# 木材中のAE波の伝搬特性

## 奥村 正悟・川元スミレ・豊田宮代子・野口 昌巳

# Propagation Properties of AE Waves in Wood

# Shogo OKUMURA, Sumire KAWAMOTO, Miyako TOYOTA and Masami NOGUCHI

## 要 旨

木材中を伝搬するAE波の特性を明らかにするため、シャープペンシルの芯の圧折を擬似AE 源としたときのAE信号波形とスペクトル、それらの伝搬距離による変化、AE波の距離減衰、 伝搬速度などを、数樹種の気乾材と2樹種の飽水材(厚さ10~15 mmの板)について調べた。

AE波には縦波と横波が存在し、繊維方向に伝搬する場合には明瞭に区別された。伝搬距離が 長くなるとAE信号に含まれる高周波数成分が顕著に低下した。距離による減衰は縦波よりは横 波が、繊維方向の伝搬よりは直交方向で、気乾材よりは飽水材で著しく、また板幅によって減衰 の様子が変化した。縦波の伝搬速度は既報の木材中の音速と同様の値が得られ、繊維直交方向の 速度は繊維方向の1/3前後であった。一方、横波の速度は繊維方向で縦波の約1/4であった。

#### 1. はじめに

アコースティック・エミッション(AE)は固体中でひずみエネルギーが瞬間的に解放された ときに発生するため、その原波形は鋭いインパルス状のものと考えられる"。これが弾性波とな って固体中を伝搬していく間に、周波数や振動モードによる速度分散、減衰などのために波形が 変化し、さらにこれを受信したセンサでの変換の過程でセンサの特性に応じたAE信号波形に変 化する。したがって、木材の材料評価や乾燥割れの監視にAEを利用する場合、木材中のAE波 の伝搬特性をあらかじめ把握しておくことは基本的かつ重要な課題の一つである。

木材中の弾性波の伝搬に関しては、伝搬速度(音速)<sup>2,3,4)</sup>,その含水率・温度依存性<sup>3,5)</sup>,減 衰<sup>3,6)</sup>などについて既にいくつかの報告があり、また音速を測定することによって木材の材質<sup>6-9)</sup> や乾燥時の含水率<sup>10)</sup>を評価することも試みられている。しかし、これらのほとんどは弾性波の中 の縦波のみを対象としたものであり、いくつかの振動モードが混成していると考えられる<sup>11)</sup> A E 波の木材中の伝搬特性を、これらの知見のみから予測することは難しい。そこで、擬似 A E 源を 用いて、木材中を伝搬するA E 波(正確にはそれを受信したセンサの出力すなわちA E 信号)の 波形とスペクトル、距離による減衰などを、気乾または温潤状態にある数種の木材について検討 した。また、A E 波が2 個のセンサに到達する時間差を利用して伝搬速度を測定することも試み た。

なお、本研究の概要は第35回日本木材学会大会(昭和60年4月、東京)において口頭発表した。 また、本研究の一部は昭和59年度科学研究費補助金(一般研究B,代表者野口昌巳)によった。

#### 2. 実 験

実験として,繊維方向に比較的長い試料を用いてAE波の波形とスペクトル,および主に繊維 方向におけるAE波の距離による減衰を調べた実験Iと,比較的短い試料を用いてAE波の伝搬 速度を求めた実験IEを行った。

#### 2.1 試料

実験Iに使用した試料の樹種,形状,比重などを Table 1 に示す。木取りは板目,まさ目,

|              | 1                     | 1                                                         |                     |
|--------------|-----------------------|-----------------------------------------------------------|---------------------|
| Species      | Moisture<br>condition | Dimension<br>(mm)                                         | Specific<br>gravity |
| Mizunara     | Aa)<br>Wa)            | $63 \times 10 \times 2200$ b)                             | 0.70                |
| Buna         | A                     | $57 \times 10 \times 1950$                                | 0.52                |
| White seraya | A<br>A                | $50 \times 15 \times 1010$<br>$200 \times 15 \times 1000$ | 0.43                |
| Sugi         | A                     | $45 \times 10 \times 3020$                                | 0.40                |
| Hinoki       | W<br>A                | $30 \times 10 \times 304$<br>$65 \times 13 \times 3000$   | 0.76<br>0.41        |
| Douglas fir  | А                     | $50 \times 13 \times 3035$                                | 0.58                |

