Preparation of Manno-oligosaccharides by Acetolysis of Mannan

Jun-ichi AZUMA, Makoto SAKANAKA*, Zhang MING and Keizo OKAMURA

加酢分解によるマンノオリゴ糖の調製

東 順一·阪中 誠*·張 鳴·岡村 圭造

Abstract

A new preparation method of homologous series of β -(1 \rightarrow 4)-linked D-manno-oligosaccharides was developed. Manno-oligosaccharide acetates were prepared by acetolysis of mannan isolated from ivory nut meal by extraction with 7% potassium hydroxide and saponified to give a mixture of manno-oligosaccharides. The condition of hydrolysis for 45 min at 50°C was found to be an optimum for the preparation of manno-oligosaccharides. By a size exclusion chromatography on Toyopearl (Fractogel) HW40S, mannooligosaccharides having degree of polymerization up to 8 were isolated and characterized by NMR spectroscopic analysis.

要 旨

 β -(1→4) 結合した D-マンノオリゴ糖の調製法を開発した。ゾウゲヤシより7%の水酸化カリウムを用いて抽出したマンナンを種々の条件下で加酢分解した後ケン化したところ、マンノオリゴ糖の調製には50°C、45分の反応が最適であることがわかった。 得られたマンノオリゴ糖について Toyopearl (Fractogel) HW40S を用いた立体排除クロマトグラフィーを行った結果、8量体までのマンノオリゴ糖を単離することができた。また、得られたマンノオリゴ糖及びマンナンの性質を NMR により解析した。

1. Introduction

A series of β -(1 \rightarrow 4)-linked p-manno-oligosaccharides have been isolated from partial acid and enzymatic hydrolyzates of ivory nut mannan¹⁻⁵⁾, copra meal⁶⁾ and mannan⁷⁾, legume seed galactomannans^{8,9)}, mucilages^{10,11)}, Konjac glucomannan¹²⁾, and wood gluco-

^{*} 浜理薬品工業株式会社 (Hamari Chemicals, Ltd.)

mannans¹³⁻¹⁹⁾. These manno-oligosaccharides were expected to give unambiguous proof for the chemical structure of the original polysaccharides. However, no systematic work has been reported on this subject until now.

In the course of investigating the effects of CO_2 laser on hemicellulose, especially on glucomannan, these manno-oligosaccharides were required as the authentic standard and the model compounds. Previously, we developed a convenient preparation method of cellooligosaccharides by partial hydrolysis of Whatman CF-11 cellulose powder with 72% sulfuric acid followed by HPLC²⁰⁾. At first, we tried to apply this method for preparation of manno-oligosaccharides. However, the concentrated sulfuric acid was found to be inadequate for partial hydrolysis of ivory nut mannan because of its lower molecular weight. Instead, acetolysis was found to give a mixture of manno-oligosaccharides in a high yield.

In this study, we present an extensive study on the preparation of manno-oligosaccharides by acetolysis of ivory nut mannan.

2. Experimental

2.1 General

Optical rotations were determined with a JASCO DJP-181 digital polarimeter at 25°C. The values of molar optical rotation [M] were calculated from those of specific optical rotation, $[\alpha]_{p.}$

Thin layer chromatography (TLC) was carried out on Kieselgel 60 plates (0.5 mm, Art. 5744, Merck) with (A) 1-butanol-2-propanol-water (3:12:4, v/v) and (B) 1-butanol-ethanol-water (5:3:2, v/v) as irrigants. Spots were detected by spraying with 10% sulfuric acid and charring by heating.

Gas liquid chromatography (GLC) was carried out²¹⁾ on a Shimadzu GC-7AG gas chromatograph equipped with flame ionization detectors. Separation was performed on 3% ECNSS-M on Gas Chrom Q in a glass column ($2 \text{ m} \times 0.3 \text{ cm}$) at 190° C.

Nuclear magnetic resonance (NMR) spectra were obtained on a Varian XL-200 NMR spectrometer (200 MHz for ¹H and 50.3 MHz for ¹³C) in deuterium oxide. The ¹H-NMR spectra were obtained at 90°C and chemical shifts in p. p. m. for anomeric protons were given with sodium 2, 2, 3, 3-tetradeuterio-3-(trimethylsilyl) propionate (TSP) as an internal standard. The ¹³C-NMR spectra were obtained at 70°C with complete proton-decoupling and with gated decoupling, and chemical shifts in p. p. m. were given with 1, 4-dioxane (67. 40 p. p. m.) as an internal standard.

