmに較べ、そうとう、すぐない。平均降水量より大であった66年5月から翌年4月に較べ、62年5月～63年4月の流出量はさらに、また流出率も小さい。しかし蒸発散による消失量は、62年度、63年度とも殆んど同様でむしろ62年度が大であった。もっとも乾燥した月でも土壌含有水量が零にならないと考えられるこの地域では4、むしろ降水量が小さい年のほうが晴天日数がおおよく、蒸発散による消失量が

Table 1. Gross precipitation and stream discharge for watershed of the broadleaved forest

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross</td>
<td>Stream</td>
<td>Gross</td>
</tr>
<tr>
<td>precipitation</td>
<td>discharge</td>
<td>precipitation</td>
</tr>
<tr>
<td>May</td>
<td>148.3mm</td>
<td>83.6mm</td>
</tr>
<tr>
<td>Jun.</td>
<td>380.3</td>
<td>284.5</td>
</tr>
<tr>
<td>Jul.</td>
<td>239.3</td>
<td>184.2</td>
</tr>
<tr>
<td>Aug.</td>
<td>117.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Sep.</td>
<td>43.9</td>
<td>9.5</td>
</tr>
<tr>
<td>Oct.</td>
<td>63.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Nov.</td>
<td>48.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Dec.</td>
<td>49.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Jan.</td>
<td>83.1</td>
<td>13.9</td>
</tr>
<tr>
<td>Feb.</td>
<td>46.3</td>
<td>16.0</td>
</tr>
<tr>
<td>Mar.</td>
<td>104.2</td>
<td>31.9</td>
</tr>
<tr>
<td>Apr.</td>
<td>138.8</td>
<td>77.0</td>
</tr>
</tbody>
</table>

Total 1,462.6 749.6 1,796.5 1,138.2

\[
P - D = 713.0 \text{mm} \quad \frac{D}{P} \times 100 = 657.3 \text{mm} \quad \frac{D}{P} \times 100 = 63.4 \%
\]
おおきくなる可能性があると考えられる。この傾向は武田6) Likens らの報告にも認められる。また四手井7) は夏半年の釜倉・高島両理水試験地のデータより、消失率は降水量の増加にともない、直線的に減少することを示している。

林外降水量と溪流流出量を各月ごとにまとめて、プロットしたもののがFig. 1である。この関係は一般に \(y = x - \alpha \) を下限の漸近線とする指数関数によってあらわされるといわれるが8)，本実験ではパラッキがおきないので、図帰式は求めなかった。養分量は養分濃度に、水位記録より計算した流出量を乗じて求めた。

2.1.2 溪流の養分濃度

1回の降雨にともなって溪流の流出量は時間的に変化していく。このような降雨にともなう流出量の変化に応じて養分濃度はどのように変わるであろうか。Fig. 2は降水量、流出量および濃度の時間的な変化の状態を数日にわたって図示したものである。1日30mmをこえるような林外降水量の際に

は、渓流出流量も増し、それにともなって、林内雨・樹幹流などのばいあいとは逆に、渓流出水の濃度はややピークを示すようであった。Fig. 2。おおきなピークではないにもかかわらず、養分量は濃度に流出水を乗じたものであるから、養分量の変化にすれば、そうとう顕著なものとなるであろう。これは渓流出水における養分の動きの特徴というべきで、地表流、地中流の急増にともなって、土壌中の溶脱が促進されるのが原因と考えられる。

ある数日間の降水量・流失量・濃度の変化を考察したが、つぎに範囲を拡げて、1年間のデータについて、1日あたりの渓流出流量 (mm/day) とその日の渓流水の養分濃度の1年を通じての関係を考察してみよう。Fig. 3。各元素のある濃度値の範囲は、カルシウムが全般にいちばんたくか、0.5〜1.0ppm,
カリウム・マグネシウム
0.15～0.5ppm, りん0.000～0.004 であった。このような1年間についての流出量
と養分濃度の関係という観点からみれば、前述したような日ごとの濃度変化の
関係は殆どみだたたくなってしまった。流出量のすくない冬期にカルシウムで
やや目ない濃度が現われた
だけで、全般的にみれば、渓
流濃度の濃度値は、流出量と
殆ど無関係に上記の範囲
に現われたといえるだろう。