Table 1 Specimens for Experiment I.

a) A and W, air-dried and wet conditions, respectively.

b) (width)×(thickness)×(length along the fiber direction)

追まさが混在している。実験Ⅱの試料もⅠと同様であるが、繊維直交方向の伝搬速度測定には幅 10 cm 程度の試料を用いた。試料の含水率は気乾状態で13~17%、ミズナラとスギの温潤状態で はそれぞれ87%と134%であった。

#### 2.2 A E 計測

A E計測には、空間フィルタを用いたA E エネルギー解析装置(NF製A E F T アナライザ A E-973)を利用したが、それを含めたA E計測システムの概要を Fig.1 に示す。A E F T ア ナライザは2 チャンネルの信号を増幅、包絡線検波、しきい値弁別する機能および両信号の時間 差を監視する機能を備え、2 個のA E センサに定められた時間間隔(2~32 µs)内に到達した A E 波のみを有効とする方法(空間フィルタ)を利用して、狭い監視領域で発生するA E のみを 計測するための装置である。空間フィルタの機能を使わないときは1 個のセンサを用いた通常の A E 計測も可能である。

2.3 擬似AE源

実験 I および II の目的を達するためには, 試 料の任意の位置で常に一定のエネルギー解放を 伴う A E を発生させる必要がある。そこで, シ ャープペンシルの芯を試料に押し当てて折るこ と(圧折)によって, 試料表面の1点で瞬間的 な荷重変化すなわち擬似的な A E を発生させる



Fig.1 Block diagram of AE measurement system.

ことにした。この圧折は、AEの原波形解析で試料および計測系の応答関数を求めるときの擬似 AE源として利用されているもので、瞬間的な荷重解放がステップ状関数を示すこと、AE計測 が対象とする周波数成分を含むこと、再現性のあることなどが確かめられている<sup>11,129</sup>。用いた芯 は硬度B,直径0.3mmであり、圧折時の保持角度、芯の出は一連の実験で一定になるようにし た。

2. 4 波形とスペクトルの観察(実験 I)

試料の長手方向の一端に0.1~1 MHz で平担な周波数特性(±10dB)をもつセンサをシリコングリスの塗膜を介して圧着し、センサから5~160 cm離れた点でシャープペンシルの芯を圧折した(Fig.2a)。 A E は総合利得 60 dB、しきい値50または 100 mV として測定し、ウェーブメ



Fig. 2 Schematic diagrams of (a) artificial AE generation and (b) spatial filteration in AE detection, in which only AEs generated within a shaded area are detected.

モリで時間軸変換した信号の波形と周波数スペクトル(平均数8)をFFTアナライザで観測した。

2.5 距離減衰の測定(実験 I)

A E 波の伝搬距離を5 または 10 cm 刻みで変化させたときのA E 信号波形を,前項と同様の方法で観測し,信号振幅の極大値をFFTアナライザのC R T上で測定した。振幅値は各伝搬距離について10回測定し,その平均値をA E 振幅とした。

2.6 伝搬速度の測定(実験Ⅱ)

Fig. 2b に示したように, 試料の両端にAEセンサを固定し, AEFTアナライザの空間フィ ルタの機能を作動させておくと, 双曲線状の曲線ABとCDにはさまれた領域で発生したAEの みが計測対象となる。このとき, 曲線AB, CDと両センサを結ぶ直線の交点をそれぞれP, Q とすると, この直線方向のAE波の伝搬速度 v は次式で求められる。

$$v = PQ/\Delta t \tag{1}$$

ここで、*4t* はAEFTアナライザの時間差監視回路で設定した時間差である。

実験では、*4t* を 8, 16, 32 µs に設定し、両センサの中間付近でシャープペンシルの芯の圧折を 繰り返して曲線 A B と C D を定め、式(1)によって伝搬速度を求めた。 なお、それぞれの *4t* で 5 回ずつ測定し、それらを平均して各試料の伝搬速度とした。なお、この実験に用いたセンサは共 振特性 (150 kHz) をもつタイプである。

