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Quantification of Terrain Variation in Mountainous
Regions based upon Numerical Map Analysis
by means of Electronic Computer (])

Masami SHIBA, Toshiaki YAMAMOTO and Isac SASAKI
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Résumé

Trend surface analysis is a procedure for separating the relatively large-scale
systematic variations, or trend in mapped data from essentially non-systematic small-seale
variations, or residuals due to loecal effects. This is accomplished by fitted a trend
funetion to a set of data values. Trend fumetion of contour-type map is ecurrently
based mainly on applications of the polynomial and double Fourier models. Both stem
directly from the general linear model, but the structure of a single map observation is
different in the two models, and the kinds of fitted surfaces obtained from a given set
of data generally differ in the pattern of their contour lines.

To provide an effective comparison of the polynomial and Fourier models fitted to the
complex configuration of the actual land surface, a number of statistical tests are
discussed which should assist in determining the optimum amount of complexity to
asceribe to trend.

It is proposed that the configuration of the Fourier model obtained by evalnating the
double Fourier series to the original land surface reveals a remarkable similarity compared
with that of the polynomial model. Conversely, the goodness of fit test of higher-order
polynomial model does not always refleet the spatial correspondence between the polynomial
surface and the actual surface.

Choice of the two types of surface-fitting model, polynomials or double Fourier series,
depends partly on objectives, and no simple conclusion can be given as to which type of
surface-fitting model to use.

The technigues of numerical taxonomy could be use to procedure an objective classifi-
cation system for land surfaces employing Fourier or polynomial coefficients.
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Introduction

Trend-surface analysis of geomorphologic strueture can be used to delineate gross
struetural patterns and thus separate regional from local effect. Resolution of regional,
or large-scale aspects, and local small-scale aspeets usually has been restricted to graphie
methods because numerical methods required extensive computational labor.

Now, however, the computer and suitable programs make it possible {o analyze trends
within sets of data quickly and easily. Information can be reduced to a series of easily
recognizable patterns which, in turn, provide a means of isolating and studying specific
characteristics within these dataDP®HNODRNINLLIY,

Trend-surface analysis is currently used in ore reserve caleulations, geochemical pros-
peeting, analysis of geologic structure maps, and analysis of lithofacies mapg!® 91910,

A growing number of investigators are applying polynomial approximation or “trend”
surfaces to the description of geological and geophysical measurements. Among these are
Miller'?, Krumbein!®, Mandelbaum'®, Whitten®?, Merriam and Harbaugh?®', An

excellent review of trend surface methods and the general problem of mapping geological



142

is given by Miller and Kahn®®, The predominant effort has been to use non-orthogonal
polynomials. Up to now, however, little use has been made of Fourier series for data
a representation in geomorphology and geology?3)24)25)20)27)28)20130)31)32)38)

An exception is the work of Preston and Harbaugh®® who applied double Fourier series
to determine whether complex topography can be represented by interacting harmonic
terms.

This report emphasizes two aspects of the subjeet. The first is a comparison of
Fourier model with polynomial model on a goodness of fit basis that express the per-
centage reduction in total corrected sum of squares, accounted for by the fitted surface
and second is a consideration that brings out some basie similarities in the Fourier
and polynomial models.

Statistical Measures

Goodness of Fif*s3®

Computation of coeffieients of a trend Ffunction is only part of trend analysis. In
addition it is essential to compute measures that express the goodness of fit of the
trend funetion to the data and then to determine whether the trend funection components
are statistically significant. One measure is the amount of a variable, Z, from its mean
value, which is an index of the totla variation within the entire data set. This is cal-
culated by summing the squares of deviations from the mean. The simplest expression is

SST=Z(Zobs“Zobs)2 (1

where S8r is the total corrected sum of squares of deviations from the mean, Zos is the
observed value of variable Z at data points and Zes is the arithmetic mean of observed
values of Z. An alternative, short-cut method is

2
S8r= 3 Zsus _.,«,,(,_Z_%QQM (2)

where » is number of data points. The total sum of squared deviations from the mean, in
turn, may be regarded as consisting of two sources of variation, namely, that part con-
tributed by the trend function, SSe and that part due to deviations from the trend
funetion, S8»:

S8z =88+ 88 (8}

This assumes, of course, that the least-squares criterion has been satisfied and that
the coefficients of the trend function are linear. The sum of squares contributed by the
trend funetion, SSgz, represents the squared difference between the predieted (or trend)
values of Z from the mean value of Z,

S88p=3 (Zirena —Zovs) * (4)

The sum of squares due to deviations is a reflection of the failure of the trend values
to coineide with observed values:
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SSp=3 (Zovs = Zirena) * (5)

In assessing goodness of fit, RBSS, it is convenient to express that part of the total
sums of squares accounted for by the trend function as a percentage becanse this permits
ready comparison of trend functions fitted to different set of data.

One widely used measure, the percentage reduction in total corrected sum of squares
accounted for by the fitted surface or, simply, percent of total sum of squares, is given
by the expression,

RSS=[1——%§§] 100% (6)
which may also be written
P 2
RSS=[1—--§~%E~§5~_—~§*—’;€§@“] 100% )

A perfeet fit of a trend funetion to the data points would yield a value of 100 per-
cent. A fit of 100 percent is uncommon, there being no deviations of data points from the
trend function with a fit of 100 percent. It should be pointed out that a perfect fit
will be obtained if the number of terms in the trend funetion equals the number of data
points, There is little reason to fit a tremd function under such circumstances, a geo-
morphologically reasonable fit possibly being obtained when gridded data are used, but
a very unrealistic evaluation is likely to occur with irregularly spaced data. When the
goodness of fit (RBS8) of a trend funetion is low, it is a signal that most of the variation
present in the data is not represent by the trend function. That is not necessarily bad,
but interpretation of results should be made with this fact clearly in mind. With a low
pereentage of total sum of squares, the deviations or residuals may be geomorphologically
significant, however.

