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Preface 

Rheumatoid arthritis is the long-lasting chronic inflammatory disease that 

affects about 1% of global population. It leads to irreversible joint damage and 

systemic disorders, and decrease of quality of life of patients worldwide. 

Although recent treatment targeting and inhibition of pro-inflammatory cytokines 

with biologic drugs is effective as a short-term treatment but has limitation 

including the suppression of the whole immune system and increased infection 

risk. Thus, novel specific anti-inflammatory therapy is necessary to increase 

therapeutic efficiency and minimize the side effects.  

It was proposed to develop delivery systems to selectively target Toll-like 

receptor 4 (TLR4) as a source of inflammation in arthritic synovium. Augmented 

number of immune cells overexpressing TLR4 in the joints of arthritic patients 

suggest that antagonism of the receptor of activated immune cells may result in 

inhibition of inflammation through the suppression of persistent cytokine 

production. Heparin has attracted much attention as a biomaterial because of 

low toxicity and high biocompatibility, to develop amphiphilic nanoparticles as 

promising drug carriers for various drugs, genes and imaging agents. In addition 

to this, its anti-inflammatory properties can be enhanced towards the particulate 

carrier systems. There is limited knowledge about the mechanisms of activity 

and application of heparin-based nanoparticles as anti-inflammatory agents. In 

this thesis, therefore, novel heparin-lipid nanoparticles for selective TLR4 

targeting were first developed. Then, mechanism and structure-activity 

relationship of anti-inflammatory effect was investigated. Finally, therapeutic 

effect of these nanoparticles was evaluated in murine model of rheumatoid 

arthritis.  

This dissertation consists of three parts. First, synthesis and 

physicochemical characteristics of heparin/D-erythro-sphingosine nanoparticles 

are shown in Chapter I. In Chapter II, the anti-inflammatory activity of these 

nanoparticles is investigated in vitro using cells such as macrophages and 

dendritic cells. Antagonistic effect of these nanoparticles against TLR4 was 

elucidated. Furthermore, structure-activity relationship of synthesized 



2 

 

nanoparticles was studied and functional groups responsible for the effect were 

revealed. In Chapter III, therapeutic effect of the nanoparticles is evaluated in 

vivo using collagen type II induced arthritis mice model. Studies in this 

dissertation demonstrate the development of novel heparin-lipid nanoparticles, 

their physicochemical/biochemical characterization and therapeutic application 

in arthritis therapy. The data supports a potential role for suppression of TLR4 

signaling as a novel therapeutic approach in patients with rheumatoid arthritis. 

This work is to the best of my knowledge original, except where 

acknowledgements and references were made to previous works.  Neither this, 

nor any other considerably similar work has been or is being considered to any 

other degree or diploma at any other institution. 
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I.1.Introduction 

Polymeric or macromolecular micelles have extensively been studied as 

vehicles for targeted delivery of various drugs, genes and imaging agents. The 

micelles are self-assembled colloidal particles comprising amphiphilic molecules 

such as two-block copolymers and lipid-grafted macromolecules. Among many 

carrier systems that have been developed, heparin-based nanoparticles are one 

of the attracting ones [1-12]. In addition to low toxicity and high biocompatibility 

like other materials, heparin has a variety of biological activities beyond anti-

coagulation [13-15]. The intrinsic properties of heparin can provide additional 

functionality towards the particulate carrier systems. One typical example is 

anti-angiogenic therapy to suppress tumor growth [16, 17]. Lipid-conjugated 

heparin derivatives retain an ability to bind to angiogenic factors such as 

fibroblast growth factors and vascular endothelial growth factors, so that it can 

significantly decrease endothelial cell proliferation [18, 19]. Another interesting 

property of heparin is its anti-inflammatory activity [13], although related reports 

dealing with heparin-based nanoparticles are limited [20]. Due to its high 

negative charge, heparin can non-specifically bind and inhibit proteins such as 

cytokines, growth factors, cytotoxic peptides, and tissue-destructive enzymes 

which involved in inflammation thereby limiting the activation of inflammatory 

cells, and their accumulation in tissues [14]. Effect of heparin in a range of 

inflammatory diseases was supported by a number of pre-clinical and clinical 

trials [15]. Underlying mechanisms responsible for anti-inflammatory effect of 

heparin are yet to be clarified [21], but notably heparin inhibits recruitment of 

leukocytes to inflammatory sites via blockade of P- and L- selectins which 

critically require 6-O sulfation of glucosamine residues [22]. Furthermore, 

heparin inhibits adhesion and migration of leukocytes in the endothelium by 

binding to cell surface proteins such as β2-integrin adhesion molecule 

CD11b/CD18 and platelet/endothelial cell-adhesion molecule 1 [13]. However, 

the clinical studies showing the effectiveness of heparin in these conditions are 

very limited either due to its anticoagulant effect or non-specificity of action. 