# 3. 結果と考察

#### 3.1 波形とスペクトル(実験 I)

繊維方向に伝搬したAEの波形とスペクトルの例を,ミズナラとベイマツについて Fig.3 に 示す。図から,実験に用いた擬似AE源は,いわゆる突発型AEに類似したAE波を発生してい ること,そのAE波の振幅は伝搬距離と共に顕著に小さくなることが分かる。また,周波数スペ クトルは,AE源がセンサの近くにある場合は40~150 kHzの周波数範囲で比較的平担であるが, AE源が遠ざかるにつれて次第に高周波数成分が抑制され,20~80 kHzの成分のみが残ってく る。ここで注目すべきことは,一団のAE波の中に少なくとも2種類の波が存在することである。 一つはセンサに最初に到達する振幅の小さな,波長の短い波であり,もう一つは,やや遅れてセ ンサに到達する振幅の大きな,波長の長い波である。この両者はAE源がセンサに近い場合には 区別しにくいが,AE源が遠ざかるにつれてセンサへの到達時間の差が大きくなるため,明瞭に 区別できるようになる。すなわち,二つの波の伝搬速度は本来異なることが分かる。

ところで、AEセンサは一般に指向性をもち、受圧面に垂直な刺激に対して最も感度が高い。

そこで、センサの取り付け位置を3通 りに変えて波形を観測した(Fig.4)。 図から分かるように、AE波の進行方 向に対してセンサの受圧面が垂直にな るようにすると(Fig.4 のC),セン サに早く到達する波の振幅が明らかに 大きくなった。

一般に固体中の弾性波には縦波, 横 波,表面波があり,多くの場合構波の 伝搬速度は縦波の約60%,表面波の速 度は横波の約90%である。また本実験 のように有限厚さの板の場合は純粋な 表面波は存在しない。したがって, Fig.3 と 4 にみられる二つの波はそ れぞれ縦波と横波に相当するものと考 えられる。なお、繊維方向に伝搬する AE波の波形とスペクトルについては 他の樹種でも同様の結果が得られたが, 繊維に直交する方向では縦波と横波の 区別は判然とせず,高周波成分が低下 する傾向が認められた (Fig. 5)。また, 繊維方向の伝搬で気乾材と湿潤材を比 較すると,湿潤材では振幅の距離によ る低下が著しく,高周波成分のレベル も低くなっており、さらに最大振幅に 達するまでの時間が長くなり、縦波と



Fig. 3 Waveforms (upper) and frequency spectra (lower) of AEs propagated longitudinally in air-dried specimens of Douglas fir (left) and mizunara (right) through different distances, L.

302



Fig. 4 Effect of mounting direction of an AE sensor on waveforms of AEs propagated longitudinally in air-dried specimens of white seraya (left) and hinoki (right). Propagation distance, 0.3 m.



Fig. 5 Waveforms (upper) and frequency spectra (lower) of AEs propagated longitudinally (left) and radially (right) in air-dried specimens of white seraya. *L*, propagation distance.



Fig. 6 Waveforms (upper) and frequency spectra (lower) of AEs propagated longitudinally in air-dried (left) and wet (right) specimens of mizunara. L, propagation distance.

横波の到達時間差が大きくなった (Fig. 6)。

ちなみに、AE波が気乾材の繊維方向に伝搬するときの縦波と横波の到達時間差と伝搬距離の 関係を、6 樹種の気乾材について Fig.7 に示す。 図から明らかなように、 到達時間差は伝搬距

離に比例し, その比例定数は樹種によらず0.5 ms/m前後であった。このことは, 縦波と横波 がそれぞれ単位長さ伝搬するのに要する時間の 差が樹種によらずほぼ等しいことを意味する。 なお,湿潤材では直線の傾きは気乾材よりも大 きくなり,両波の到達時間の差は気材乾の場合 よりも大きい。

実際のAE計測では種々の波形<sup>44</sup>が観測され るが縦波と横波を識別することは一般に難しい。 これは、使われる試料が比較的小さいために伝 搬距離が本実験よりかなり短いこと、伝搬して くる方向が様々であることなどによるためと考 えられる。

#### 3.2 距離による減衰(実験 I)

気乾材の繊維方向に伝搬するときの振幅(伝 搬距離0.9mの振幅に対する比)と伝搬距離の



Fig. 7 Changes in arrival-time difference between longitudinal and transverse waves with propagation distance for longitudinal propagation in air-dried specimens.