実験をおこなったヒノキ
林はこの溪流の流域に含ま
れていないので、これを除
外し、広葉樹林について渓
流流量の毎月の平均濃度
変化を林外雨、林内雨＋樹
幹流の月平均濃度変化と比
較してみよう。Fig. 4。こ
の三者のうち、渓流濃度の濃
度はその変化の差がもっと
も払いきって安定している。
カリウム・カルシウム・マ
グネシウムでは、林内雨＋
樹幹流の濃度はかなり幅ひ
ろい動きを示したが、林外
雨と渓流はそれと無関係
に殆ど一定である。とくにカリウムのほか、林内雨＋樹幹流は11月の落葉期に突出したピークを
示したが、渓流濃度はその影響を殆ど受けなかった。三者共通して濃度のひくい、リノ酸酸素一
アンモン酸一チッ素のほか、林外雨の養分濃度の動きが、林内雨＋樹幹流の濃度とともにそうと
おきたい。とくにリノのほか、林外雨濃度の動きが林内雨＋樹幹流の動きよりはるかにおお
きい。このようなばあいでも、渓流濃度は1年を通じてひじょうに動きがすくなく安定であった。

これらのことは林内雨＋樹幹流が林床に到達してのち、渓流にいるまでの通路である/methodを
そつを通じる流況の養分に対してひじょうにおおきな、安定した緩衝剤・パッファとしての機能
をもっているといえるであろう。

河川の水質、養分濃度は多くの地球化学者によって計測されている。しかし、これらは本実験に較
べればはるかに下流のデータであって、耕地、工場などの人間の影響を多分にうけているだろう。た
とえば松原9の四国地方の河川での調査のデータと比較すると、カルシウム0.7～3.9 (0.15～0.50),
アンモニア態一、硝酸態一チッ素 0.00〜0.64 (0.000〜0.100), リン 0.000〜0.003ppm (0.000〜0.004 ppm), である。（ ）内は本実験のデータ。カルシウム・マグネシウム・カリウム、とくにカルシウムは、松原のデータは圧倒的に大きい値を示している。この問題について具体的な調査のデータはなくないが、武藤19は河川の塩分組成は上流に至るほど雨水の成分組成に近づき、その水源地附近では殆ど雨水そのものの成分組成であると述べている。したがって、同じ河川の水質または養分量を測定するならばも、その対象とする系の範囲にしたがって、養分などの収支は全く変わってくるであろう。

2.1.3 湿流に含まれる養分量

湿流の流出量に養分濃度を乗じて、養分量を求めた。これをひと月ごとにまとめて、同じ月の林外雨+樹幹流に含まれる養分量と比較しつつ季節変化を調べた。Fig. 5。湿流の流出量は1年間合計のはあい、林外降水量の約半分になる。したがって、両者の中濃度が同じであったとしても、養分量にすると湿流の養分量は林外雨の約半分になるはずである。

カリウムのはあい、濃度におけると同じく林内雨+樹幹流の養分量が1年を通じて、林外雨、湿流の養分量より圧倒的におきかった。また11月の落葉期には林内雨+樹幹流でおきかきたかまったのに対し、林外雨、湿流ではこのようなたかまりはみられなかった。カルシウム・マグネシウムのはあ
いつも年を通じて林内雨+樹幹流の養分量をもとめなかったが、カリウムのほうは著しく変わったものでない。カリウムのカルシウム・マグネシウムを通じて共通にみられる傾向は、降水量のおおきい、したがって流出量のおおきい月は、渇流の養分量が林外雨の養分よりもおおきいことが実証された。これは前述したように、多量の分流によって、土壌中の養分の流出または溶脱が促進された結果と考えられる。