Statistical Tests of Trends
The goodness of fit (BSS) of a trend surface may be tested statistically, by com-

paring the variance due to regression or trend to the variance due to deviations from the
trend. It will be recalled that tests of equality of variances involve the F distribution
and are valid only if the data satisfy certain conditions. If these assumptions can justi-
ficably be made, it may regard the coefficients of the trend function found by least squ-
ares as estimates of the true population regression coeffieients, and test hypotheses about
their nature. Assumptions concerning the data are:

1. The observed values are not clustered into groups. They either oceur on a regular
grid across the area or they oecur at random.

2. The observed values are statistically normally distributed.
Assumptions concerning the deviations are:

8. The deviations are statistically normally distributed about the trend surface.

4. The deviations are uncorrelated with each other, that is to say, they are trend
free across the area, and therefore they do not display autocorrelation.

The significance of a trend or regression may be tested by performing an analysis of
variance, which is the process of separating the total variation of a set of observations
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into components associated with defined sources of variation. This, of course, has been
done by dividing the total variation of Z into two components, the trend (or regression)
and the residuals (or deviations). The degrees of freedom associated with total variation
in a trend analysis are (n-1), where n is the number of observations. The degrees of
freedom associated with regression are determined by the number of terms or eoefficients
in the function fit to the data. Degrees of freedom for deviation are the number of
degrees of freedom associated with total variation minus those that are accounted for
by regression.

A formal analysis of variance (ANOVA) table is shown in Table 1. The mean squares
are found by dividing the variances sum of squares by the appropriate degree of freedom.
By reducing sums of squares to mean squarves, they have been converted to estimates of
variance and may be compared using a F probability distribution. The MSd is the
variance about the regression line; MSr is the variance of the regression line about the
mean. If the regression is significant, the deviation about the regression will be small
compared to the variance of the regression itself. In a general test of a trend-surface
equation, the ratio of interest is that between variance due to regression and variance
due to deviation. The F test gives a probabilitistic answer to be the equation of whether
the variances being examined have been obtained by random sampling from the same
population. Or, is the regression effect not significantly different from the random
effect? An affirmative answer may be interpreted as meaning that (a) the distribution of
7 is random and independent of values of Xji,....,Xu, or (b) the distribution of Z may
be in part a funetion of Xi,....,Xn, but the wrong funectional model has been fit to the
data.

In more formal terms, the F test for signifiecance of fit is a test of the hypothesis
and alternative

Ho: Bi=Pas=ree =Bn=0
Hyt B, Ba,oeeee s B0

The hypothesis to be tested is that the partial regression coefficients are equal to
zero, or in other words, there is no regression. If the computed value of F exceeds the

Table 1. General ANOVA for Significance of Regression of XKth-Degree Polynomial
Trend Surface. Number ofC oefficients in Trend-Surface Equation, not Counting
the bo Coefficient, is m; Number of Data Points is »

Source of Sums of Degrees of Mean

variation squares freedom square F-test
Polynomial ,

regression SSr m MSr

Deviation from o R
polynomial S8d n~m-1 MSd M8r/MSd
Total variation § 88t n-1

T 88r=3(Ztrend-Zobs.)? MS8r=88r/m
T SSdzE(Zobs.—gtrend)z MS8d=88d/n~m-1
TTT SSt=31(Zobs.~Zobs.)?



table value of I, this hypothesis is rejected and the alternative, H: is accepted.

In trend-surface analysis, it is customary for some investigators to fit a series of
equations of successively higher degrees to the data. In such an analysis, a number of
regression sums of squares will be produced, each larger than the preceding sum. The
analysis of variance table may be expanded to analyze the contribution of the additional
partial regression coefficients and give a measure of the appropriateness of increasing
the order of the regression. The test is developed by finding the difference in sums of
squares due to regression of the higher polynomial or Fourier equation minus the re-
gression sums of squares due to fitting the lower-order equation. This difference is
divided by the difference in regression degrees of freedom, giving the mean square of
regression due to inereasing the degree of the polynomial. This mean square is then
divided by the mean square due to deviation from the higher polynomial. If the result-
ing F value is significant, the deleted order was contributing to the regression and
should be retained. If the value is not significant, nothing has been gained by fitting
the higher-degree polynomial. An ANOVA table for testing the significance of a higher-
degree trend function is Table 2.