Fig. 8 Damping of longitudinal (○) and transverse
(●) waves propagated longitudinally in airdried specimens. Note that amplitudes are relative to an amplitude at a distance of 0.9 m.

関係を Fig.8 に示す。 図から明らか なように,一般にAE波の振幅は伝搬 距離0.5mまでの範囲で急激に小さく なり、それ以降の減衰は緩やかであっ た。しかし、距離0.1mと0.9mの振 幅比は樹種によって異なり、また横波 の方が縦波よりも距離による減衰が強 く現れる傾向があった。繊維に直交す る方向でのAE波の減衰については, 試料の都合上定量的な結果を得ること ができなかったが, Fig.5 の波形から 繊維方向よりも減衰の著しいことは確 かである。なお, Fig.8 の値を両対数 グラフにプロットすると、縦波で-1 ~-1.5, 横波で-1.2~-1.7の傾き が得られるが、ばらつきがかなり大き く,この距離範囲で直線関係が仮定で きるかどうか判断できなかった。

Fig.9は同一試料の湿潤と気乾状態 で距離減衰を測定したものである。 Fig.8と比べて気乾材の距離減衰がう まく測定できていないようであり,ま た測定値のばらつきも大きいが,湿潤 材の減衰が気乾材よりもかなり大きい ことが分かる。

A E 波の減衰には広がり損失,内部 摩擦による損失などが関与するが,広 がり損失は試料の形と寸法に密接に関 係し,試料寸法が異なれば距離減衰の

様子も変化するはずである。そこで,ホワイトセラヤ気乾材の板(厚さ1.5 cm)を用い,幅を 1.3~20 cm に変えて振幅と伝搬距離の関係を調べた(Fig. 10)。図から,AE源からの距離が同 一の場合の振幅は試料の幅が狭いほど大きいこと,試料の幅によって減衰の様子が異なり,とく に横波では幅が広くなるに伴ってAE源に近いところでの減衰が顕著になることが分かる。

3.3 伝搬速度(実験Ⅱ)

3.1節で述べたように、木材中を伝搬するAE波には縦波と横波が存在しているため、2.5節 の方法でAE波の伝搬速度を求める場合には注意が必要である。すなわち、AE事象を認知する ためのしきい値のレベルが低い場合には縦波の速度を、高い場合には縦波の速度を求めることに なる。そこで、この点に注意しながらしきい値を設定し、7樹種の気乾材とミズナラ、スギの湿 潤材について、繊維に平行および直交方向の伝搬速度を測定した。なお、湿潤材については、水 温を20または60°Cに設定した恒温水槽に試料を浸して測定した。結果を Table 2 に示す。

Table 2 の縦波の速度は既に報告されている結果2~5) と同様であり、気乾材の繊維方向では



Fig. 9 Damping of AE waves propagated longitudianally in air-dried and wet specimens. Note that amplitudes are relative to an amplitude at a distance of 0.3 m.



Fig. 10 Effect of specimen width on damping of AE waves propagated longitudinally in air-dried specimens of white seraya.

4.4~5.8 km/sの値を示し,直交方向の速度はその1/3 程度であった。一方,湿潤材の繊維方向の速度は値のばらつきが大きいが気乾材の80%程度の値を示す場合が多く,直交方向では気乾材とほとんど差がなかった。湿潤材の温度の影響は,60°Cの方が速度がやや低い傾向が認められるものの,明確ではなかった。表には繊維方向に伝搬する横波の速度も示したが,この値はFig.7 に示した直線の傾きと,縦波の速度から計算によって求めたものである。横波の速度は気乾材,湿潤材ともに縦波の約1/4 であった。