リンのほうは、林外雨に含まれる養分量が林内雨+樹幹流の養分量よりもおおきいことがおおく、渇流の養分量は前2者に比べてるかに小さい。硝酸態窒素、アンモニア態窒素のほうが、林外雨と林内雨+樹幹流に含まれる養分量はおおきく、林外雨のほうがおおきいこともあった。しかし渇流の養分量はリンと同じく、他の両者に比べてずっとびっくりしい値を示した。森林生態系の養分収支の立場からみれば、リン・硝酸態窒素・アンモニア態窒素に関しては、森林は雨水による養分の補給によって、蓄積を続けているといえる可能性があろう。

月ごとにまとめた林外雨の降水量と、月ごとの林外雨・林内雨+樹幹流・渇流水中含まれる養分量の関係を図示した。Fig. 6。林外雨や林内雨+樹幹流の養分濃度は、その濃度値の上限をとれば、林外降水量が小のとき濃度高くなる傾向があり、また林内+樹幹流のほうは春期の植物体の影響もあるから、林外降水量と養分量の関係をみるとはあい、わが国でもリンがおおきがさい。これに対して渇流水中の養分濃度は前述したように、1年間を通じてみれば、流出量とおき関係なく一定であるので、流出量がおおきくなるにしたがって、すなわち林外降水量がおおきくなるにしたがって渇流水中に含まれる養分の量が増える傾向がある。
Fig. 6. Relationships between monthly gross-precipitation and the monthly amount of six nutrients contained in gross-precipitation: X, net-precipitation at the broadleaved forest: ○, and stream discharge: ●.

れる養分量もおおきくなる傾向が認められた。
このことから、この流域では養分量を支配するものは、降水量・流水量であって、季節的・生理的因子は本実験のような測定レベルでは殆ど影響をもたないとといえるであろう。

2.2 地表流と地中流
地表流、地中流などは、林床に到達した雨水が流域となって森林外に流出するまでの間、森林土壌内で起こる移動の各形態に対して名づけられた名称であり、その移動はそうとう複雑であるから定義を明確にしておく必要がある。
野口(1)によれば、流域に降った雨水は、地表を流れ河道を通って流出するもの（河道に直接降った雨を含む）、すなわち表面流出量（Surface runoff）と、一旦地表下に侵入し、土層や岩石孔隙内を通過した後再び河道に現われるもの、すなわち地下水流出量（Ground water runoff, baseflow）に大別することができる、という。本実験において測定した地表流、地中流がそのまま流域に流れ込むのであれば、それらは野口のいう表面流出、地下水流出にあたるが、本実験での測定は流域内の一小部分でおこなかったにすぎないので、これらが流域に至るまでに経路の変化をしないという保証はない。したがって、本実験における地表流・地中流はあくまで、ヒノキ林・広葉樹林の斜面の一部における地表流、ならびに地中 10cm での地中流を限定し、量水堰堤における量水曲線を分析してえられる表面流出量、基底流量とは区別しておくことが必要とおもわれる。以後、地表流・地中流はこの限定された意味に用いる。
本実験期間は1965年1月～12月で、この期間中林外雨、林内雨、樹幹流、渓流の測定はおこなっていないので、それらを同時に比較することはできなかった。