The F test for significance of added terms is a test of the hypothesis and alternative

Ho @ Brrr=Prag=+ereee = =0
Hy o Brsr, Brvg, oo B0
The null hypothesis states that partial regression coefficients after the Ikth term are
all equal to zero, or, they do not contribute to the regression caused by the 1 through
kth term. Remember that the polynomial trend surface of degree p contains k coefficients,
whereas the polynomial equation of the (p-+1) trend contains m coefficients.
Table 2. General ANOVA for the Significance of Increasing the Degree of a Polynomial
Trend from p- to (p-+1)-Degree; Polynomial HEquation of Degree p has %

Coefficients, not Counting the bo Term; Equation of Degree (p-+1) has m
Coefficients, not Counting the bo Term; Number of Observations is n

Source of Sum of Degrees of | Mean
variation squares freedom squares F-test
Regression of "~ ! . T
degree (p-+1) SSrp+1 m MSrp+1 MBrp+-1/M8dp-+-1
Deviation from
degree (p-+1) S8dp+1 n-m-1 MS8dp-+1

ocgion of T
iegrassion of SSep Kk MSrp MSrp/MSdp
Deviation from
degree p SSdp n-~k~1 MSdp
Regression due to o P o, TTT
increase from p to | go )Sflll’_' SSep| MK MSri MSri/M8dp-+1
(p-+1)-degree E P
Total variation 88t ;on-l s

T Test of significance of the (p-+1)-degree trend surface.
TT Test of significance of the p-degree trend surface.
TTT Test of significance of inerease in fit of the (p+1)-degree over p-degree.
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Interpretation of Confidence Intervals on Trend Surface

In addition to determining the statistical significance levels of regression components
in trend analysis, it is also possible to compute an envelope that represents a confidence
level of some specified significance. Confidence lines can be fitted on each side of a trend
line; for example, confidence surfaces can be fitted to tremd surfaces, and confidence
hypersurfaces to trend hypersurfaces. Krumbein®” has outlined the mathematical details of
geologic application of confidence surfaces to trend surfaces.

The distance from the trend surface to either of the two confidence surfaces that
envelope it depends, in part, on the significance level that has been specified. If the
significance level is low, the two confidence surfaces will be relatively close to the trend
surface. Conversely, if the stated significance level is high, the confidence surfaces will
be farther from trend surface. Contour values on confidence surfaces may be in the same
units as the trend surface itself. Confidence surface may be defined either for all points
on a trend surface, considered simultaneously for a given specified signifieance level,
or instead they may pertain to points on the trend surface considered at only one
geographic location at a time. For simultaneous consideration of all points, the confidence
surfaces are farther removed from trend surface for a given significance level.

It slould be pointed out that in the caleulation of significance levels and confidence
surfaces pertaining to trend surfaces some of the basic assumptions that apply to these
probability measures remain unsatisfied. One assumption is that repeated measurements
at the same point will yield a frequency distribution of values of the dependent variable,
or, in other word, values of Z according to notation. The variance of this distribution is
termed that the “error variance”, and is assumed to be the same at all points on the
surface, or, in other words, at all values of the independent variable. Finally, the
deviations from trend surfaces are assumed to be mutually uncorrelated. The other
assumption, that the deviations be mutually uncorrelated, may or may not be satisfied.
Generally, however, the deviation from trend surface will be correlated with each other,
perhaps strongly so. A general effeet is to overstate the significance level.

Comparison of the Structure of High-Order Polynomial Functions
and Double Fourier Series as the Quantitative Model

The General Linear Model®®
The general linear model in its conventional form can be stated as follows:

k
Z=fo+ ngéXi +e (8)

Where 7 is an observable random variable; X, Xq, ..., Xy represent observable independent
variables measured without error; the s are unknown parameters; and & is an un-
observable random variable with mean zero and variance % For map analysis the general
linear model is expressed in its two-dimensional form, as follows:

Z = Lo+ szlgiﬁiniYH—e 9
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Here Z is an observable random variable (the mapped variable in this content), Xy, X,
v, X and Yy, ¥s,...,Y, represent observable independent variables measured without error
(these hecome functions of geographic coordinates in the present context), the f’s are
unknown parameters (the coefficients of the fitted surfaces), and & is an unobservable
random variable with mean zero and variance o%, representing the residuals on the
titted trend surface. The polynomial version of equation (9) involves simply the change
of the subseripts of X and Y to superseripts:
7 = Poo+ i f;lﬁuX ‘¥ite (10

Here X* and Y represent successive powers of the map coordinates X and Y.

The Fourier model can be expressed in the general form of equation (9) as followed®
1)42)43);

¥ N
2= Poo-+ gl §1F(3“Pin) +e {1y

where Pi=9m:X/M and @Q;=2z;Y/N. Here M=m-+1, and N=un-+1. The f:y of the
general linear model of equation (9) now become a series of sine and cosine terms,
yielding generally four Fourier coefficients for each 4, J:
F(B:i;P:Qp =C0:1;008P:C08Q,;+ C8:;CO8P:SINQ; +-SCe;8IN P:COSQ;
+88:8INP:SINQ; {12)

Thus, instead of having simply B, for example, the corresponding Fourier coefficients
are CCas, CS2s, 8Ca, and SSes.

Computation of Equation Coefficients

The method of estimating the coefficient of trend funetions fitted by least squares is
basically the same for any variant of the general linear model regardless of the de-
gree and number of variables involved. To utilize the general linear model, the experi-
menter seleets a set of X’s, ome from each of the X; either at random or by predeter-
mined design. The first set of X’s will be denoted by Xu, Xie,...,Xu; then a 7 value
is drawn at random and is denoted by Z;. When these observed values are substituted
into equation (8), we get

k
ZI:B0+tZlBiX1i+€1 k]

Then the experimenter selects another set of X’s one from each of the X either at
random or by predetermined design. This is repeated until n sets are observed. The entire
set of equations is written as

Zy=Fo-+Pr X1y +PaXpafe e + B X1et61
Zig= o Br Xog+Bo Xog-oeveer “+ BeXox €2

Zn::BO’i‘Banl’{‘B‘ZXTﬁ 'i“ """ 'i“BkX'nk"f”en

or, more compactly, as
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k
%y =P+ ZIBzXﬂ-!_e; F=1,2, e 0 )
=

The least-squares estimates of the f: are obtained by minimizing the sum of squares of

k3
errors >, &2  We obtain
=

L-jZI 312=Z (71“30“}: B: X0t (16)

The values of the B: that produce the minimum sum of squares of errors are obtained
by setting equal to zero the derivatives of L with respeet to each B:, which are

~ kA
aﬁ 22 (71 Bowizc:lﬁini) =)

gBL 22 (Z;— ﬁowz Binz) Xy=0
oL
“(}‘B“'=“2Z' (Aj“ﬁ’()'-z BiXs) Xo=0 a7

......................................................