|                                | Air-dried                                                                |                             | Wet                                 |                          |                                     |                            |
|--------------------------------|--------------------------------------------------------------------------|-----------------------------|-------------------------------------|--------------------------|-------------------------------------|----------------------------|
|                                |                                                                          |                             | at 20° C                            |                          | at 60° C                            |                            |
| Species                        | υ <sub>⊾</sub> b)<br>(km∕s)                                              | υ <sub>τ</sub> ь)<br>(km∕s) | υ <sub>∟</sub><br>(km∕s)            | υ <sub>т</sub><br>(km/s) | υ <sub>ι</sub><br>(km∕s)            | . υ <sub>т</sub><br>(km∕s) |
| Mizunara <sup>d)</sup> A<br>B  | $4.5 (1.5)^{\circ}$<br>5.1 (1.5)                                         | 1.4                         | 5.3 (0.9)<br>3.9 (0.9)              | 2.0<br>2.1               | 4.3 (0.9)<br>3.8 (0.8)              | 1.8<br>1.7                 |
| Buna                           | 4.4 (1.5)                                                                | 1.4                         |                                     |                          |                                     |                            |
| White seraya<br>Mizume         | 4.5 (1.2)                                                                | 1.8                         |                                     |                          |                                     |                            |
| Sugi <sup>e)</sup> A<br>B<br>C | $\begin{array}{c} 4.4 & (1.3) \\ 5.1 & (1.4) \\ 5.8 & (1.4) \end{array}$ | } 1.5                       | 3.2 (1.0)<br>4.2 (1.1)<br>3.7 (1.0) | } 1.5                    | 2.7 (0.9)<br>4.2 (1.1)<br>3.6 (1.0) | } 1.7                      |
| Hinoki                         | 5.7 (1.6)                                                                |                             |                                     |                          |                                     |                            |

Table 2 Propagation velocities of AE waves a)

a) Velocities of longitudinal waves unless otherwise stated.

b)  $v_{\rm L}$  and  $v_{\rm T}$ , velocities of AEs propagated longitudinally and transversely, respectively.

c) Velocity of transverse waves estimated from that of longitudinal waves and the slopes of the lines such as in Fig. 7.

d) Specimens A and B are taken from heartwood and sapwood, respectively.

 e) Specimens A, B and C contain 5th-15th, 16th-28th and 29th-54th annual rings, respectively.

#### 4. おわりに

A E 液の伝搬特性に関連して実際のA E 計測で問題になるのは、(1)センサが検出した個々の A E が試料のどこでどのように発生したのか、(2)試料に取り付けた1個のセンサでどの範囲の A E 発生をカバーできるのか、(3) A E 源の位置標定にどの波を利用し、伝搬速度およびセンサへ の到達時間をどのように決定するかなどの点である。(1)の点は測定したA E 信号波形をどのよう に解釈するかの問題に帰着し、原波形解析が最も明確な解答を提示できる。しかし、測定系の応 答関数を決定するための擬似A E 源と実際のA E 源の位置はほぼ一致する必要があり、またセン サの指向性およびA E 発生時の荷重解放の方向性を考慮すると、破壊の態様や位置があらかじめ 分かっていないときの解析はかなり複雑になる。

(2)の点については本実験で検討した距離減衰が密接に関係し,発生時に十分な振幅をもつAE も、ある伝搬距離を越すとセンサで検出できなくなる。この距離は、原理的には距離減衰の程度、 発生源における振幅、および測定系の雑音レベルが分かれば容易に求められる。しかし、木材の 場合距離減衰は樹種、試料形状、含水率、波の種類、伝搬方向などによって異なり、またAE信 号振幅はセンサの取り付け方によっても異なる。さらに、発生源でのAEの大きさについても十 分な知見が得られていないため、センサがAE発生を監視できる範囲を簡単に決めることはでき ない。この距離減衰がとくに問題になるのは含水率の高い比較的大きな試料で、しかもAEの発 生位置があらかじめ予測できない場合である。それに当るのは木材乾燥時のAE計測であり、試 料寸法が小さくても減衰の大きい繊維直交方向では伝搬距離が4cmを越えるとAEが検出でき ないことがある<sup>139</sup>。ちなみに、木材乾燥時のAEを本実験と同じ計測系で総合利得 60dB として 測定したとき<sup>140</sup>の平均振幅 0.5 V を伝搬距離 1 cm における振幅と仮定し、振幅は距離 m - 1.5乗に比例するものとすると、振幅は伝搬距離 19~8.8 cm でこの測定系の雑音 レベル 6~19 mV まで低下することになる。しきい値は通常雑音レベルの 2~3 倍に設定することが多いので、そ の場合はこの距離はさらに短くなる。 A E 源の位置標定に必要な伝搬速度の決定とセンサへの到達時間差の測定では、縦波と横波の どちらを利用するかでA E 信号波形の取り扱い方が変わってくる。既製の標定システムでは到達 時間差の測定をA E 信号がしきい値を越えた時点、あるいは振幅が極大値をとる時点を基準にし ている。しかし、本実験の結果からも明らかなように、伝搬距離や伝搬方向によって波形は複雑 に変化するため、このような方法で測定した時間差にはかなりの誤差が含まれる。この点からは、 A E 信号の初動時点すなわち縦波の到達時点を基準にする<sup>13)</sup>方がよいことが分かる。