High performance liquid chromatography (HPLC) was carried out on a system using a JASCO 880-PU intelligent HPLC pump fitted with Reodyne 7125 sample injection valve, Kyoto Chromato CH-250 column oven, and Shodex RI SE-51 differential refractometer. The prepacked polyvinyl alcohol gel columns (7.6 mm \times 50 cm) of Asahipak GS-220 and GS-320 were used at 60°C and at a flow rate of 0.6 ml/min. Distilled water was used as an eluent. The pressure of the columns was in the range from 1.4 to 1.8 MPa. Chromatograms were recorded and integrated with a Waters M740 data Module.

2.2 Preparation of ivory nut mannan

Ivory nut (*Phytelephas macrocarpa*) were peeled by an electric grinder, crushed and milled to pass 60 mesh screen. The ivory nut meal was extracted with ethanol-benzene (1:2, v/v) for 24hr. The extractive-free ivory nut meal was extracted thrice with 20 vol. of 7% potassium hydroxide at room temperature for 24 hr under nitrogen atmosphere²²⁾. Each extract was recovered by filtration through 15G1 sintered glass filter, neutralized with acetic acid, dialyzed against distilled water, concentrated to a small volume, and poured into 5 vol. of ethanol. The precipitated material was recovered by centrifugation, washed with acetone followed by petroleum ether to give mannan in 17% yield.

2.3 Acetolysis of mannan

Five grams of the dried ivory nut mannan was added with vigorous stirring to mixtures of glacial acetic acid (19 ml), acetic acid anhydride (19 ml), and sulfuric acid (2 ml) kept at four different temperatures (30° C, 40° C, 50° C, and 60° C). Five milliliters of the partial hydrolyzate was taken out at various time intervals and poured into ice-water. The acetolyzate was neutralized with sodium carbonate and filtered to obtain a mixture of manno-oligosaccharide acetates. The manno-oligosaccharide acetates were solubilized in 5 ml of dichloromethane and deacetylated by treatment with potassium hydroxide (0.5 g) in 8 ml of a toluene-methanol mixture (1:3, v/v) for 1 hr at room temperature. The water-soluble manno-oligosaccharides were recovered by repeated addition of distilled water and centrifugation followed by deionization with Dowex 50-X8 (H⁺ form) and 1-X8 (acetate form) resins. Composition of manno-oligosaccharides was analyzed by size exclusion chromatography on Asahipack GS-220.

2.4 Separation and analysis of manno-oligosaccharides

About 500 mg of the manno-oligosaccharide mixture was solubilized in a few ml of distilled water and applied on a column ($6 \text{ cm} \times 112 \text{ cm}$) of Toyopearl (Fractogel TSK) HW40S (TOSOH) and eluted with distilled water at a flow rate of 5.0 ml/min and a pressure of 0.9-1.0 MPa (Knauer HPLC 64 pump). The elution was monitored by Model R401 refractometer (Waters). The individual manno-oligosaccharides were collected automatically with Model SF-139 peak collector (Advantec Toyo) actuated at 220 drops (9.4 ml) per one fraction, and evaporated to dryness. The isolated manno-oligosaccharides were purified by repeated chromatography on the same column. Purity of the isolated oligo-saccharides was checked by size exclusion chromatography on Asahipak GS-220.

2.5 Determination of degree of polymerization

Degree of polymerization (D. P., n) of the isolated manno-oligosaccharides was determined from ¹H-NMR spectroscopic analysis and the plots of $R_f/(1-R_f)$ against D. P. ²³ and [M]_n/n against $(n-1)/n^{24}$.

3. Results and Discussion

3.1 Characterization of ivory nut mannan

The isolated mannan corresponded to mannan A previously isolated by Aspinall *et al*²²⁾. and had $[\alpha]_{D}^{\infty}$ value of -40.7° (*c*, 1.1 in N NaOH). Acid hydrolysis followed by GLC as alditol acetates yielded arabinose (2.5%), mannose (92.3%), galactose (4.5%), and glucose (0.6%). Although ivory nut mannan A which is extractable with 7% potassium hydroxide has been reported to be less soluble in water¹⁾, 93.5% of the mannan isolated in this paper was found to be soluble in water, indicating its lower molecular weight. The same observation has been reported by Thiem *et al*²⁾. They analyzed the molecular weight distribution of mannan A by gel filtration on Sephadex G-25 and found its molecular weight to be in the range of 830 to 4,100 corresponding to D. P. from 5 to 25. Aspinall *et al*²²⁾. also showed by methylation analysis that mannan A was composed of an average of 10 to 13 residues. In our study, the weight average molecular weight of the water-soluble fraction of the isolated mannan was estimated to be 1,600 corresponding to

Fig. 1 ¹H-NMR spectrum of ivory nut mannan at anomeric region in deuterium oxide at 90°C: (H-1 α , H-1 β), H-1i, and H-In represent anomeric protons of the reducing end, intermediate, and nonreducing end residues. Chemical shifts of these protons were assigned as listed in Table 1.