OL &L, s E oo
Sem 03 (Zp—fo— 2, Bi X ) Xgju=0
83 71 =1

If these equations are each divided by 2 and the term involving the Z’s is transferred
to the right-hand side of each equation, the normal equations are obtained:

72ﬁo~l-612 X1+ Be 2, D TE I F B Z ln——Z Z;
/ﬁ\oj% le“%‘/}\l% j1~1~ﬁ’2 Z XnXabootBa Z lez\jkmz Xy

Bo Z Yo+ Z XX i1+ Pe Z Xt B Z XX = }Tj Xy 19

~ i3 - ~ 7 ., ~ B - B - k3 ’
Bojzl }&jirl“ﬂijz; XX+ Be Z; XspXgatrrere %—ﬁngi X =;21 Xy
i =1 j= =

These normal equations are system of k-1 equations in k-1 unknown (the unknowns
being [;%, ﬁl,..., ﬁk). The solutions of these equations for the ﬁi are also maximum-
likelihood estimators of the unknown parameters (f: when the ervor ¢; satisfy condition
B; the solutions are best linear unbiased estimators when the error & satisfy condition
A. The normal equations can be written in matrix form as follows:

n S X S X e PO B (=7
J J J Fi
PP X PP €79 CTEIRIN X nX s By DXl 09
7 7 J s % B
SXp ZXpXn ZXpXpe ZX B 5 Xl

In this equation the fi\z -yeetor multiplied by the X matrix is equal to the vector con-
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taining Z. This may be done by multiplying the 7 wvector with the inverse of the X
matrix.
According the all the theory in the general linear model, it is necessary to expand
the preceding situation into a polynomial or Fourier model in two variables. These
models are special cases of the general linear model. We shall call these variables
U and V, describe a cubic polynomial equation (20) for the general expression.
Y=a+bU4eV+dU?+-eUV 4 £V24-gUs+ hURV 4 jJUVAHKV? {0
The principal item that deserves deseription is the form of the (U, V] matrix and
its column vector (Y), and the coefficient veetor is to be determined by obtaining the
inverse of the (U, V] matrix, {U, V]! matrix, and multiplying it by the [Y) column
vector. Table 3 shows the complete 10X 10 matrix and its column veetor is based on

Table 3. Cubic and Column Veetor for Orthogonal Polynomial Analysis of Map Data The Complete
10%10 Matrix and Its Column Veector is based on the General Expression for a Cubie
Polynomial as follows;

-1
a Sy N v oswT |zue swv o swveTTisigs sy sgve sye
b | | Doy SWOOSWE WV (XU SIUEV SV [SIUs SRV SIURVE IUVE
WY WSV Sve [Sorv o Suve e |SI0RY SIUEVE SIUVE 3TV

al |y | | Dur Xus DUV DU S0V OXURVE[SIUP UGV SIURVE STURVE
e | | ZUVY | | DUV XUV XUVE S0V UV DUVS DUV SJUSVE S0V DUV
£ Dvey |7 Xve XUVE BIVe XURVE XIUVE XV SI0SVE S0PV UV SIve

PHIDY SUP S0P SUSV DU XUV SUPVE U DUSY XUV RURY?
n | | ZUVY| | SURV SUSY XURVE SIUAV SIUSVE SRV SUSV SIUSVE XIUSYS SIURVe
i | | Suvey| | XuevenusvE SIUVE SIUSVE UV UV SIUSVE SIUPYR ULV SIU Ve
K| [ ZVeY | | SV DUV v SURVE SOV SIVS SISV SUURVE SUVS XUV

T 'The Linear Portion of the Cubic Matrix
TT  The Corresponding Quadratic Matrix

the general expression for a cubic polynomial equation (20). The linear portion of the
eubic matrix is indicated by the L-shaped line in Table 8 that blocks out a 3X 3 matrix.
The corresponding quadratic matrix is indicated by the L-shaped line that blocks out
a 6X6 matrix.

A finite definition of the double Fourier series for surface to gridded data is given
in equation (11). The series is linear with respect to its coefficients and thus the least-
squares method may Dbe used to caleulate the coeffieient. Inasmuch as, this matrix may
written as shown in Table 4.
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Table 4. Matrix BEquation for Least-S8quares Determination of Fourier Series Coefficients

-1
CCoo Y ALC, 23(ACp)® ACAC, e 21 BmDnAyCy
CCy 2IYA4C, 214,00 A, Cy 2HALCHE e i BmDaA,Cy
.= . X . . . .
C8n 21YA3D, 214000 A3 Dy A CAsDy e 2 BmDnAsD,
SSmn 23¥YBmDn 21A4CBmDy IACBmDy e 21(BmDn)?
TT Notation: Ay=COS8(2xiU/M) Bi=8IN(2ziU/M) Y=Mapped variable
Ci=C0082iV/N) D;=8IN(2ziV/N)

