<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>外国産マツ属の虫害に関する研究 [第4報] テーダマツおよびパクショウを加害したマツノマダラカミキリについて</td>
</tr>
<tr>
<td>作者</td>
<td>古野 東洲, 渡辺 弘之, 上中 幸治</td>
</tr>
<tr>
<td>引用</td>
<td>京都大学農学部演習林報告 = BULLETIN OF THE KYOTO UNIVERSITY FORESTS (1977), 49: 8-19</td>
</tr>
<tr>
<td>発行日</td>
<td>1977-10-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/191643</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版社</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
外国産マツ属の虫害に関する研究

第4報 テーダマツおよびハクショウを加害した
マツノマダラカミキリについて

古野東洲・渡辺弘之・上中幸治

Studies on the Insect Damage upon the Pine-species imported in Japan

Tooshu Furuno, Hiroyuki Watanabe and Koji Uenaka

要 旨

マツノザイセンチュウーマツノマダラカミキリに原因するアカマツ，クロマツの激しい集団的な枯損は，西日本各地のマツ林に大きな被害をあたえている。

本報告は，京都大学農学部附属演習林に白沢試験地および上賀茂試験地において，マツノマダラカミキリに加害されたテーダマツおよびハクショウについて，樹幹における加害状況，羽化脱出したマツノマダラカミキリ成虫の大きさなどを，1975年および1976年に調査した結果をとりまとめたものである。

調査木はつきのようである。テーダマツは胸高直径13.7 cm，樹高13.0 m，樹齢14年で，1974年枯死，1975年にマツノマダラカミキリが発生した。ハクショウは胸高直径12.6 cm，樹高7.4 m，1975年枯死，1976年にマツノマダラカミキリが発生した。このほかの調査木は，クロマツ2本（DBH: 11.5 cm，H: 8.5 m，DBH: 14.4 cm，H: 7.5 m）およびアカマツ1本（11.5 cm，5.6 m）である。

1. マツノマダラカミキリ成虫の後食痕は，テーダマツでは1年枝から5年枝まで，クロマツでは1年枝から7年枝までみられ，その総数は，テーダマツで243カ所，クロマツで231カ所で，若い1～3年枝に多かった。

2. 後食痕の幅はテーダマツで2～10 mm，クロマツで3～10 mm で，4～6 mmのものが，前者で78%，後者で70%を占めていた。後食痕の長さは，最も長いものはテーダマツで143 mm，クロマツ135 mmであったが，多くは30 mmより短かった。

3. 後食痕の面積は，その長さ×幅の88.6%で推定され，テーダマツの矢部後食痕面積は235 cm²，クロマツでは305 cm²と推定された。年枝別の平均矢部後食痕面積は，枝の年齢が若いほど大きく，またテーダマツの後食痕はクロマツのそれより小さかった。

4. マツノマダラカミキリは，その幼虫が材内穿入してから羽化脱出までに，テーダマツ，クロマツともに約45%が死亡していた。樹幹表面積100 cm²あたりの羽化脱出孔は，平均してテーチ
ダマツで0.21, クロマツで0.15, 0.24, アカマツで0.12であったが、多く脱出したところでは、テーダマツで0.86, クロマツで0.61となった。

5. マツノマダラカミキリの成虫は、テーダマツからは1975年5月25日から7月22日まで、ハクショウからは1976年6月22日から7月14日まで、クロマツからは1976年5月25日から7月2日まで脱出してきた。