D. P. about 10 by size exclusion chromatography on Asahipak GS-320 using the isolated manno-oligosaccharides and dextrans having known molecular weights (Pharmacia) as the calibration standard. The same D. P. value was also obtained by ¹H-NMR spectroscopic analysis by integrating the anomeric protons due to non-reducing end (H-ln), intermediate (H-li) and reducing end $(H-1\alpha \text{ and } H-1\beta)$ mannose residues (Fig. 1, Table 1). All anomeric proton signals had $J_{1,2}$ close to 0.9 Hz, compatible with the expected ${}^{4}C_{1}$ conformation of the p-mannopyranose residues. Presence of appreciable proportion of non-reducing and reducing end mannopyranose residues was also confirmed by 13C-NMR measurement (Fig. 2, Table 2). The ¹³C-NMR spectrum of the present mannan could be assigned based on the data recorded in 5% NaOD- D_2O^{25} . From the value (160.4 Hz) of onebond ¹³C-¹H coupling constant, the anomeric configuration of the non-reducing and intermediate glycosidic linkages of p-mannopyranose residues was β . Similarly, the signals due to the reducing end D-mannopyranose residue appeared at 94.7 p. p. m. and 94.6

Oligomers	Melting points(°C)		['H-NMR data (p. p. m.)				
Ongomers	Obs.	Lit. 1)-19)	Obs.	Lit. 1)-19)	H-1α	H-1β	H-li	H-1n
Mannobiose	189—191	198—201	-8.9° (H₂O)	-7° ~-9° (H₂O)	5.19 (1.5) [,] [0.5] [,]	4.90 (1.1) [0.5]		4.73 (1.0) [1.0]
Mannotriose	166—168 (3H₂O)	134—167(3H₂O) 219 (anhyd.)	-23.4° (H₂O)	-20° ~-25° (H₂O)	5.19 (1.6) [0.5]	4.90 (1.1) [0.5]	4.76 (1.1) [1.0]	4.72 (0.9) [1.0]
Mannotetraose	226—228	228—232	−28.7° (H₂O)	$-29^{\circ} \sim -31^{\circ}$ (H ₂ O)	5.19 (1.5) [0.5]	4.90 (1.1) [0.5]	4.75 (1.1) [2.1]	4.72 (1.0) [1.0]
Mannopentaose		60100	30.8° (H₂O)	-30.2° (H₂O)	5,19 (1.5) [0.6]	4.90 (1.1) [0.4]	4.75 (1.0) [3.1]	4.73 (1.0) [1.0]
Mannohexaose			-33.2° (H₂O)		5.19 (1.5) [0.6]	4.90 (1.1) [0.4]	4.75 (1.0) [3.8]	4.72 (1.0) [1.0]
Mannoheptaose			35.7° (H₂O)		5.19 (1.4) ^a [0.6] ^a	4.90 (1.1) [0.4]	4.75 (1.1) [5.2]	4.72 (1.1) [1.0]
Mannooctaose		_	−37.2° (H₂O)		5.19 (1.5) [0.6]	4.90 (1.1) [0.4]	4.75 (1.1) [5.8]	4.73 (0.9) [0.7]
Mannan			-40.7° (N NaOH)	46° (N NaOH)	5.19 (1.4) [0.5]	4,91 (1.1) [0.3]	4.76 (0.9) [8.4]	4.73 (0.9) [1.0]

Table 1 Properties and 'H-NMR data for β -(1 \rightarrow 4)linked D-manno-oligosaccharides

"Coupling constant $(J_{1,2}, Hz)$." Molar ratio.

Fig. 2 ¹³C-NMR spectrum of ivory nut mannan in deuterium oxide at 70°C. Inserted spectra were obtained with gated decoupling to determine anomeric ${}^{1}J_{c,H}$ coupling constants (Hz). Symbols : dioxane (s), nonreducing end residue (C_n), intermediate residues (C_i), and reducing end residue (C_r).