M=Maximum U value plus one (Fundamental Wavelength in U direction)
N=Maximum V value plus one (Fundamentsl Wavelength in V direction)
m=Maximum sine harmonic in U direction
n=Maximum sine harmonic in V direction

The coefficients associated with the polynomial model are commonly shown in diagonal
arrangement, in which each succeeding polynomial surface (linear, quadratie, cubie, and
higher-ordered surfaces) occupies a diagonal in the matrix of coefficients. James*® de-
veloped a block arrangement for Fourier coefficients, in which successive blocks (Fourier
surfaces) contain wavelengths of diminshing magnitude. Figure 1 (upper) shows the dia-
gonal arrangement conventionally used for the polynomial model, in which the diagonal
contours represent the usual sequence of linear, quadratic, and higher-ordered surfaces.
The lower diagram, representing the block arrangement used for Fourier coefficients,
has reverse L-shaped contours with values that define the successive blocks.

0 1 -2 3 4 5
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O s i e S
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3| P3p3*| P314%| P3p5*| P33b”

: Higher Degree Cross-product
* * *
41 Pgg*| Pgy>| Pgpb

Pol\momials»- G G U e
<) 9505* P516*
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T
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TTT 2% Quadratic terms
TTTT 3* Qubic terms
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PTTTTT 5% Quintic terms
TTTTTTT 6* Sextic terms
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2
SIN |sC, /// SCy  SS, S, S5, |SC,y 85,5 |SCy,
30 // CCyy  CS3yy  CC3p CS3p K33 C533 [Ty
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TFigure 1. Diagrams Showing Arrangement of Polynomial Coefficient Terms (Upper) and
Grouping of Double Fourier Series Coefficients according to Wavelength (Lower)

Comparison of Geometric Properties of Fourier and Polynomial Modelst® 4142

Because analysis employing double Fourier series models is a form of trend surface
analysis, just. as analysis with polynomials, it is important to compare differences as

Table 5, Comparison of Geometrie Properties of Fourier with Polynomial Model

Polynomial Model Fourier Model
Number of Maximum Number of Number of Maximum
Order independent number of harmonies independent number of
""""""""""""""""""""" variables extrema variables extrema
Number Name
&th k(k+3)/2 (k—1)% hth @k-1)2—1 2k
1 Linear 2 0
2 Quadratie 5 1
3 Cubie 9 4 1 8 4
4 Quartie 14 9
5 Quintie 20 16
6 Sextie 27 25 2 24 16
7 Septic 35 36
8 Octic 44 49 3. 48 36
10 - 65 81 4 80 64
12 — 90 121 5 120 100
14 e 119 169 10 440 400
16 — 152 225 20 1680 1600
17 — 170 256 30 3720 3600

19 - 210 324 40 6560 6400
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similarities between the two forms of series when employed in surface fitting. Table 5
provides a comparison of two important geometrie properties of the two types of surfaces,
namely the maximum number of extrema (maxima and minima) on each surface, and the
maximum number of inflection points on any profile through a surfaee. Direct comparison
of double Fourier series surfaces with polynomial surfaces on a degree-by-degree basis is
not feasible, however, because Fourier surface of a given degree contain more terms and
are geometrically more complicated than polynomial surface of comparable degree.

Instead of the two types of surface may most effectively be compared according to
approximate number of terms. Thus a third-degree polynomial surface that contains 10
terms is most nearly equivalent in number of terms and geometric properties to a first-
degree double Fourier series surface containing a total of 9 terms (one zeroth and
eight first-degree). Likewise, a sixth-degree polynomial surface (28 terms) is most nearly
equivalent to a second-degree Fourier surface (25 terms) and an eight-degree polynomial
surface (45 terms) to a third-degree Fourier surface (49 terms). A surface of specified
degree in these example is defined as containing all possible terms pertaining to that
degree, and terms of all lower degree, including the zeroth degree.

Example of Numerical Terrain Data from Two Kinds of Topographic
Map of Different Scale, 1/25000 and 1/50000

In recent studies for assessing the intricate landform variation and for recognizing
the spatial structure of a dissected relief, these areas were analyzed by the authors with
double Fourier series to determined whether complex configuration of the actual surfaee
can be represented by interacting harmonic terms. ,

Therefore, a suitable data set and computer programs were already available a projeet
which evaluated same sampling patterns. A rectangle with topographic map coordinates of
X (east-west direction) and Y (north-south direction) and in meters measured from the
horders was digitized every 5 mm on both maps of different seale which yielded an altitude
matrix of 60 rows and 60 columns. Figure 2 is computer-drawn terrain block diagram and
contour map produced by an automatic contouring program that uses X-Y plotter, for
digital terrain data of Kanmuri Distriect (1/50000 scaled map, area shown is 15x 15 Km
in extent) respectively.

A double Fourier series containing 0 to 30 terms in vertical and horizontal dimension
of map was fitted to the data. The zero-zero term (arithmetic mean) is of no significance
because the surface was leveled before the Fourier coefficints and power-spectrum square-
root value were computed. Thus secanning of the power-spectrum square-root value provides
a ready method of ascertaining the contribution of term of specified degree.

Figure 3 is manually contoured diagram of power-speetrum square-root values obtained
according to fundamental waveform containing for four harmonies fitted to original data.