2.2.1 地表流量
林床における地表流の流路は、林床植物、地形、土壌状態などに影響されるから、林内雨に較べ極めて均一性を欠いている。しかしヒノキ林に 5 コ、広葉樹林に 3 コ埋め込んだ 1 辺 50cm の正六角形ラインシートの底面の集水量と林外降水量は一次の関係をもった。Fig. 7. それぞれのプロットについて、林外降水量との関係の回帰式を求め、集水ビンの容量をこえて溢れたあはその回帰式より推定値を求めた。この結果、年林外降水量 2238.3mm/year に対し、各プロットの地表流量は、ヒノキ林でそれぞれ 3.4, 4.4, 6.0, 15.3, 26.6%, 広葉樹林で 9.5, 10.2, 18.7% であった。ヒノキ林で
はバラツキがおおきかったが、この
tいどのおおきさのラインメータの
はあい、当然おこると考え、とびは
なれた値も棄却はしなかった。すな
わちヒノキ林で5コ、かげ樹林で3
コ分の面積をもったラインメータを
各1コずつ設置したとして、傾斜に
よる集水面積を考慮して平均値を求
めた。これによれば林外降水量に対
して1年間にヒノキ林で11.0%かげ
樹林で12.8%が地表流として流れた
ことになる。前報に述べたように林
内雨＋樹幹流として林床に到着する
水量はヒノキ林で林外降水量の約74
%、かげ樹林で80%であったからヒノ
キ林では林外降水量の約63%、かげ
樹林では約67%にあたる部分が地中
流になるか、または地表流、地中流
からの蒸発散によって林地から失わ
れるか、することになる。

2.2.2 地表流・地中流の養分濃度
プロットによって集水量に差があ
るとともに、それに含まれる養分濃
度にも差が認められた。Fig. 8に
1965年3・6・9・12月について、集水量と濃度の関係を示した。集水量のおおきなプロットでは養分
濃度がちかいという傾向が認められるのはあいもあるが、あまり明瞭ではなく、逆のはあいや、集水
量に関係なく養分濃度はほぼ一定といったのはあいも多く認められた。これらの事情によりヒノキ林、
かげ樹林の地表流、平均養分濃度・量をつぎのように算出した。すなわち各プロットの集水量(I)に
各プロットの養分濃度(ppm)を乗じて養分量を求め、その合計量を各プロットを合計した集水面積
で除して、haあたり養分量を求めた。これが平均養分量である。これを集水量合計を集水面積合計で
除して求めた単位面積あたり集水量(mm)で除し、平均濃度を求めめた。

ヒノキ林・かげ樹林に2コずつ、地中10cmにトウを埋め、一種の地中流を集め、養分濃度を測定
した。このばあい、集水面積を規定することができないのと、2プロットの濃度差が、地表流に較べ
てちかいので、養分濃度をそのまま算術平均した。

地表流・地中流の養分濃度変化に影響を与える因子として、降水量・リター量・リターの分解に影
響を与える気温などが考えられる。また養分元素の性質によって、リターから溶脱されやすいもの、
土壌中を流動しやすいもの、じゅうくいものなどがある。リター量も季節変化をもち、ヒノキ・リョウ
ブなどは11月に落葉が多いのに対し、ソヨコの落葉のピークは6月にある。

これらを考慮しつつ、地表流・地中流の濃度変化について考察する。Fig. 9。カリウムについてみ
ると、降水量のちかい冬期にたいする濃度を示しており、とくにかげ樹林地表流に著しい。これは月
降水量の少ないのが、ちょっと秋から冬へかけての落葉期にあたり、新鮮な落葉からの溶脱と、降水
量のおおきなばあいのように養分濃度がうすめられるといった現象がおこらないという、ふたつの原
因がかさなりあったものと考えられる。さらにカリウムは落葉広葉樹の落葉から容易に溶脱されるのでなく広葉樹林地表流において濃度の動きがおおきかったのであろう。カリウムで、とくに広葉樹林地表流にみられた冬期に濃度がたかいたい傾向は、カルシウム・マグネシウムではみられなかったが、地中流の濃度が地表流に較べおおきく、この傾向は広葉樹林で著しかった。これはカルシウム・マグネシウムがカリウムに較べ、植物体からの溶脱はおおりにくく、土壤中では動きやすい性質をもっているためではないかとおもわれる。

リンのばあい、濃度が他の元素に較べ非常にちいさいこと、各月間のバラツキがおおきすることなどのために一定の傾向はみられなかった。ただ地中流がつねに対応する地表流よりちいさかったことは、リンは土壤中にてただちに不溶性の化合物をつくり、極めて動きにくいという説に合致している。