Degidung		Oligomers							
riesidues —		Manno	obiose	Mann	otriose	Manne	tetraose	Manr	nopentaose
		α	β	α	β	α	β	α	β
	C-1	94.69	94.56	94.68	94,68	94.71	94.59	94.70	94.55
	C-2	71.27	71.58	71.31	71.61	71.34	71.64	71.34	71.64
Reducing	C-3	69.85	72.51	69.83	72.54	69.86	72.58	69.85	72.53
end residue	C-4	77.70	77.38	77.65	77.33	77.69	77.35	77.69	77.35
	C- 5	71.91	75.69	71.90	75.67	71.94	75.72	71.94	75.70
	C-6	61.59	61.59	61.53	61.51	61.51	61.51	61.51	61.51
Internal	C-1			100.92		101.00		100.99	
	C-2			70.90		70.96,	70.90	70.94	
	C- 3			72.39		73.41		72.39	
residue	C-4			77.35		77.35		77.35	
	C- 5			75.91		75.95		75.95	
	C- 6			61.53	61.51			61.51	
	C-1	100.99		101.01		101.00		100.99	
	C-2	71.34		71,37		71.40		71.38	
Non-reducing	C-3	73.86		73.84		73.87		74.84	
end residue	C-4	67.71		67.71		67.71		67.71	
	C-5	77.24		77.24		77.35		77.35	
	C- 6	61.95		61.95		61.95		61.94	
Residues		Oligomers							
					011	gomers			
		Mannol	nexaose	Manne	oheptao	se Mar	nooctac	se Ma	nnan
		Mannol a	β	Mann a	oheptao β	se Mar α	β	ose Ma α	nnan β.
	C- 1	Mannol a 94.70	nexaose B 94.56	Manno α 94.68	oheptao β 94.56	se Mar α 94.71	nooctac β 94.59	ose Ma <i>a</i> 94.70	nnan β. 94.55
energy and the second	C- 1 C- 2	Mannol α 94.70 71.31	nexaose β 94.56 71.64	Manno α 94.68 71.31	oheptao β 94.56	se Mar α 94.71 71.31	nnooctac β 94.59	ose Ma α 94.70 [170.5]	nnan β 94.55 [160.0] ³
Reducing	C- 1 C- 2 C- 3	Mannol α 94.70 71.31 69.85	94.56 71.64 72.54	Manne α 94.68 71.31 69.85	011 pheptao β 94.56 72.54	$ se Mar \alpha 94.71 71.31 69.85 $	nooctac β 94.59	ose Ma <i>α</i> 94.70 [170.5]	nnan β 94.55 [160.0]
Reducing end residue	C-1 C-2 C-3 C-4	Mannol α 94.70 71.31 69.85 77.65	94.56 71.64 72.54 77.35	Manne α 94.68 71.31 69.85 77.65	5heptao β 94.56 72.54	se Mar α 94.71 71.31 69.85 77.65	nnooctac β 94.59	ose Ma α 94.70 [170.5]	nnan β 94.55 [160.0] [•]
Reducing end residue	C-1 C-2 C-3 C-4 C-5	Mannol α 94.70 71.31 69.85 77.65 71.93	hexaose β 94.56 71.64 72.54 77.35 75.69	Manne α 94.68 71.31 69.85 77.65 71.93	94.56 72.54	gomers se Mar α 94.71 71.31 69.85 77.65 71.93	nnooctac β 94.59	ose Ma α 94.70 [170.5]	nnan β. 94.55 [160.0]
Reducing end residue	C-1 C-2 C-3 C-4 C-5 C-6	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51	94.56 71.64 72.54 77.35 75.69 61.51	Manne α 94.68 71.31 69.85 77.65 71.93 61.51	011 pheptao β 94.56 72.54	gomers se Mar α 94.71 71.31 69.85 77.65 71.93 61.51	nnooctac β 94.59	ose Ma <i>α</i> 94.70 [170.5]	nnan β
Reducing end residue	C-1 C-2 C-3 C-4 C-5 C-6 C-1	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99	94.56 71.64 72.54 77.35 75.69 61.51	Manne α 94.68 71.31 69.85 77.65 71.93 61.51 100.99	94.56 72.54	se Mar α 94.71 71.31 69.85 77.65 71.93 61.51 100.98	nnooctac β 94.59	ose Ma <i>a</i> 94.70 [170.5] 100.98	nnan β. 94.55 [160.0] ^γ [160.4]
Reducing end residue	C-1 C-2 C-3 C-4 C-5 C-6 C-1 C-2	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94	$\begin{array}{c} \beta \\ \hline 94.56 \\ 71.64 \\ 72.54 \\ 77.35 \\ 75.69 \\ 61.51 \end{array}$	Manne α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94	2011 2012 2017 2017 2017 2017 2017 2017	gomers se Mar α 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95	nnooctac β 94.59	ose Ma α 94.70 [170.5] 100.98 70.95	nnan β. 94.55 [160.0] ²
Reducing end residue Internal	C-1 C-2 C-3 C-4 C-5 C-6 C-1 C-2 C-3	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38	bexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manne α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39	bheptao β 94.56 72.54	gemers se Mar α 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 72.39	nnooctac β 94.59	 bse Ma a 94.70 [170.5] 100.98 70.95 72.37 	nnan β. 94.55 [160.0] ² [160.4]
Reducing end residue Internal residue	C-1 C-2 C-3 C-4 C-5 C-6 C-1 C-2 C-3 C-4	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33	bexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manne α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30	bheptao β 94.56 72.54	gomers se Mar α 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 72.39 77.29	nnooctac β 94.59	 bse Ma <i>a</i> 94.70 [170.5] 100.98 70.95 72.37 77.29 	nnan β. 94.55 [160.0] ²