Comparison of the Fourier surface obtained by evaluating the double Fourier series
with the original surface reveals a remarkable similarity for higher-degree terms. Despite
the extremely complex configuration of the actual surface, the Fourier surface provides

an approximation of the actual surface that represents more than 99 percent of the
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Computer-Drawn Contour Map (Upper) and Terrain Block Diagram (Lower)
produced by an Automatic Contouring Program that used X-Y Plotter for

Digital Terrain Data of Kanmuri Distriet (1/50000 Sealed Topographic Map).

Area shown is 15x15 Km in Hxtent. Contour Interval is 50m, Profiles
drawn North-South and East-West.
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QOriginal Data. Contour Interval are 100m, 50m, 30m, 20m, and 5m. The
Dominant Wavelength or Periodic Component which is orientated along the
Coordinates characterizes the Altitude Variation in Area.

total sum of squares of the original data.

The Fourier surface, however fails to accord with the actual surface at places along
the edge of the map*®4®, This is because the map-edge values of the Fourier surfaee,
prior to retilting, are the same at opposite points on any two edges. Leveling of the
original surface, fitting of the Fourier surface, and subsequent retilting of the Fourier
surface reduces, but does not eliminate, the edge effect. In such ecircumstances, there
are almost no constraints on the form of the trend surface near the edge of the map.
If high-order trends being fitted to data, extrapolated values near the edge of map may
reach astronomieal proportions. Minor edge effects will exist even if the entire map area
is uniformly covered with control points up to the boundary. Therefore, the deleterious
effect of edge distortions have evoked the authors to apply a “buffer region” which is
an area in excess of the size of the area to be mapped.

Results of fitting polynomial and Fourier surfaces are shown in Figure 4 and 5.
Here, the plots show goodness of fit expressed as the percent of total sum of squares
of equivalent successive polynomial (upper) and Fourier (lower) surface fitted to original
data. Goodness of fit of each sampling avea becomes successively greater with inereasing
the number of terms in lower-order models, however, there being only a slight improvement
in its value from higher-order models. First, seecond, and third-degree Fourier models
are compared with polynomial models that most nearly accord in number of terms (third-,
sixth-, and eighth-degree, respectively). Direet comparison of Fourier model with poly-
nomial model on comparable degree-by-degree basis is that Fourier models provide better



100 A bt
) E:;in 'fg:h
/""'ﬁ;’éfg: 7@?2’:?"‘9"9"":,
o - —* .,-u/
. A;g/:42/ -? m/.""'”m”a
- /A / B
S50 4 oLpct "
1 A
%]
51/
@
jo [+]
3
§ %
O r 1 s, [l 1 L L 1 1 1 i il i, L L i
1 3 5 7 9 n 13 15
n-th degree of P-Model (1/25000)
100 ¢ Y Sy

0P =Amlz et
& »;gf"”"‘w

L Pt
85 ‘jn

°fo

E i o Omgyoji district
350  Iwakikatagai district
¢ o Yotsuya district

§ o Yaoromapp district
& 4 Hirono district

8 12 16 20 24 28
n-th degree of F~-Model (1/25,000)
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TFive Areas of 1/25000 Scaled Topographic Maps.

percentage fit to data than the corresponding polynomial model, and the Fourier models
appear more nearly to represent the complexities present in the actual landform. A
similar comparison my be made between the higher-order models.

Although by including only a few terms with high harmonices, the Fourier model yields
a fitted surface with many undulations and for data that are nearly periodic, should
provide a fit with fewer coefficients than that are needed for polynomial model. An
important disadvantage from the convergence of functional approximation point of view,
however, is that the linear, quadratic and cubic trend components dominates the polynomial
model. Thus, predictions based only on these components of a trend that have higher terms
may lave limited the spatial strueture because the predictions do not take account of
higher systematie effects.

It also suggests that complex land surface can be quantitatively and objectively com-
pared with each other by transforming data representing the surfaces to double Fourier
series coefficients, and, in turn, using the Fourier coefficients as deseriptors of the
surfaces with the techniques of numerieal taxonomy. It should be possible to produce
an objective classifieation system for land surfaces employing the Fourier coefficients.

The  authors have already tried to use coefficients of fifth-degree polynomial trend
surfaces fitted to 89 DTMs which yielded an altitude matrix of 20 rows and 20 columns,
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o

as numerical deseriptors of land surfaces which permit caleulation of similarity coe-
fficients between different pairs of surfaceg®)#9)4748)40)50),

Fourier models may become eonfused, however, if there are linear trends in the data,
because the sine and cosine funeciions have no linear components, and the fit is therefore
distorted. For extrapolation Fourier models are usually worse than polynomial models,
beeause they must repeat the pattern established over the region of data. In short,
Fourier models are most useful for numerical terrain data that are periodic or osei-
Hatory but have no linear trend.

The statistical significance of a trend function may be tested by separating the source
of variation into components. The objective is to determine if components of a trend
function are statistieally significant, or whether they probably reflect chance alone.
Thus, the authors indicated two analyses of variance to compare the statistical validity
of both types of trend functions to the same data set. Table 6 and 7 show the ANOVA
obtained as a result of trend surface fitting to the Hirono Distriet and the Kanmuri
District respectively.

In the analysis of variance format employed, the degree of trend surface; the coe-
fficient of determination (the percentage reduetion in total corrected sum of squares
accounted for by the fitted surface); the confidence interval corresponding to a sig-



Table 6, Comparison of the Error Measures of Polynomial

(Upper) and Fourier
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(Lower) Trend

Surfaces fitting for the Hirono Distriet (Fukui, Shiga and Gifu Prefectures) came from

the Standard Topographieal Map 1/25000.