硝酸態・アンモニア態チッ素の地表流における8月のたかまりには、降水量がちいさい上に、気温がたかく、したがってリターの分解量がおおきいことが影響しているのかもしれない。アンモニア態チッ素が3月におおきい濃度を示した原因は不明である。

2.2.3 地表流・地中流に含まれる養分量

元素によって、地表流に含まれる量におおきな差があるが、月別の変化はおおむね林外降水量の変
Fig. 9. Monthly averaged nutrient concentrations in surface runoff at the Hinoki (○), and the broadleaved forest (×), and in underground runoff at the Hinoki (...×...) and the broadleaved forest (...×…).
Fig. 10. Monthly averaged amounts of nutrients in the surface runoff at the Hinoki (—×—) and the broadleaved (—○—) forests.

のカリウムでは、10・11・12・1月の養分濃度が他の月に比べて著しくたかい、このために降水量の
わりには、養分がとびぬけて多かった。これは新鮮な落葉からの溶脱がそうと影響していると考えられる。

前述したように、地表流の各プロット間の集水量、養分濃度にはそうとうな差みられ、両者は常
に相殺的な関係にあるわけではなかったから、養分量についても、プロットごとの違いがおおきい。
しかし各プロットごとの養分量の季節変化にはだいたい同じような傾向がみられた。Table 2 に各プロ
ットの1年間合計量を示した。なお平均値は前述したようにラインメントの傾斜による集水面積の
違いを考慮しているので、各プロットの値の算術平均値とはやや異なる。

地中流についてはすでに述べたように、集水面積の測定ができないので、haあたりの養分量を算出
することはできなかった。しかし集水域にたまった水量は林外降水量とほぼ一次の関係をもっていた
から、地 下 10 cm を流れる水量も林外降水量とほぼ一次の関係をもつと考えられる。今、かりに林内
Table 2. Annual nutrient amounts in surface runoff at each plot

<table>
<thead>
<tr>
<th>Plot</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>P</th>
<th>NO3-N</th>
<th>NH4-N</th>
<th>Run off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinoki forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.2 mm</td>
</tr>
<tr>
<td>Sample 1</td>
<td>1.1</td>
<td>1.5</td>
<td>0.3</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>4.7</td>
<td>10.2</td>
<td>1.7</td>
<td>0.13</td>
<td>1.0</td>
<td>2.0</td>
<td>594.8</td>
</tr>
<tr>
<td>Sample 3</td>
<td>0.8</td>
<td>2.0</td>
<td>0.3</td>
<td>0.03</td>
<td>0.1</td>
<td>0.4</td>
<td>133.8</td>
</tr>
<tr>
<td>Sample 4</td>
<td>0.6</td>
<td>1.2</td>
<td>0.1</td>
<td>0.03</td>
<td>0.1</td>
<td>0.4</td>
<td>77.1</td>
</tr>
<tr>
<td>Sample 5</td>
<td>3.9</td>
<td>6.5</td>
<td>1.0</td>
<td>0.14</td>
<td>0.3</td>
<td>1.3</td>
<td>343.5</td>
</tr>
<tr>
<td>Averaged</td>
<td>2.2</td>
<td>4.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.3</td>
<td>0.9</td>
<td>246.6</td>
</tr>
<tr>
<td>Broadleaved forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td>12.3</td>
<td>5.0</td>
<td>1.4</td>
<td>0.10</td>
<td>0.6</td>
<td>1.3</td>
<td>229.1 mm</td>
</tr>
<tr>
<td>Sample 2</td>
<td>15.0</td>
<td>10.1</td>
<td>2.9</td>
<td>0.17</td>
<td>0.8</td>
<td>1.5</td>
<td>419.6</td>
</tr>
<tr>
<td>Sample 3</td>
<td>7.6</td>
<td>4.5</td>
<td>1.6</td>
<td>0.09</td>
<td>0.2</td>
<td>0.5</td>
<td>213.7</td>
</tr>
<tr>
<td>Averaged</td>
<td>11.8</td>
<td>6.7</td>
<td>2.0</td>
<td>0.13</td>
<td>0.5</td>
<td>1.1</td>
<td>286.1</td>
</tr>
</tbody>
</table>

kg/ha/year.