Reducing end residue Internal residue	C-1 C-2 C-3 C-4 C-5 C-6 C-1 C-2 C-3 C-4 C-5	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33 75.95	1exaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96	bheptao β 94.56 72.54	gomers se Mar 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 72.39 77.29 77.95 77.95	nnooctac β 94.59	 bse Ma <i>a</i> 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 	nnan β. 94.55 [160.0] ^γ
Reducing end residue Internal residue	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33 75.95 61.51	pexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51	2011 2012 2017	gomers se Mar 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 72.39 77.29 77.95 61.50	nnooctac β 94.59	bse Ma α 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48	nnan β. 94.55 [160.0] [•] [160.4]
Reducing end residue Internal residue	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33 75.95 61.51 100.99	1exaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51 100.99	2010 2010	gomers se Mar 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 77.29 77.95 61.50 100.98	nnooctac β 94.59	bse Ma 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48 100.98 100.98	nnan β. 94.55 [160.0] ³
Reducing end residue Internal residue	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-1 \\ C-2 \\ \end{array}$	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33 75.95 61.51 100.99 71.38	1exaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51 100.99 71.38	2011 2012 2012 2013 2015 2017 2017 2017 2017 2017 2017 2017 2017	gomers se Mar 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 77.29 77.95 61.50 100.98 100.98 71.38	nnooctac β 94.59	bse Ma 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48 100.98 71.39	nnan β. 94.55 [160.0] ³
Reducing end residue Internal residue Non-reducing	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ \end{array}$	Mannol α 94.70 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.38 77.33 75.95 61.51 100.99 71.38 73.83	pexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51 100.99 71.38 73.83	2011 2012 2013 2015 2017 2017 2017 2017 2017 2017 2017 2017	gomers se Mar q 94.71 71.31 69.85 77.65 71.93 61.51 100.98 77.29 77.95 61.50 100.98 71.38 73.83	nnooctac β 94.59	bse Ma α 94.70 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48 100.98 71.39 73.83 73.83	nnan β. 94.55 [160.0] ³
Reducing end residue Internal residue Non-reducing end residue	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ \end{array}$	$\begin{array}{c} \text{Mannol}\\ \alpha \\ \hline \\ 94.70 \\ 71.31 \\ 69.85 \\ 77.65 \\ 71.93 \\ 61.51 \\ \hline \\ 100.99 \\ 70.94 \\ 72.38 \\ 77.33 \\ 75.95 \\ 61.51 \\ \hline \\ 100.99 \\ 71.38 \\ 73.83 \\ 67.71 \\ \end{array}$	pexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51 100.99 71.38 73.83 67.71	2011 2017	gomers se Mar q 94.71 71.31 69.85 77.65 71.93 61.51 100.98 77.29 77.95 61.50 100.98 71.38 73.83 67.70	nnooctac β 94.59	bse Ma α 94.70 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48 100.98 71.39 73.83 67.70	nnan β. 94.55 [160.0] ³
Reducing end residue Internal residue Non-reducing end residue	$\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ C-6 \\ \end{array}$ $\begin{array}{c} C-1 \\ C-2 \\ C-3 \\ C-4 \\ C-5 \\ \end{array}$	$\begin{array}{c} \text{Mannol}\\ \alpha \\ \hline \\ 94.70 \\ 71.31 \\ 69.85 \\ 77.65 \\ 71.93 \\ 61.51 \\ \hline \\ 100.99 \\ 70.94 \\ 72.38 \\ 77.33 \\ 75.95 \\ 61.51 \\ \hline \\ 100.99 \\ 71.38 \\ 73.83 \\ 67.71 \\ 77.25 \\ \end{array}$	pexaose β 94.56 71.64 72.54 77.35 75.69 61.51	Manna α 94.68 71.31 69.85 77.65 71.93 61.51 100.99 70.94 72.39 77.30 77.96 61.51 100.99 71.38 73.83 67.71 67.30	2011 2017	gomers se Mar α 94.71 94.71 71.31 69.85 77.65 71.93 61.51 100.98 70.95 77.29 77.95 61.50 100.98 71.38 73.83 67.70 67.30	nnooctac β 94.59	Dese Ma α 94.70 94.70 [170.5] 100.98 70.95 72.37 77.29 95.97 61.48 100.98 71.39 73.83 67.70 77.29 73.83	nnan β. 94.55 [160.0] ³