6. 成虫の大きさは、白浜試験地で繁殖したものは、上賀茂試験地のものに比べて小さかった。

7. テーダマツおよびハクショウともに、枯死した年の樹高生長は連年生長量と大差なく、また直径生長も年間生長量の約半分は生長していた。

8. テーダマツおよびハクショウの樹幹で繁殖したマツノマダラカミキリ成虫からマツノザイセンチュウを確認した。

9. テーダマツおよびハクショウはマツノザイセンチュウが関係して枯れたものと推論された。

まえがき

西日本各地のアカマツ、クロマツ林の激しい集団繁殖が、マツノザイセンチュウ（Bursaphelenchus lignicicolus）の発見により、マツノマダラカミキリ（Monochamus alternatus）との共同作用に起因していることが明らかにされ、それまで“マツクイムシ”としてマツノシラホシソウ属（Shirahosizo）に比定、それほど重要な役割を演じていないと思われていたマツノマダラカミキリがマツノザイセンチュウの運び屋として脚光を浴びることとなった。マツノザイセンチュウのアカマツ（Pinus densiflora）、クロマツ（P. thunbergii）への顕著な加害性が判明し、さらに数多くのマツ属各種のマツノザイセンチュウに対する抵抗性が調査され、テーダマツ（P. taeda）、スラッシュマツ（P. ellitita）、ダイオウショウ（P. palustris）、リキダマツ（P. rigida）、エチナータマツ（P. echinata）、ブンゲンスマツ（P. pungens）、パンクスマツ（P. banksiana）、ストローブマツ（P. strobus）、ハクショウ（P. bungeana）などの抵抗性が接種試験などの結果として報告されている。

京都大学農学部附属演習林白浜試験地（和歌山県西牟婁郡白浜町）および上賀茂試験地（京都市北区上賀茂）には、テーダマツ、スラッシュマツのほか、数多くのマツ属が実験林、観察林として育てられている。1974年秋には、健全に生育していた白浜試験地のテーダマツ実験林の1本を、さらに、1975年秋には上賀茂試験地の観察林のハクショウを、マツノマダラカミキリが食害していることが確認された。本報告では、それぞれの加害木から羽化脱出したマツノマダラカミキリを捕え、その大きさ、マツノザイセンチュウ保有の有無など、テーダマツでは樹幹の食害位置、幼虫の樹体内死亡の有無などを、白浜試験地の枯損した野生のクロマツ、アカマツとともに調査した結果に基づいてとりまとめた。本調査に協力いただいた白浜試験地、上賀茂試験地の職員各位、皆様方にお礼を申しまして、深深感謝いたします。

なお、本報告の一部は87回日本林学会で発表した。

調査地の概要

白浜、上賀茂両試験地において、1966年以後、マツクイムシ被害木として伐採処分されたアカマツ、クロマツの総量（幹材積）は白浜試験地で520m³、上賀茂試験地で220m³に達している。それらの経年の伐採量を示すと図-1のようになる。

白浜試験地が位置する紀南海岸地方は、マツノザイセンチュウマツノマダラカミキリのため
調査方法

調査対象木は、テーダマツ1本（DBH:13.7cm, H:13.0m）、ハクショウ1本（12.6cm, 7.4m）の外国産マツおよび白鉢試験地で枯死したクロマツ2本（11.5cm, 8.5m, 14.4cm, 7.5m）、アカマツ1本（11.5cm, 5.6m）である。

テーダマツの被害木は、1975年に試験に移し、マツノマダラカマキリ成虫の羽化脱出後に、樹幹解析資料を求め、被害材を細かく割り、幼虫の材への穿入孔、蛹室、成虫の脱出孔を見難し、その位置を記録した。さらに、すでにマツノマダラカマキリが羽化脱出したクロマツ立枯木1本について同様の調査を行った。またテーダマツ枝条のマツノマダラカマキリ成虫の後食痕を確認し、その大きさを長さと幅で求め、一部は紙に写して面積を求めた。1976年にはクロマツで同様の調査を、さらに立枯れていたアカマツを調べた。

ハクショウの被害木は、1976年3月に試験に移し、マツノマダラカマキリ成虫を捕え、樹幹解析を行った。この被害木には、鴨がついた跡が多くみられたため、テーダマツのような成虫脱出後の細部調査は行わなかった。

幹室で捕えた3グループのマツノマダラカマキリ成虫は雌雄に分け、体長、さやくぼ長を測定した。

結果および考察

1. マツノマダラカマキリ成虫の後食痕

マツノマダラカマキリ成虫は加害材から脱出後、健全に生育しているマツ属の枝条をある期間食害（後食）の後、産卵可能材に卵を産みつける。この後食時に、マツノマダラカマキリに着いていたマツノザイセンチュウが枝条の傷口から樹体内に侵入し、急速に樹体を衰弱させ、産卵可
能となるため、マツノマダラカミキリが産卵繁殖する。