5 

 

Here, self-assembling nanoparticles composed of glycol-split non-

anticoagulant heparin – D-erythro-sphingosine conjugates were prepared and 

their physicochemical characteristics were investigated.  
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I.2. Discussion 

Self-assembling nanoparticles composed of glycol-split heparin/D-

erythro-sphingosine conjugates (NAHNP) were synthesized by carbodiimide 

cross-linking chemistry. Chemical structure of the conjugates was confirmed by 

1H NMR. The conjugates provided spherical self-assemblies in water with mean 

diameters in a range of 110-160 nm. Size of particles tends to decrease with 

increasing degree of substitution of D-erythro-sphingosine. Nanoparticles had a 

highly negative zeta-potential presumably due to sulfo groups of heparins. The 

critical micellization concentration was relatively lower depending on the degree 

of substitution. Partitioning coefficient of pyrene between the micellar and 

aqueous phases indicated that increasing degree of substitution of D-erythro-

sphingosine makes an inner core of self-assemblies more hydrophobic. 

Nanoparticles comprising higher substituted lipid conjugates could form more 

stable self-assemblies, and thus might be more promising candidates for in vivo 

drug delivery and therapeutics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter II 

Characterization and implications for anti-inflammatory 

effect of heparin nanoparticles in vitro 
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II.1. Introduction 

There has been considerable interest in the potential anti-inflammatory 

properties of heparin as it can bind and inhibit proteins critically involved in 

inflammation, limiting the activation of inflammatory cells, as well as their 

accumulation in tissues [20, 21]. However, disadvantages of clinical use of 

heparin for inflammation include a lack of selectivity of action and anticoagulant 

activity inducing hemorrhagic complications.  

 Here, it was demonstrated that NAHNP acts asa selective TLR4 

antagonists and have much greater anti-inflammatory activity than native 

heparin. This means that the heparin/D-erythro-sphingosine nanoparticles can 

block an initial step of pro-inflammatory reactions in primitive immune cells 

which is a different target from that of the above-mentioned action. TLR family 

members are critical for the development of innate and adaptive immunity in 

response to pathogen and endogenous ligands generated in damaged tissues 

[28]. TLRs, particularly signaling through TLR4 have also been implicated in 

both the establishment of diseases such as arthritis [29-33], Alzheimer’s 

disease [34], chronic myositis [35], systemic lupus erythematosus [36] and their 

maintenance. Under the circumstances when the immune system is 

disbalanced, inhibition of TLR4 signaling appears to be important in limiting the 

redundant response during the inflammation. Further it was demonstrated that, 

NAHNP blocks the production of pro-inflammatory cytokines from E. coli 

lipopolysaccharide (LPS)-mediated stimulation of macrophages and dendritic 

cellsin vitro. Macrophages and dendritic cells as essential cells of the innate 

immune system are the major source of pro-inflammatory cytokines after 

stimulation with LPS, a selective TLR4 agonist [37, 38]. In vitro experiments of 

the underlying mechanism suggested the inhibitory effect of nanoparticles was 

due to downregulation of myeloid differentiation factor 88 (MyD88)-dependent 

nuclear factor-B (NF-B) signaling via TLR4 but not other TLRs. In addition, 

the structure-activity relationship for the anti-inflammatory effects was 

investigated and functional groups necessary for the activitywere elucidated. 
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These results shed light on synergistic effects of anti-inflammatory drugs with 

the heparin-based nanoparticulated carriers. 
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II.2. Discussion 

Unlike native heparin, nanoparticles significantly inhibited E. coli 

lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in 

both primary mouse macrophages and DC2.4 dendritic cell line. In vitro 

experiments of the underlying mechanism using mouse macrophages 

suggested the inhibitory effect of nanoparticles was due to downregulation of 

MyD88-dependent NF-B signaling via TLR4 but not other TLRs. Effect of 

NAHNP was higher than native heparin nanoparticles (HPNP) indicating that 

glycol-splitting of non-sulfated uronic acids increases anti-inflammatory activities 

of particles. Experiments using nanoparticles of desulfated heparins suggested 

that 6-O-sulfate groups of D-glucosamine residue was essential for effective 

inhibition, while removal of 2-O-sulfo and 3-O-sulfo groups as well as 

replacement of N-sulfo groups with N-acetyl unaltered anti-inflammatory activity. 