Table 2 ¹⁸C-NMR data for β -(1 \rightarrow 4)-linked p-manno-oligosaccharides and ivory nut mannan (chemical shifts, in p. p. m.^a)

a) In p.p.m. relative to internal 1, 4 -dioxane (67.40 p.p.m. from TMS). b) Coupling constant (J_{cut} Hz).

p. p. m. were assigned to be α - and β -Dmannopyranoses from their coupling constants, 170.5 Hz and 160.0 Hz, respectively. Based on these physicochemical analyses, we concluded that the molecular weight of the ivory nut mannan extractable with 7% potassium hydroxide is low.

3.2 Preparation of manno-oligosaccharide mixture by acetolysis

Time course and temperature dependence of the conversion of the mannan to watersoluble oligosaccharides were analyzed by acetolysis followed by saponification. Figure 3 shows the change of conversion rate within 3 hr at four different acetolysis temperatures (30°C, 40°C, 50°C and 60°C). Raising the hydrolysis temperature resulted in substantial increase of the conversion rate. In contrast, the conversion rate initially increased with hydrolysis time but became lower by hydrolysis after 2 hr.

Fig. 3 Conversion rate of ivory nut mannan into manno-oligosaccharides by acetolysis followed by saponification. The amount of oligosaccharides soluble in water at acetolysis at (a) 60°C (I), (b) 50 °C (I), (c) 40°C (O), and (d) 30°C (I).

3.3 Effects of hydrolysis temperature and time on composition of manno-oligosaccharides Figure 4 shows the effects of hydrolysis time and temperature on composition of manno-oligosaccharides. The proportion of mannose increased with hydrolysis temperature and time and attained to 93% after 3 hr at 60°C. The proportion of mannobiose increased similarly to that of mannose up to 50°C, but a hydrolysis time longer than 1.0 hr at 60°C promoted further hydrolysis to mannose. At 30°C and 40°C, a homologous series of manno-oligosaccharides having D. P. 3-8 could well be detected within 2.0 hr. At 50°C, the formation of the same oligosaccharides reached a maximum at 45 min and rapidly decreased by prolonged hydrolysis. At 60°C, no mannoheptaose and mannooctaose could be detected and the production of the other oligosaccharides having D. P. 3-6 attained maximum after 30 min. Based on these results together with those shown in Fig. 1, the acetolysis for 45 min at 50°C was concluded to be optimal for production of mannooligosaccharides.

3.4 Separation of manno-oligosaccharides

About 500 mg of the manno-oligosaccharide mixture prepared by acetolysis of ivory nut mannan at 50°C for 45 min followed by saponification was applied on a column of Toyopearl HW40S. Figure 5 shows a typical elution profile which indicates that the manno-oligosaccharides having D.P. of 2-8 were separated within 4 hr. By a single

Fig. 4 Effects of acetolysis time and temperature on oligosaccharide distribution profile: mannose (○), mannobiose (●), mannotriose (□), mannotetraose (■), mannopentaose (△), mannohexaose ((▲), mannoheptaose (×), and mannooctaose (●). Acetolysis temperatures at (a) 60°C, (b) 50°C, (c) 40°C, and (d) 30°C.

chromatography, 102 mg of mannobiose, 90 mg of mannotriose, 60 mg of mannotetraose, 41 mg of mannopentaose, 22 mg of mannohexaose, 9.8 mg of mannoheptaose, and 4.5 mg of mannooctaose were separated in 84% recovery. Each oligosaccharide was purified by repeated rechromatography on the same column. The properties of the isolated oligo-

Fig. 5 Elution profile of manno-oligosaccharides on Toyopeal HW40S. The numbers (1 to 8) represent the degree of polymerization.

saccharides are summarized in Table 1. Previously Toyopearl HW40S gel was applied to separate homologous series of malto- and isomalto-oligosaccharides^{26,27)}. The present study indicates that this gel can also be applicable for the separation of homologous series of manno-oligosaccharides.