テダマツおよびクロマツ枝条に傷つけられたマツノマダラカミキリ成虫の後食痕は、テダマツでは新梢（1年枝）から5年枝まで、クロマツでは1年枝から7年枝までに認められた。後食痕数の年枝別の頻度分布は図-2のようになり、テダマツでは2年枝および3年枝が、クロマツでは3年枝までの若い枝が多く後食の対象になったようである。このクロマツの後食痕数分布の傾向は森本らおよび乾原らの調査結果とも一致している。数えられた後食痕総数は、テダマツで243カ所、クロマツで231カ所であった。また、ハクショウでは、後食痕を1つずつ数えなかったが、4年枝の下部で切断して後食痕を調べた結果、その48本に後食痕が認められた。たとえば、1本あたり10カ所の後食痕があったと考えても、約500カ所となり、ハクショウも相当に数多く後食されたものと思われる。

後食痕長と幅の頻度分布は図-3のようにになる。後食痕の

Fig. 2. Frequency distributions in numbers of fed wound of Monochamus alternatus adult to branch-age.

Fig. 3. Frequency distributions in length and width of adult feeding mark of Monochamus alternatus.

中央部の幅は2 mmから10 mmまでみられたが、クロマツには2 mmの幅の細いものは認められなかった。4～6 mmのものが、テダマツで78％、クロマツで70％で、両樹種ともその大部分を占めていたが、クロマツにみられる後食痕の幅がテダマツのそれよりもやや広いようである。測られた後食痕の最も長いものは、テダマツで143 mm、クロマツで135 mmであった。実際にはもっと長い後食痕を野外で時々みかけるが、激しく食害された比較的細い新梢は、折れたり食いちぎられたりすることもあり、このような場合には長さの測定は不可能である。後食痕長は30 mmより短いものが多く、テダマツで84％、クロマツで72％を占め、マツノマダラカミキリ成虫の生存日数、1頭の後食営から推定して、同一カ所で連続して後食するよりも、つぎつぎと場所をかええて食害を続ける可能性が大きい。

後食面積を直接に求めることは相当に困難であるため、その長さと幅を測定して面積を推定する資料として、後食痕を紙に写して求めた面積との関係を求めるのが図-4である。テダマツ
枝条の後食痕とクロマツ枝条の後食痕とで、さらに年枝間に、両者の関係に著しい差は認められず、後食痕長×幅と後食面積はほぼ比例し、その面積は長さ×幅の88.6%で概略推定できることができた。

後食痕長と幅から推定された後食痕面積の頻度分布は図-5のようになり、その最大のものは、テダマツで760 mm²、クロマツで758 mm²で、80 mm²以下のものでは、前者で55%, 後者で40%, また160 mm²以下のものは、それぞれ85%, 71%となった。1樹体の総後食痕面積はテダマツで235 cm²,クロマツで305 cm²と推定され、1頭あたりの後食痕より食害したマツノマダラカミキリの成虫数を求めるとき、テダマツで約5頭、クロマツで約6頭となる。

年枝別の後食痕面積の頻度分布および平均後食痕面積は図-6のようにになる。テダマツでは、平均後食痕面積は、1年枝で125 mm²であったが、5年枝では46 mm²、クロマツでは、1年枝で162 mm²、5年枝で115 mm²となり、年枝別の平均後食痕面積は、両樹種ともに枝の年齢が若いほど大きい傾向がみられ、後食痕面積はテダマツのもののはクロマツのものに比べて相当に小さい。

2 樹幹におけるマツノマダラカミキリの加害状況
白浜試験地で1975年と1976年に、マツノマダラカミキリ成虫の羽化脱出後に、幼虫の樹材への寄生が確認され、影響が大きいものとなった。1976年の10月1日に観察を行い、枝条の後食痕が確認されたが、多数の枝条が被害を受けていることが明らかになった。
入孔、蛹室、成虫の羽化脱出孔を確認した結果を図一7および図一8に示す。
マツノマドラカミキリは幼虫が材へ穿入してから、いずれの調査木も約45%のものが死亡していた。