POLYNOMIAL MODEL

DTM Data by 3600 Grid-Cells digitized every

Degree of  Coefficient of  Confidence Two succeeding Varlance ratio Degree of
trend determination  interval at degree of trend between two freedom
surface the 99% surface succeeding degree
) Ie;vel n-order (n-+1)-order of trend surface
g4 (m)
1 53,33 7.189 mean 1 1978, 4521%* ( 2/3597)
2 63.92 6.323 1 2 351.7264%* ( 3/3594)
3 70.64 5.708 2 3 205.2330%* ( 4/3590)
4 77.50 4.995 3 4 220.,4166%* ( 5/3584)
5 80.44 4.665 4 5 88.3404%% ( 6/3579)
6 83.87 4,306 5 6 89,8628%* ( 7/3572)
7 85.86 3.975 6 7 78.4300%* ( 8/3564)
8 86.55 3.881 7 8 20.5180%* ( 9/3555)
9 88.00 3.671 8 9 42,8028%* (10/3545)
10 89.15 3,497 9 10 33,8327%% (11/3534)
11 90.29 3.313 10 11 34,6959%* (12/3522)
12 91.50 3.106 11 12 38,1971%* (13/3509)
13 93.17 2.791 12 13 60.8463%% (14/3495)
14 94,22 2.571 13 14 42,5473%% (15/3480)
15 94,77 2.453 14 15 22.5804%* (16/3464)
FOURIER MODEL
2 75.46 5.229 mean 2 148.9166%* ( 24/3574)
4 87.20 3.806 2 4 57.6366%* ( 56/3518)
6 92.61 2.929 4 6 28.5252%% ( 88/3430)
8 94.69 2.527 6 8 10.8113%* (120/3310)
10 95.98 2.252 8 10 6.6545%F (152/3158)
12 96.90 2.037 10 12 4,8119%* (184/2974)
14 97.63 1.851 12 14 3.8974%% (216/2758)
16 98.09 1.737 14 16 2.5124%% (248/2510)
18 98.45 1.667 16 18 1.7744%% (280/2230)
20 98.84 1.553 18 20 2.0834%% (312/1918)
22 99.12 1.495 20 22 1.4453%% (344/1574)
24 99,35 1.467 22 24 1.1558%% (876/1198)
26 99.60 1.417 24 26 1.2124%% (408/790 )
ek

Polynomial Model : k=an, m=n-1

[

Test of significance of increase in fit of the m-degree over k-degree trend surface
at the 99% level of significance

Tourier Model ; k=20, m=2(n-+1)

nificance level of 99 percent for all points on a trend surface; two succeeding degrees

of trend surfaces from =- to (n+1)-order; the variance ratioc between two succeeding

degrees of trend surface, in which double star is significant at 99 percent level, single

star, at 95 percent level; and the number of degrees of freedom.

From these analyses of variance (Table ¢ and 7), it may be concluded that the con-
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Table 7. Comparison of the Error Measures of Polynomial (Upper) and Fourier (Lower) Trend
Surfaces fitting for the Kanmuri Distriet (Fukui, Shiga and Gifu Prefectures) came from

POLYNOMIAL MODEL

Degree of  Coefficlent of  Confidence Two succeeding Variance ratio Degree of
trend determination  interval at degree of trend between two freedom
surface the 99% surface sueceeding degree
%) leyel n-order (n-+1)-order of trend surface
nZiy (m)
1 26.49 8.857 mean 1 2381.8100%* ( 2/3897)
2 51.66 7.185 1 2 1214, 6228%* ( 3/3594)
3 54.70 6.959 2 3 60,3143+ ( 4/3590)
4 65.03 6.119 3 4 211.6355%% ( 5/3584)
5 66.31 6.011 4 5 22.7822%% ( 6/3579)
6 73.07 5.379 5 6 128, 0092k ( 7/3572)
7 75.40 5.147 6 7 42, 1704°%* ( 8/3564)
8 76.80 5.005 7 8 23.9514%* ( 9/3555)
9 77.17 4.972 8 9 5.5912%* (10/3545)
10 79.19 4,754 9 10 31.3596%* (11/3534)
11 81.04 4.546 10 11 28.4580%* (12/3522)
12 82.01 4.436 11 12 14.6188%* (13/3509)
13 83.95 4,199 12 13 30.1630%* (14/3495)
14 84.61 4.120 13 14 9.9100%* (15/3480)
15 85.52 4.005 14 15 13.6357%* (16/3464)

FOURIER MODEL

2 59.97 6.556 mean 2 148.9171%* ( 24/3574)
4 77.92 4,908 2 4 51,0631%* ( 56/3518)
6 84.68 4.141 4 6 17.1896%F ( 88/3430)
8 89,93 3.418 6 8 14, 8552%* (120/3310)
10 92.84 2.951 8 10 8.4470%* (152/3158)
12 94.68 2.619 10 12 5., 5870%* (184/2974)
14 95,85 2.403 12 14 3.5735%% (216/2758)
16 96.66 2.260 14 16 2. 4614%% (248/2510)
18 97.48 2.083 16 18 2,581 1%* (280/2230)
20 98.02 1.992 18 20 1.6728%* (312/1918)
22 98.52 1.903 20 22 1.5289%F (344/1574)
24 98.89 1,879 22 24 1.1106%* (376/1198)
26 99,31 1.835 24 26 1.1426%* (408/790 )

##k  Tegt of significance of increase in fit of the m-degree over k-degree trend surface
at the 99% level of significance
Polynomial Model : k=n, m=n-41 Fourier Model : k=2n, m=2(n-+1)

fidence interval corresponding to a significance level of 99 percent and the variance
ratio between two suecceeding degree of double Fourier trend surface, for each area,
diminish rapidly as increasing number of terms, reflecting increased structural com-
plexities of land surface. However, the confidence interval on the polynomial trend
surface is rather wide as compared with that on Fourier trend surface, and the spatial
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distribution of residuals is far from randomness. In addition, the higher-order poly-
nomial trend is not always accompanied by a decrease in the variance ratio between
two suceeeding degrees.