In addition, comparisons among different aliphatic amine-heparin conjugates 

suggested that decrease in alkyl chain length of NAHNP resulted in loss of 

inhibitory activity. 
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III.1. Introduction 

The involvement of Toll-like receptors in the pathogenesis of rheumatoid 

arthritis is supported by an increasing number of studies [51-57]. Notably, 

expression of TLR4 is highly increased in the synovium of rheumatoid arthritis 

patients [58, 59] and TLR4mutant mice are protected from experimental arthritis 

[60-62]. It is thought that extracellular endogenous ligands present in the 

arthritic joints activate TLR4 and contribute to maintaining inflammation [52, 53, 

56, 63-65]. Recently, it was demonstrated that during arthritis, immune 

complexes containing citrullinated proteins greatly increase inflammation 

through MyD88-dependent pathway via TLR4 and activated Fcγ receptors [66]. 

Signaling activated by TLR4 ligands induces proinflammatory cytokine 

expression from TLR4-overexpressing cells such as macrophages, dendritic 

cells and fibroblasts in arthritic synovium [67]. Furthermore, TLR4 expressed on 

CD4+T cells promotes autoimmune inflammation [68]. The generation of 

cytokines such as TNF-, IL-6 and IL-1β regulated by transcription factor NF-B 

is important in the pathogenesis of rheumatoid arthritis. Systemic inhibition of 

these cytokines with biologic drugs is effective as a short-term treatment but 

might also suppress the whole immune system and increase infection risk [69]. 

Evidence supports a role for TLR4 in the pathogenesis of rheumatoid arthritis 

[70-78], thus targeting the receptor of cell populations secreting distinct 

cytokines might be an effective approach to suppressing inflammation. 

Heparins conjugated with D-erythro-sphingosine which was shown to 

blockade pro-inflammatory cytokine production from E. coli lipopolysaccharide 

(LPS)-induced macrophages and dendritic cells, canform stable self-

assemblies, and thus might be promising candidates for in vivo drug delivery 

and therapeutics.Anti-inflammatory effect of heparin has been widely described 

in the literature although the mechanisms responsible for the effects are 

complex and incompletely understood [21]. The primary role of heparin as anti-

inflammatory agent was closely linked to its ability of binding and inhibiting 

proteins such as selectins and growth factors involved in inflammation and 

angiogenesis [13]. In vitro studies showed that NAHNP suppressed the 
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production of TNF-, IL-6 and IL-1β from LPS-stimulated macrophages and 

dendritic cells by inhibiting TLR4-mediated NF-B signaling pathway. This 

suggests that the heparin nanoparticles can block the activation of TLR4-

overexpressing primitive immune cells such as macrophages and dendritic cells 

in arthritic synovium which is a different target of heparin from that of the above-

mentioned activity. 

In this context, here the potential anti-inflammatory effect and therapeutic 

activity of NAHNPs in the collagen-induced arthritis model (CIA) was 

investigated.Thesefindings and potential benefits of these nanoparticles as a 

novel specific treatment for rheumatoid arthritisare discussed. 
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III.2. Discussion 

Rheumatoid arthritis is a chronic, systemic inflammatory disease, which 

damages synovium and leads to destruction of cartilage and bone loss. In 

arthritis synovium the generation of cytokines such as TNF-, IL-6 and IL-1β 

regulated by NF-B is pivotal in the pathogenesis of the disease. Type II 

collagen (CII)- induced arthritis was developed in DBA/1J mice by 

subcutaneous immunization with CII emulsified in complete Freund’s adjuvant 

and boosted intraperitoneally with CII emulsified in incomplete Freund’s 

adjuvant. Heparin nanoparticles were administered by intraarticular injections 

once per day starting from onset of the disease. Intraarticular administration of 

NAHNP to type II collagen-induced arthritis mice significantly suppressed 

progression of the disease from the onset of arthritis symptoms. 

Pharmacological activity of the nanoparticles was associated with suppression 

of TNF-, IL-1β and IL-6 in joints and sera, as well as decreased levels of 

circulating auto-antibodies. Nuclear localization of RelA in vivo was significantly 

inhibited in NAHNP treatment. These results suggest that selective inhibition of 

TLR4–NF-B signaling with hydrophobically modified heparin derivatives 

composited to nanostructures provides an effective therapeutic approach to 

inhibit chronic inflammation in an animal model of rheumatoid arthritis. 
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Conclusion 

In conclusion, novel heparin derivatives with self-assembling properties 

were developed, demonstrating their anti-inflammatory effects mediated through 

the inhibition of the TLR4–NF-B pathway. This is the first research showing the 

hydrophobically modified heparin derivatives function as TLR4 antagonists, in 

addition to uncovering their structure-activity relationship. Moreover, heparin 

nanoparticles were found to suppress inflammation of CII-induced murine 

arthritis model. These results provide a new option of drug delivery and 

therapeutics against rheumatoid arthritis. 
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