![Fig. 7. Distribution of emergence hole, pupal cell and bore into xylem of larva of Monochamus alternatus on stem of Loblolly pine (A) and Japanese black pine (B) at shirahama.](image)

- ×: Only bore into xylem
- △: Death in pupal stage
- ○: Death in adult stage in pupal cell
- ●: Emergence hole

![Fig. 8. Changes in number of Monochamus alternatus in stem of Loblolly pine (a), Japanese black pine (b and c) and Japanese red pine (d).](image)

- A: Bore into xylem
- B: Completion of pupal cell
- C: Adult in pupal cell
- D: Emergence hole

葉県下の調査でも穿入孔に対する成虫発生率が40〜50%と報告されている。産卵は産卵から幼虫が材に穿入するまでの激しい個体数減少に比べれば少ないと、幼虫の穿入後における密度や天敵などのための個体数減少を報告し、さらに蛹室形成後の高い死亡率が茨城県で調査され、マツノマドラカミキリは材の中で多くの個体が、種々の原因で死亡するものと考えられる。

幼虫の材への穿入口から蛹室までの長さは3〜12cm までみられ、樹幹の太いところで短く、細いところで長い傾向があり、樹幹上部ではとくに長いものがみられたが、大部分のものは4〜7cmであった。

樹幹表面積100cm² あたりの羽化脱出孔は、平均してテダマツで0.21、クロマツで0.15および0.24、アカマツで0.12であったが、食害しなかった樹幹下部および上部を除くと、それぞれ、0.25、0.23、0.40、0.16となり、いずれも樹幹の向きによる差はほとんどみられないようである。

マツノマドラカミキリが食害しなかったところは、樹幹下部では樹皮が1cm またはそれ以上

10) 11)
のとくに厚いところで、樹幹上部では直径が細小さと思われるとところである。樹幹最上部の成虫
の脱出孔はテーダツマでは直径 3.1 cm、クロマツでは 3.2 cm、2.2 cm、アカツマでは 4.6 cm、ハ
クショウでは 3.0 cm であった。クロマツの 2.2 cm の直径は、マツノダラカマキリが繁殖し得
るぎりぎりの太さと思われる。各種ともに樹皮の厚さが 4〜5 mm 以下の薄いところで食害が多く、
樹皮が 1.5〜2.0 mm であったテーダツマの樹高 9.3〜10.3 m 部位では、樹幹表面積 96 cm² に 1
個の穿入孔が作られ、116 cm² で 1 頭の成虫が羽化していた。1976年に調査したクロマツの樹高
4.3〜5.3 m 部位（樹皮厚約 2 mm）で、89 cm² で 1 個の穿入孔があり 164 cm² で 1 頭の成虫が羽
化脱出していった。同じクロマツの 5.3〜6.3 m 部位（樹皮厚約 1.5 mm）では、83 cm² で 1 個
の穿入孔がみられたが、脱出孔は 208 cm² で 1 個であった。この場合、6.3 m 高では直径が 2.7
cm で細かったためと思われる。和歌山県の潮部のクロマツ害虫地での調査で、材への穿入孔が
多いところでは樹幹表面積 100 cm² 弱で 1 個の穿入孔が観察され、穿入孔で本調査と似た結果が
報告されている。

3. マツノダラカマキリ成虫の大きさ

マツノダラカマキリの羽化脱出は、各地で調査され、年によって、また地域によってかなり
の差異がみられるが、大体 5 月中旬から 8 月上旬に、加害木から成虫が脱出している。白浜試験
地では、テーダツマからは 1975年 5 月 25 日から 7 月 22 日まで、クロマツからは 1976 年 5 月 25 日か
ら 7 月 2 日まで、上賀茂試験地のハクショウからは、1976年 6 月 22 日から 7 月 14 日まで成虫が羽
化脱出してきた。両試験地で羽化開始日に差がみられたのは、温度差が影響しているためである
よう。5 日間隔でまとめた羽化脱出の経過は、それぞれ図-9 のようになり、やや雄の羽化が早く、
雌がおそい傾向がみられた。捕えた成虫数は、テーダツマを食害していたもので雄 30、雌 37、
クロマツからは雄 22、雌 24、ハクショウからは雄 53、雌 50、で、ハクショウからの脱出がとくに
多かった。