These results suggest that the goodness of fit of the polynomial trend surface by
coefficient of determination does not always refleet the spatial correspondence between
the observed values and the computed values of trend surface, and that even the higher
order trend surface analysis by polynomials is not appropriate for extracting the spatial
strueture of the extremely complex configuration of the actual surface. In fitting trend
surfaces, spatial patterns of control points, for example, spacing or distribution of data
points and maximum number of extrema, are critical. It is desirable that the data
points be more or less evenly distributed within the mapped area. They should not be
clustered in some places and spread far apart elsewhere, because clustered data points
give undue influence to the areas containing them relative to areas in which the points
are far apart.

Therefore, the advanced numerical experiment for evaluating the reliability and pertinence
of trend surface analysis of digital terrain data have to be performed on statistical models.

Residual from Fitted Trend Surfaces™

When a polynomial or double Fourier equation is fitted to the numerical terrain

data, the resulting surface seldom if ever corresponds exactly to the actual observations
at the sample points, because the fit is not perfect. Rather, between the surface and
the observations there is a residual variation, measured by the vertical distance at each
point between the elevation of the point and the elevation of the fitted surface, both
with reference to the data plane. This residual variation, that is the residual is
conventionally designated positive if the observation is above the fitted surface and
negative if the observation is below. Residual may represent random noise or they may
contain geomorphological signifieant information.
They represent random mnoise if the chosen mathematical model truly represents the
observation. If the residuals contain geomorphologically significant information, as is
more common, the basie underlying behavior of the dependent variable may be easier to
recognize once a generalized trend is removed.

Whitten® has already discussed the relation between the degree of equation fitted
and the pattern of residuals. Also, the authors recently studied deviation maps of the
regional disparity as the spatial extent of complex configuration of the land surface
in terms of a dissection model with the compound mesh map.

It was the author’s impression that positive residuals generally corresponded with
structural “high” or anticlines and negative residuals coineided with struetural “low” or
syneline. On the other hand, if the variance changes radically from place to place, in
practice it was often deleterious to separate the regional and local effeets with lower-order
polynomial trends. In this situation, the higher-order polynomial or double Fourier
trend might be applied mathematically with the advantage.
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Concluding Remarks

Mathematically computed trend surface, plane or the extremely complex surfaces that
have regular trends and fitted by the least-squares eriterion, may represent large-scale
or “regional” structural features on the land form, whereas the residuals, the remainder
found by subtracting the actual from the computed value, may represent small-seale or
“local” structure. Trend-surface analysis does not reveal features that eannot be perceived
in the original data with close serutiny; however, trend-surface analysis does strongly
aceentuate structural features that are of less than regional magnitude, and in this
way bring out details that may have gone unnoticed previously.

When chooging a trend, the question to consider is: what geomorphological model is
appropriate, and how is it related to the real world as well as to a statistical model
that can be implemented at the present state of statistical knowledge and of the computer
technique?

The choice of a geomorphological model should be based on theoritical knowledge, on
experience with similar situations, and on interval evidence in the data if they have
already been collected. A simple model, such as a linear or quadratic polynomial, is to
be preferred if the geomorphological model is poorly known or unknown as well as its
form is linear or quadratic., A more complicated model, sueh as higher-order polynomial
or Fourier series, may be useful for a well-defined geomorphological model that eorres-
pouds to that mathematical form, or il lJocal variability is low and well eontrolled.

Here, to compare the goodness of fit of the trend funection to the numerical terrain
data, the two types of surface-fitting models, polynomials and double Fourier models
are derived from the general linear model. Configuration of the Fourier model obtained
by evaluating the double Fourier series to the original land surface reveals a remarkable
similarity compared with that of the polynomial model. In spite of the extremely complex
configuration of the actual surface, the Fourier surface provides such a good approximation
of the actual surface, that is represents more than 99 percent of the total sum of
squares of the original data. The Fourier surface, however, fails to accord with the
actual surface at places along the edge of map. This is due to the fact that the map-edge
values of the Fourier surface must be the same at opposite points on any two edges.
The edge effect is minimized by a “buffer region”.

On -the eontrary, the goodness of fit test of higher-order polynomial model does not
always refleet the spatial correspondence between the polynomial surface and the actual
surface. Choice of the two types of surface-fitting models depends partly on objective.
If the objective is to isolate an extremely simple trend, the low-order polynomial are
superior because they yield simple surfaces than the simplest, or first-degree Fourier
surface. On the other hand, many natural features, including these land forms, are
more realistically represented by Fourier model, refleeting periodicities inherent in the
actual features.

In their capability of representing complexities, however, the higher-order polynomials
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have certain advantage over Fourier series, that is the higher degree polynomials are
more ecapable of representing complicated surface, on a per-term basis than are double
Fourier surfaces.

Finally, Fourier models are probably better when the objective is to isolate periodicities
in digital terrain data, whereas polynomial models are more effective when either simple
or complicated representation is desired and the isolation of underlying periodicities is
not an objective.
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