貴重な試料を提供して頂いた奈良県林業試験場の小林好紀主任研究員に,記して謝意を表しま す。

# 引用文献

- 1) 尾上守夫ほか5名: アコースティック. エミッションの基礎と応用. コロナ社. p. 15, 1982
- 2) 秋山 朗: 木材の振動並びに音響学的性質について. 東大理工学研報. 1 (3, 4). 38-41, 1947
- JAMES, W. L. : Effect of temperature and moisture content on internal friction and speed of sound in Douglas-fir. Forest Prod. J. 11 (9). 383-390, 1961
- 4) BURMESTER, A. : Zusammenhang zwischen Schallgeschwindigkeit und morphologischen, physikalischen und mechanischen Eigenschaften von Holz. Holz Roh- Werkstoff 23. 227-236, 1965
- 5) GERHARDS, C.C. : Stress wave speed and MOE of sweetgum ranging from 150 to 15 percent MC. Forest Prod. J. 25 (4). 51-57, 1975
- DUNLOP, J. I. : Testing of poles by using acoustic pulse method. Wood Sci. Technol. 15. 301-310, 1981
- 7) LEE, I. D. G. : A non-destructive method for measuring the elastic anisotropy of wood using an ultrasonic pulse technique. J. Inst. Wood Sci. 1958 (1). 1-15, 1958
- BECKER, H. : Möglichkeiten der Anwendung von Ultraschall bei der Untersuchung von Holz und Holzspanplatten. Holzforschug 21. 135-145, 1967
- 9) WAUBKE, N. V., MÄRKL, J.; Einsatz der Ultraschall-Impulszeitmessung für die Sortierung von Bauhölzern. Teil 1: Vorversuch mit Kanthölzern. Holz Roh- Werkstoff 40. 189-192, 1982
- JAMES, W. L., BOONE, R. S., GALLIGAN, W. L. : Using speed of sound in wood to monitor drying in a kiln. Forest Prod. J. 32 (9). 27-34, 1982
- 11) 岸 輝雄: 原波形解析における新しいAEの展望. 材料科学. 19(5). 261-266, 1983
- 12) 中尾哲也・田中千秋・高橋 微:木材の曲げ破壊時に発生する大振幅AEの原波形解析.木材学会誌.
   32. 591-595, 1986
- 奥村正悟・川元スミレ・中川雅博・野口昌巳:木材の乾燥応力とアコースティック・エミッション.京 大演報. 58. 251-259, 1986
- 14) 野口昌巳・奥村正悟・川元スミレ:木材の乾燥過程で発生するアコースティック・エミッションの特性 木材学会誌. 31. 171-175, 1985

#### Résumé

To clarify the propagation properties of acoustic emissions (AE) in wood, the signal of a breaking pencil lead was employed as an artificial AE source (Fig. 2) and the waveforms and frequency spectra of AEs propagated in air-dried and wet specimens were observed for several species (Table 1). The damping and the propagation velocity of AE waves in wood were also examined.

AE waves contained both a longitudinal-wave component, which arrived first at an AE sensor, and a transverse-wave one, which arrived later, and they were distinguished clearly when propagating longitudinally (Figs. 3 and 4). AE waves attenuated and changed in form during the propagation in wood, and their components of the higher frequencies

decreased remarkably with propagation distance (Fig. 3). Attenuation of AEs during the propagation in wood was greater for transverse waves than longitudinal ones, and it depended on the propagation direction in wood, the moisture content and the specimen width (Figs. 5, 6, and 8-10). Velocities of longitudinal-wave components were the same as the sound velocities reported previously, and the transverse velocities were approximately 1/3 of longitudinal ones (Table 2). The velocities of transverse waves were estimated at about 1/4 of longitudinal ones when propagating longitudinally.