各成虫のさやばね長と体長の頻度分布はそれぞれ図-10、図-11に、各グループの平均値を求め
ると表-1 のようになる。

さやばね長、体長ともに、白浜のものと上賀茂のものとに大きな差がみられる。白浜のものは、
テーダツマから脱出した個体が、クロマツからのものに比べてやや大きい傾向がみられるが、両者
には有意差は認められない。さらに越智らが潮部で繁殖したマツノダラカマキリを調査した結果
とも大きな差はみられない。

ハクショウの樹幹には鳥がついた跡が多くみられた（約 20 カ所）ので、テーダツマやクロマツ
のように、脱出孔、鴨室、穿入孔を調査しなかったので、仮に樹幹表面積 100 cm² あたりの捕虫
数を求めるとき 0.58 となる。ハクショウの樹皮は 0.3 m 高でも約 7 mm と樹幹下部まで樹皮が比較
的薄く、ほとんどの枝（地上 10〜15 cm）まで、マツノダラカマキリが食害していたので、この
値はほぼ食害部樹幹表面積あたりと考えてもよい。テーダツマやクロマツの場合と比較して高密度で

Fig. 9. Number of adults emerged from stem of three pines, *P. taeda* (A),
P. thunbergii (B) and *P. bungeana* (C) every five days.

[] : Male, [] : Female
Fig. 10. Frequency distributions in length of elytron of adult emerged from three pines, *P. taeda* (A), *P. thunbergii* (B) and *P. bungeana* (C).
--- ○ --- Male, - ● - Female

<table>
<thead>
<tr>
<th>Infested pines</th>
<th>Length of elytron (mm)</th>
<th>Body length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>male</td>
<td>female</td>
</tr>
<tr>
<td>P. taeda</td>
<td>15.9±1.47</td>
<td>17.3±1.95</td>
</tr>
<tr>
<td>P. bungeana</td>
<td>18.4±1.63</td>
<td>19.4±1.84</td>
</tr>
<tr>
<td>P. thunbergii</td>
<td>15.8±1.45</td>
<td>17.0±1.21</td>
</tr>
</tbody>
</table>

成虫が羽化脱出したことになる。さらにハクショウでは鳥に殺された個体を考えねばならない。
成虫の大きさに差があらわれた原因として、食害木の樹齢、樹種（穂の質）の違い、地域的な環境の差、白浜ではすでに被害は最盛期を過ぎ、食害し得るマツ類が小径木で非常にすくなくなっているのに比えて、上質林では被害は軽く、マツ類も多い、などさまざまな要因を考えられるが、さらに詳しく調査を続ける必要がある。白浜で繁殖したマツノマダラカミキリ成虫と上質林で繁殖したものとで、その大きさは図-10、図-11、表-1にみられるような大きな差があらわれたことは興味あることである。

4. 被害木の枯死までの生育

調査木の樹幹縦断面を示すと図-12のようになる。

データマツは1961年に植栽され、1973年末には胸高直径13.5 cm、高さ12.41 mに生長し、100本中胸高直径で23位、樹高で21位の上層林冠を占めている林分（5430 本/ha）における優勢木で
あった。テーダマツの樹高生長は春から秋まで生育期間を通して順次枝節を作りながら伸長する。京都における調査では、1段目の枝節の伸長は5月下旬〜6月上旬に終了し、続いて2段目を7月中旬〜下旬までに、さらに続いて3段目を伸長させている。白背では、気温の関係で、京都より旬日早く伸長するものと考えられる。枯れたテーダマツの1974年（枯死年）の樹高生長が59 cmであったが、1段目は43 cm、2段目が16 cmであった。この木の過去の樹高生長量は80〜110 cmで、枝節は3段作っていた。1974年の1段目が43 cm伸びて、さらに2段目も伸長していたことは、1段目の伸長は正常であったと考えてもよいであろう。テーダマツは、2段目の伸長量が1段目よりも多い個体もあるが、2段目は1段目よりも伸長量はすくなく80〜85%の場合が普通である。2段目が16 cm伸びたところで停止していたことは、この2段目の伸長期にあたる5月下旬〜7月中旬のある時期に、何らかの原因で伸長を停止したものと考えられる。さらに、胸高における皮なし直径の生長量は枯死した1974年には2.5 mmで、1969〜1973年の5年間の平均生長量5.1 mmと比べてほぼ半分生長し、生育の前半期は生長していたと考えられる。