The structure of the isolated manno-oligosaccharides was analyzed by ¹H- and ¹³C-NMR measurements. The assignments of the signals due to manno-oligosaccharides toge-

Fig. 6 Relation between R_f / (1−R_f) and degree of polymerization of manno-oligosaccharides: The R_f values were obtained by TLC using (a) 1-butanol-2-propanol-water (3:12:4, v/v) (○) and (b) 1-butanol-2-ethanol-water (5:3:2, v/v) (●) as irrigants.

ther with original mannan were listed in Tables 1 and 2. Previously, ¹³C-NMR signals of mannobiose and mannotriose have been assigned by Usui et al^{28} . and McCleary et al^{9} . In this study, we extended the assignment of signals up to mannooctaose. With increase of D. P. the intensity of the 6 carbon signals becomes strong due to the intermediate mannopyranosyl residues and the spectrum of mannooctaose becomes similar to that of the mannan. In the case of ¹H-NMR, the anomeric protons of the reducing end, intermediate and non-reducing end mannopyranose residues appeared at 4.90 p. p. m. $(H-1\beta)$ and 5.19 p. p. m. $(H-1\alpha)$, 4.75 p. p. m. (H-1i) and 4.72 p. p. m. (H-1n), respectively, as doublets $(J_{1,2} 0.9-1.0 \text{ Hz})$. Accordingly, all the *D*-mannopyranose residues were deduced to be in the ${}^{4}C_{1}$ conformation. The D. P. values of the isolated manno-oligosaccharides were determined by integrating these signals and the results are also listed in Table 1. As the D.P. of the manno-oligosaccharides became higher, the signal intensity due to the intermediate mannose residues predominated as observed in their ¹³C-NMR spectra. The D. P. values of the isolated manno-oligosaccharides were also determined by TLC and optical rotation measurement. Figure 6 shows plots of $R_f/(1-R_f)$ against D. P. using two different irrigants. Both plots showed a good linear relationship, indicating that the isolated manno-oligosaccharides were homologous. Secondly, molecular rotation values of the isolated manno-oligosaccharides and the original mannan were calculated and [M],/n values were plotted against (n-1)/n, where n equals D. P. Figure 7 showed again a good linear relationship, confirming the results that the isolated manno-oligosaccharides together with the original mannan were homologous.

In summary, the present results indicate that the acetolysis followed by saponification and chromatography on Toyopearl HW40S provide an effective preparation method of standard manno-oligosaccharides.

Acknowledgement

The authors express their sincere appreciation to Prof. Tetsuo Koshijima, Wood Research Instisture, Kyoto University for the use of NMR spectrometer.

4. References

- 1) ASPINALL, G. O., RASHBROOK, R. B. and KESSLER, G. : The mannans of ivory nut (*Phytelephas macro-carpa*). Part II. The partial acid hydrolysis of Mannans A and B. J. Chem. Soc. 215-221, 1958
- THIEM, J., SIEVERS, A. and KARL, H.: Präparative Zugänge zu Mannobiose und Laminaribiose. J. Chromatogr. 130. 305-313, 1977
- BROWN, W. and CHITUMBO, K. : Preparation of mannodextrins and their separation by gel chromatography. J. Chromatogr. 66. 370-374, 1972
- McCLEARY, B. V. : Purification and properties of a β-D-mannoside mannohydrolase from guar. Carbohydr. Res. 101. 75-92, 1982
- 5) MUKHERJEE, A. K., CHOUDHURY, D. and BAGCHI, P. : Constitution of the galactomannan from the kernel of green palmyra palm nut (*Borassus flabellifer* Linn.). Can. J. Chem. **39**. 1408–1418, 1961
- 6) KUSAKABE, I., ZAMA, M., PARK, G.G., TUBAKI, K. and MURAKAMI, K. : Preparation of β -1, 4mannobiose from white copra meal by a mannanse from *Penicillium purpurogenum*. Agric. Biol. Chem. 51. 2825-2826, 1987
- 7) KUSAKABE, I., TAKAHASHI, R., MURAKAMI, K., MAEKAWA, A. and SUZUKI, T. : Preparation of cry-

stalline β -1, 4-mannooligosaccharides from copra mannan by a mannanse from *Streptomyces*. Agric. Biol. Chem. 47. 2391–2392, 1983