Fig. 11. Annual averaged nutrient concentrations in the waters at successive layers at the broadleaved and the Hinoki forests.
吸引されたり、土壌のもつイオン置換作用その他の保蓄作用によって土壌に吸着されたりする経過のち、渓流水として流亡する。

Fig. 11は1962年5月から翌年4月まで1年間のヒノキ林・広葉樹林の各部分における、水に含まれる平均養分濃度の垂直的変化を現わしている。濃度は年合計養分量を水量で除して平均を求めた。ヒノキ林における変化図には、渓流のデータはない。地表流・地中流は前述のように、ことくなった年（1963年1月〜12月）のデータで降水量も示している。1962年5月〜63年4月の降水量は1462.2 mmで、1965年1月〜12月は223.8mmであった。しかし地中流・地表流の濃度は降水量の増大に応じて、同じ季節ではやや減少するが、もしくは余り変化しないから、図示したものよりおおきな可能性はあるか、一応比較に耐えるであろう。

垂直的変化の型として、6種類の養分をふたつにわけられるだろう。すなわち、カリウム・カルシウム・マグネシウムの変化の型、K-Ca-Mg型とリン・硝酸態チッ素・アンモニア態チッ素の変化の型、P-N-N型である。前者はすべてカチオンである。後者はリン・硝酸態チッ素はアニオンで、アンモニア態チッ素はカチオンである。

まず K-Ca-Mg型は林内雨+樹幹流・地表流・地中流の三層、すなわち森林内部では、P-N-N型に較べ濃度が小さい。さらにこの三層において、K-Ca-Mg型は下層ほど濃度がたかくなる傾向があるのに対して、P-N-N型は逆に低くなる傾向が認められた。稲川らの箱型ラインシマによる地表流と地中80cmの侵用流の濃度測定においても、この傾向が認められる。ただし、林内雨+樹幹流のリンの濃度は広葉樹林・ヒノキ林ともに林外雨よりはるかに低く、この部類だけは分析した6種類の養分を通じて例外であった。また広葉樹林で林外雨の濃度と渓流の濃度を比較すると、K-Ca-Mg型では渓流の濃度が大きいのに対し、P-N-N型ではくくなくなった。

地下10cmの流水の濃度、すなわち本実験での地中流濃度は渓流水になるまでに非常にひくくなっている。この傾向は6種類の養分に共通してみられた。本実験ではこの間の状態についてのデータは全くないが、斜面上部・下部でそれぞれ地中10cm・30cm・50cmにおいて土壌水の養分濃度・量を測定した有光らも下層になるほど養分濃度が低下したことを報告している。

2.3.2 養分量の垂直的変化

1962年5月から翌年4月までの実験期間において、林外降水量は1463.2mmであった。このうち広葉樹林のクローネを通し、林内雨・樹幹流として林床に達したのは1200mmで、8％が蒸発によって失われた。これがさらに地表流・地中流として流下し、下方の量水堰堤に達したときには750mmで林外降水量の51.3％であった。Fig. 12

分析した養分元素が林外雨・林内雨+樹幹流・渓流に1年

| Table 3. Budgets of water soluble nutrients for the broadleaved forest ecosystem |
|-----------------------|-----|-----|-----|-----|-----|----------------------|
| | K | Ca | Mg | P | NO₃-N| NH₄-N |
| Gross precipitation | (A) | 2.7 | 8.8 | 1.3 | 0.47 | 1.7 | 3.8 | 1462.6mm |
| (B) | 32.6| 15.8| 6.1 | 0.22| 2.7 | 5.8 | 5.8 | 1200.0mm |
| Stream discharge | (C) | 2.3 | 5.0 | 2.3 | 0.12 | 0.3 | 0.3 | 749.5mm |
| (A) - (C) | | 0.4 | 3.8 | -1.0| 0.35 | 1.4 | 3.5 | 713.1mm |
| (C)/(A)×100% | 85.2| 56.8| 176.9| 25.5| 17.6 | 7.9 | 51.2 |
| (C)/(B)×100% | 7.1 | 31.6| 37.7| 54.5| 11.1 | 5.2 | 62.5 |

May 1962〜Apr. 1963
間に含まれた量は Table 3, Figs. 13〜15 のとおりである。

Fig. 13. Annual amount of nutrients in open plot rain.