ハクショウは1950年に見木樹として1木植栽されている。ハクショウの樹高生長は、田中らの上賀茂試験地における調査によると、5月中旬には生長が続くアカマツ、クロマツ型である。一部には5月中旬以后6月中旬にかけてわずかに伸長する個体もみられる。調査木の1975年（枯死年）の樹高生長は36 cmで、過去の年生長量は30〜40 cmで、1975年の生長量は正常と認められる。また胸高直径の皮なし生長量も1975年は4.6 mmで、1970〜1974年の平均生長量7.9 mmの半分以上も生長していた。

クロマツでは1974年に枯れたものは、過去の平均樹高生長量60 cmに対し、1974年は50 cm、1975年に枯れたものは過去の平均42 cmに対し、54 cmで、両調査木とも枯れた年の樹高生長は正常で、直径も過去の年生長量の約50%は生長していた。

5. マツノザイゼンシュウの確認

1974年10月下旬に、針葉が枯れ変したテーダマツ樹幹の胸高部位付近から採取した材片と1975年に羽化したマツノマダラカミキリ成虫から、さらに、ハクショウでは1976年に羽化した成虫からマツノザイゼンシュウを分離確認した。

6. 調査木の枯死とマツノマダラカミキリ——マツノザイゼンシュウ

日本在来のアカマツ、クロマツがマツノザイゼンシュウを保持したマツノマダラカミキリの後遺の際に、その傷口から侵入したマツノザイゼンシュウのために、急激に萎調し、マツノマダラ
カミキリの産卵を許し、その繁殖の場となっていることは周知の事実である。クロマツでの生長経過をみると、本調査区においても枯れた年の樹高生長量はその連年生長量と差がなく、さらに、白浜試験地で1976年にマツノザイセンチュウのために枯れたクロマツ10本について、樹高生長を調査した結果、平均連年生長量は、1976年は65 cm、1975年—68 cm、1974年—68 cm、1973年—61 cm、1972年—65 cmで枯れた年の生長量は連年生長量とほとんど同じである。白浜でのクロマツの樹高生長は5月中旬～下旬には終えるが、5月中旬頃から発生したマツノマダラカミキリによって選ばれたマツノザイセンチュウのために枯れても、マツノザイセンチュウの樹体内での繁殖加害期間を考えれば、樹高生長は正常に終ってから枯死することになる。

さらに述べたデーマツおよびハクショウの枯死までの生育状況から、デーマツでは2段目の枝節を伸長させている6月～7月に、ハクショウでは樹高生長が終わった6月以後に、何らかの障害が生育に対して作用したために枯れたと考えられ、このことは直径生長からも認められる。障害の要因として、つきのようなことが考えられる。

1) 両樹種ともに、生長を停止したと思われる時期は、マツノマダラカミキリの羽化脱出期またはそれに続く近い時期である。
2) 枯れたデーマツ、ハクショウの枝条に数多くのマツノマダラカミキリ成虫の後食痕が認められた。
3) デーマツが生育していた白浜試験地のアカマツ、クロマツはマツノザイセンチュウーマツノマダラカミキリの被害をうけていた。ハクショウの上質茂試験地においても、マツノザイセンチュウが確認され、一部のアカマツは被害をうけていた。
4) デーマツの材片、図被害材から脱出したマツノマダラカミキリ成虫に、マツノザイセンチュウが認められた。

以上のようなことから、デーマツ、ハクショウの生長停止、枯死に、マツノザイセンチュウーマツノマダラカミキリが関与したものと推論してもよいであろう。

あとがき

多くのマツ属のうちには、デーマツ他数種のように、マツノザイセンチュウに対して抵抗性を持っていることが報告されている種類や、リュウキュウマツ（P. luchuensis）やフランスカイガルショウ（P. pinaster）のように、アカマツ、クロマツと同じような激しい被害をうける種類も存在している。