- 8) WHISTLER, R.L. and STEIN, J.Z. : A crystalline mannobiose from the enzymatic hydrolysis of guaran. J. Am. Chem. Soc. 73. 4187-4188, 1951
- McCLEARY, B. V., TARAVEL F. R. and CHEETHAM, N. W. H. : Prepative-scale isolation and characterisationof 6¹-α-D-galactosyl-(1→4)-β-D-mannobiose and 6²-α-D-galactosyl-(1→4)-β-D-mannobiose. Carbohydr. Res. 104. 285-297, 1982
- TOMODA, M. and KIMURA S. : Plant mucilages. XII. Fourteen oligosaccharides obtained from Bletilla-glucomannan by partial acetolysis. Chem. Pharm. Bull. 24. 1807–1812, 1976
- 11) KATO, K., KAWAGUCHI, Y. and MIZUNO, T. : Structural analysis of suisen glucomannan. Carbohydr. Res. 29. 469-476, 1973
- 12) KATO, K. and MATSUDA K. : Studies on the chemical structure of konjak mannan Part I. Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of the mannan. Agric. Biol. Chem. 33. 1446-1453, 1969
- JONES, J. K. N. and PAINTER T. J. : The hemicelluloses of loblolly pine (*Pinus taèda*) wood. Part I. The isolation of five oligosaccharide fragments. J. Chem. Soc. 669-673, 1957
- MEIER, H. : Studies on glucomannans from Norwegian spruce. Acta Chem. Scand. 14. 749-756, 1960
- PERILA, O. and BISHOP, C. T. : Enzymic hydrolysis of a glucomannan from jack pine (*Pinus banksiana lamb.*). Can. J. Chem. 39. 815–826, 1961
- 16) GYAW, M.O. and TIMELL T.E.: Constitution of a glucomannan from the wood of eastern white pine (*Pinus strobus L.*). Can. J. Chem. 38. 1957-1966, 1957
- 17) MIAN, A. J. and TIMELL, T. E. : Isolation and properties of a glucomannan from the wood of red maple (Acer rubrum L.). Can. J. Chem. 38. 1511-1517, 1960
- 18) TANAKA, R., YAKU, F. and KOSHIJIMA, T. : Enzymatic degradation of acetyl glucomannan I. Preparation of acetyl mannotriose. Mokuzai Gakkaishi. 28. 156–163, 1982
- SHIMIZU, K. and ISHIHARA, M. : Isolation and characterization of oligosaccharides from the hydrolyzate of larch wood glucomannan with endo-β-D-mannanase. Agric. Biol. Chem. 47. 949-955, 1983
- MURAYAMA, M., CHUN, B., AZUMA, J. and OKAMURA, K. : A convenient preparation method of cello-oligosaccharides by high performance liquid chromatography. Bull. Kyoto Univ. Forests. 59. 310-317, 1987
- AZUMA, J., TAKAHASHI, Y. and KOSHIJIMA, T. : Isolation and characterisation of lignin-carbohydrate complexes from the milled-wood lignin fractioin of *Pinus densiflora* Sieb. et Zucc. Carbohydr. Res. 93. 91-104, 1981
- 22) ASPINALL, G. O., HIRST, E. L., PERCIVAL E. G. V. and WILLIAMSON, I. R. : The mannans of ivory nut (*Phytelephas macrocarpa*). Part I. The methylation of mannan A and mannan B. J. Chem. Soc. 3184-3188, 1953
- FRENCH, D. and WILD, G. M. : Correlation of carboydrate structure with papergram mobility. J. Am. Chem. Soc. 75. 2612-2616, 1953
- 24) FREUDENBERG, K., FRIEDRICH, K. and BUMANN, I. : Über Cellulose und Stärke. Justus Liebigs Ann. Chem. 494. 41-62, 1932
- GORIN, P. A. J. : Rationalization of carbon-13 magnetic resonance spectra of yeast mannans and structurally related oligosaccharides. Can. J. Chem. 51. 2375-2383, 1973
- 26) · KONDO, H., NAKATANI, H. and HIROMI, K. : Rapid preparation of maltooligosaccharides from cyclodextrins by column chromatography of hydrophilic vinyl polymer gel. Agric. Biol. Chem. 45. 2369-2370, 1981
- 27) TANAKA, K., KITAMURA, T., MATSUDA, T., YAMASAKI, H. and SAKAKI, H. : Gel permeation chromatography of oligosaccharides using Toyopearl HW40. Toyosoda Kenkyuhokoku. 25. 89-98, 1981
- USUI, T., MIZUNO, T., KATO, K., TOMODA, M. and MIYAJIMA, G. : ¹³C NMR spectra of glucomanno-oligosaccharides and structurally related glucomannan. Agric. Biol. Chem. 43 863-865, 1979