Fig. 14. Annual amount of nutrients in net precipitation (through fall + stem flow) at the broad leaved forest.

Fig. 15. Annual amount of nutrients in stream discharge.

林外雨に含まれる養分量は森林にとって収入である。林内雨＋樹幹流に含まれる量は、前記収入量と、植物体から溶出された養分量と、直接植物体の地上部に吸収された量との合計量である。したがって林内雨＋樹幹流に含まれる養分量には、森林内部の物質循環が大きく関係している。溪流に含まれる養分量は森林にとって支出である。

森林の養分収支を考えるならば、林外雨と溪流に含まれる養分量だけで、かんたんに計算するには、いろいろの問題がある。たとえば、チッ素のように土壌中のチッ素固定菌により直接地中チッ素がとり入れられるばかりで、逆に酸素の供給状態のよくない土壌では脱チッ現象がみられるばあいもあるだろう。またエアロゾルがクローネに付着して林内雨に溶けた量や、母岩物質からの風化による収入量や、リター・土砂の形で流移する支出量も測定されていない。

しかし前記のうち、リター・土砂の形で流移するもの以外は、現状では殆ど測定不可能である。

Fig. 16. Percentage of nutrient amounts %

Fig. 17. Nutrient amounts in net precipitation to those in open plot.

Fig. 18. Percentage of nutrient amount, %

したがって今回はただ、水に溶けた養分量の垂直的変化のみについて考察した。

収入と支出、すなわち林外雨と溪流に含まれる養分量を比較すると、マグネシウムが約 180% と支出のほうがおおきくなかっただけで、他はカリウム85%，カルシウム57%，リン26%，硝酸態チッ素18%、アンモニア態チッ素8%と、収入のほうがおおい結果であった。すなわち、水溶態養分の収支としては、マグネシウム以外は毎年森林に蓄積されていることになる。Fig. 16。

林外雨に含まれていた養分量は林床に達したときにはリンを除いて、1.5 倍からカリウムでは約12倍に増加する。Fig. 17。これは土壌灰をとっているあたりに減少して、溪流水となったときには、林床に達したときと比較すると、減少率のもっとももひかかったリンでさえ、55%にすぎなくなる。Fig. 18。

フィンランド全土について水溶性養分の収支を求めた Viro131 によれば、チッ素だけは収入がおおく、他のリン・カリウム・カルシウム・マグネシウムについては、支出がおおい。チッ素以外につ
155