デーマツはマツノザイセンチュウに抵抗性を持っている種類のなかでも、とくに強いものと考えられていた。ここに、非常に稀らしいことと思われるが、デーマツの枯死にマツノザイセンチュウが関与していたと思われる事例を報告した。しかし、この被害デーマツは、現在のところ、白浜試験地のデーマツ実験林の中の唯一の例であること、塩を接して生していたクロマツ林はマツノザイセンチュウーマツノマダラカミキリのために全滅してしまうことも報告しており、ハクショウの場合には、これまでに被害報告がなく、結論を得るにはさらに今後の調査を待たねばならないであろう。今後は京都大学農学部附属演習林に育てられている多くの外国産のマツ属について、マツノマダラカミキリの食害状況、マツノザイセンチュウに対する感受性などの調査を続ける予定である。
Résumé

It is well-known that the severe damages to Japanese red and black pine in pine stands throughout western Japan have been attributed to the attack of nematode (*Bursaphelenchus lignicolus*) and sawyer (*Monochamus alternatus*).

A Loblolly pine (*P. taeda*) at Shirahama Experiment Station in Wakayama prefecture and a Lace–bark pine (*P. bungeana*) at Kamigamo Experiment Station in Kyoto prefecture were withering respectively in autumn, 1974 and 1975, and these stems were infested with Japanese pine sawyer.

DBH and tree height of Loblolly pine were 13.2 cm and 13.0 m in 1974, and the adults of *Monochamus alternatus* emerged from its stem in 1975. In the case of Lace–bark pine, its DBH and height were 12.6 cm and 7.4 m in 1975, and the adults emerged in 1976.

Size of *Monochamus alternatus* adults emerged from these stems was measured with length of body and elytron, and the entrance of gallery, pupal cell and emerged hole was observed in 1975 and 1976, respectively.
The results obtained from the investigations were as follows:

1. The fed wound by longicorn had been marked on 1~5 years old branches in Loblolly pine, and 1~7 years old branches in Japanese black pine. The total numbers of the fed wound on twigs or branches were 243 in a Loblolly pine and 231 in a Japanese black pine, especially there were many fed wound on 1~3 years old branches (Fig. 2).

 Its width was 2~10mm in Loblolly pine and 3~10mm in Japanese black pine, and fed wound of 4~6mm width was about 78% in the former and about 70% in the latter. The longest adult feeding mark was 143mm length in the Loblolly pine, and 135mm length in the Japanese black pine. But there were many less than 30mm in length (Fig. 3).

2. The area of fed wound on twigs or branches was in proportion to the product of length and width. Namely, the area was 0.886 times of the product of length and width (Fig. 4), it was estimated that the total wound area was 235cm² in a Loblolly pine, and 305cm² in a Japanese black pine. In the case of the mean area of adult feeding marks on branches of same age, the younger the branch age was, the larger the mean area of fed wound was.

3. After the larvae of Monochamus alternatus bored a hole into xylem, the sawyers died about 45% before the adults emerged from xylem (Fig. 8). The emerged hole was in average of whole stem 0.21 in Loblolly pine, 0.15 and 0.24 in Japanese black pine and 0.12 in Japanese red pine per 100cm² of stem surface.

4. Monochamus alternatus adults emerged from May 25 to July 22 from Loblolly pine stem in 1975 and emerged from May 25 to July 2 from Japanese black pine in 1976 at Shirahama, and the emergence of longicorn was observed from June 22 to July 14 in 1976 at Kamigamo (Fig. 9).

5. Size of adult (length of body and elytron) emerged at Kamigamo was larger than that emerged at Shirahama (Fig. 10 and 11, Table 1).

6. In the case of Loblolly pine and Lace-bark pine infested with Monochamus alternatus, height growth in withering year was similar to annual growth on height, and also diameter growth amounted to half of annual growth on DBH.

7. The nematode (Bursaphelenchus lignicolus) was recovered from Monochamus alternatus adult emerged from Loblolly pine and Lace-bark pine.

8. It seemed that Loblolly pine and Lace-bark pine were withering by the influences of the nematode and were attacked by longicorns.