引用文献

1) 丸山明雄：岩崎五郎：森林土壌の栄養濃度について（第1報），京大農報，36，25～39（1965）
2) 岩崎五郎：野村：森林土壌の栄養濃度について（第2報），京大農報，39，110～124，（1967）
3) 富士岡善一：手島三二：傾斜地の流出機構に関する基礎的な研究（IV），農土木研，別冊4，19～23（1962）
4) 堤利子：森田土壌及びその改良，「アカマツ林の造林」，四手示書編，p.304，地球出版，東京，1963
5) 武田純：宝原森林化学試験第2報報告，34～40，前橋市立，前橋（1950）
6) Likens，G. E.，F. H. Bormann，N. M. Johnson and R. S. Pierce：The calcium，magnesium，potassium，and sodium budgets for a small forested ecosystem，Ecol.，48，5，772～785，（1967）
7）四手作英：アカマツ林生産系の物質生成機構，「アカマツ林の造林」，四手示書編，p.108 前出
8) 萩原貞夫：日雨量とその対流変動，水利科学，11，2，1～11，（1967）
9) 杉原健：四国地方河川の研究（第2報），日化誌，72，3，287～289，（1951）
10) 武藤英：礦業の地球化学的研究（第2報）普通河川の流れによる組成成分の変化について（4），日化誌，74・7・576 ～578，（1967）
11) 野口聡一：森林の影響，p.100 地球出版，東京，（1963）
12) 有光一男：松本光弘，簡易な電気学ライシメーターによる土壌水分の動的観測（1），日林誌，46，12，208～ 213，（1964）
13) Viro，P. J.：Loss of nutrients and the nutrient balance of the soil in Finland，Comm. Inst. Forest. Fenn.，42：1～50，（1953）
14) 稲川悟一：伊藤悦夫：金田次弥：地表植物の有無及び種類が土壌中の主な肥料成分の流亡に及ぼす影響一簡易ライシメーターによる一試験，静農報15：87～105，（1965）

Résumé

1) The results of the studies carried out at the Hinoki (Chamaecyparis obtusa) and the broadleaved forest in the Kyoto University Kamigamo Experimental Forest Station, on the following items have been already submitted in a first and second report. The items consisted of the nutrient concentration and the amount contained in open rain fall, through-fall, and stem-flow in two forests, their seasonal fluctuations, and the total amount of nutrients per ha annum.

2) In the present report an investigation on the movement of water soluble nutrients in the forest ecosystems was carried out, by examining the nutrient contents in surface-, underground(-10cm depth) and stream-runoff as well as in open rain，through-fall and stem-flow. Because the Hinoki stand was not in the watershed of the stream，no data was available for stream runoff in this case. The nutrients analysed and studied were of following: potassium，calcium，magnesium，phosphorus，nitrate- and ammonia-nitrogen which are the same as in the first and second reports.

3) The six nutrient concentrations in stream discharge were much smaller than those in the through-fall plus stem-flow（net-precipitation），and their seasonal fluctuations were smaller as well.（Fig. 4）The most
efficient factor for the amount of nutrients in stream discharge was the amount of stream discharge itself, consequently the nutrient amounts in stream discharge were almost proportional to the amounts of stream discharge and the gross precipitation (open rain fall). (Fig. 6)

4) In autumn and winter, the surface- and underground-runoff water in most cases increased their nutrient concentrations because of low precipitation and the existence of new litter fall from which nutrients could be leached easily. The increase was especially remarkable in the case of potassium contained in the broadleaved forest. In most months, the nutrient concentrations of potassium, calcium, and magnesium contained in underground runoff were higher than those in surface runoff, and those of phosphorus, nitrate- and ammonia-nitrogen contained there, were smaller. (Fig. 9)

5) The water passes through the each layer of the forest ecosystem, i.e. the net precipitation, surface-, underground-runoff, and then into a stream. The nutrient concentrations contained in the waters of successive layers were analysed and their fluctuations studied vertically. Upon reaching the forest floor as net precipitation, the nutrient concentrations increased with one exception of phosphorus. In the surface and the underground layer, nutrient concentrations changed as mentioned above. In the flow from the underground layer to the stream, the water decreased its nutrient concentrations remarkably. In the case of potassium, calcium, and magnesium, the nutrient concentrations in the stream discharge were higher than in the open rain water and it was lower in the cases of phosphorus, nitrogen. (Fig. 11)

6) The nutrient amount in gross precipitation is the income and that in the stream discharge is the output for the forest ecosystem. The budget of the amounts of water soluble nutrients of the broadleaved forest ecosystem were estimated. (Figs. 12, 14) The percentages of potassium, calcium, magnesium, phosphorus, nitrate- and ammonia-nitrogen of the output to the income were 85, 57, 180, 26, 18 and 8% respectively. It can be said that the forest ecosystem accumulates water soluble nutrients except for magnesium. (Fig. 15, Table 3)