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Preface 

 

Gene therapy is expected to become a new treatment for refractory diseases such as cancers and 

virus infections [1-6]. The therapeutic effects of gene therapy depend on the expression profile and 

biodistribution of the transgene product and types of cells expressing transgene product [7-10]. 

Therefore, much effort has been made to develop methods that can regulate these factors. In previous 

studies performed in my labolatory, it was demonstrated that construction of plasmid vectors with 

reduced the number of CpG motifs and optimized promoter allows sustained transgene expression 

[11-13]. The transgene product is sometimes recognized by immune system, which causes immune 

response [14-16]. Induction of transgene-specific immune response could affect transgene expressing 

cells and cause adverse effects [17-18]. Induction of the immune response to transgene products or, in 

other words, the encoded therapeutic protein, is a serious concern in gene therapy [19-20]. 

It is generally known that induction of the immune response depends on several factors, including 

the antigenicity of the protein, types of transgene-expressing cells, transgene expression profile, and 

subcellular localization or secretion of the product [7, 9]. However, the exact nature of the relationship 

between the transgene expression profile and immune induction following gene transfer is unclear 

despite the fact that many efforts by our labolatory and others have been made to develop methods that 

regulates transgene expression profile [11-13]. 

In this study, I investigated the effects of transgene expression profile, type of transgene expressing 

cells and transgene expression level on the induction of transgene-specific immune response. In addition, 

I tried to identify the cells that work as antigen presenting cells (APCs) in the induction of 

transgene-specific immune response after gene delivery by the hydrodynamics-based procedure. 

In Chapter I, the effect of transgene expression profile on the induction of immune response 

against the transgene product was examined. Firefly luciferase (fLuc) was selected as a model anitigen 

and Gaussia luciferase (gLuc) was chosen as a reporter protein. Two types of fLuc-expressing plasmid 

DNA, a long-term expression plasmid pCpG-fLuc or a short-term expression plasmid pCMV-fLuc, 

were injected into mice by hydrodynamic injections along with a gLuc-expressing long-term plasmid 

(pROSA-gLuc) whose transgene expression was used to evaluate the transgene expression profile of 

fLuc-expressing plasmids in the liver affected by immune response because simultaneous injection of 

the fLuc- and gLuc-expressing plasmid DNAs resulted in the expression of fLuc and gLuc in the same 

cells. In addition, the effect of transgene expression in splenic cells and macrophages on the induction 

of immune response was evaluated by spleen removal and macrophage depletion. 

In Chapter I, it was found that high and sustained transgene expression of fLuc induced the 

immune responses to the antigenic protein. However, it was not investigated whether total amount of 

transgene product or the amount of transgene product per cell is important for the induction of 
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transgene-specific immune response. In Chapter II, the relationship between the amount of transgene 

product in each cell and the induction of immune response against the transgene product was examined 

in more detail. Cypridina luciferase (cLuc), a secretory reporter protein that has antigenisity, was used 

as a model antigen. gLuc-expressing plasmid was delivered with cLuc-expressing plasmid as above by 

one high-dose hydrodynamic injection or by three low-dose injections. Then, I examined whether the 

total level of transgene expression or the level of transgene expression per cell is important for the 

induction of transgene-specific immune responses. Finally, I investigated whether hepatocytes work as 

APCs after hydrodynamic injection of plasmid vectors using ovoalbumin (OVA) as a model antigen.  

In this thesis, the results are presented in the following two chapters. 
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Chapter I 

Elucidation of the effect of the duration of transgene expression on the 

induction of transgene-specific immune response 

 

I-1 Introduction 

 

The therapeutic effects of gene therapy depend on the types of transgene expressing cells, as well as 

the expression profile and biodistribution of the transgene, and much effort has been made to develop 

methods that control these factors. In previous studies prformed in my labolatory, it was reported that the 

plasmids with reduced numbers of CpG motifs or with optimized promoter and enhancer can be used for 

achieving sustained transgene expression [21]. It was also demonstrated that these novel plasmid vectors 

can be used to increase the therapeutic effects of interferon gene transfer against tumor metastasis, atopic 

dermatitis or hepatitis. A drawback of sustained transgene expression, however, is that it might increase 

the risk of induction of immune response to the transgene product. Immune response to the transgene 

product or, in other words, the encoded therapeutic protein, is a major concern in gene therapy because it 

would cause serious adverse effects and affect the transgene expression profile [22]. 

Induction of the immune response depends on several factors, including the antigenicity of the 

protein, the type of transgene-expressing cells, transgene expression profile, and the subcellular 

localization or secretion of the product. A previous study suggested that transgene expression in 

antigen-presenting cells (APCs) is a risk factor for eliciting immune response to the transgene [23]. On the 

other hand, studies investigating the relationship between the transgene expression profile and the immune 

response to the product are limited. Bates et al. reported that hydrodynamic injection of plasmid DNA 

expressing firefly luciferase (fLuc) driven by a cytomegalovirus (CMV) promoter, which resulted in a 

transient luciferase expression, hardly induced anti-fLuc antibody production, whereas administration of 

an fLuc expression vector driven by a ubiquitin promoter, which generated sustained transgene expression, 

induced anti-fLuc antibody production [24]. The same group also investigated whether incorporation of 

target sites for APC-specific microRNA (miRNA) in the plasmid and the use of cell type specific 

promoters would be effective approaches for reducing the risk of immune responses to the transgene 

product [25].  

In general, the reduction in transgene expression could be accounted for by two different 

phenomena: the removal of transgene-expressing cells as a consequence of the immune response or a 

reduced efficiency of transgene expression by processes such as promoter inactivation. It is necessary to 

distinguish between these two phenomena to clearly understand the association between the transgene 

expression profile and the immune response. This issue, however, has not been fully addressed in previous 
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studies.  

In the present study, I investigated the effect of the transgene expression profile on the induction of 

an immune response to the transgene product. Accordingly, different types of plasmid vectors were 

administered by hydrodynamic injections to obtain transient and sustained transgene expression profiles. 

fLuc was selected as a model antigen because (i) the amount of fLuc can be quantitatively determined 

using the luciferase assay and (ii) fLuc is immunogenic and elicits an immune response [26,27]. 

The immune response to fLuc-expressing cells was evaluated using Gaussia luciferase (gLuc) as a 

reporter, which was accomplished by co-administering a gLucexpressing plasmid along with the 

fLuc-expressing vectors. This approach was employed for several reasons: (i) our preliminary study 

indicated that hydrodynamic administration of the gLuc-expressing vector, pROSA-gLuc, resulted in 

sustained, high gLuc expression for more than 1 year (Takahashi Y and Matsui Y, unpublished data); (ii) 

the distribution of two vectors co-administered by hydrodynamic injection almost completely overlapped 

[28]; (iii) the expression levels of gLuc can be quantitatively and reproducibly determined by measuring 

serum gLuc activity without sacrificing the mice; and (iv) the use of gLuc protein as a marker for 

transgene-expressing cells enables us to monitor the removal of these cells as a consequence of the 

immune response to fLuc because the reduction in serum gLuc activity is ascribable to the removal of the 

transgene-expressing cells and not to any phenomenon reducing the transgene expression levels in the 

cells. Plasmids that stably (pCpG-fLuc) or transiently (pCMV-fLuc) express fLuc were co-administered 

with the pROSA-gLuc vector to mice by hydrodynamic injections. The cytotoxic immune response to 

fLuc-expressing cells was continuously evaluated by measuring serum gLuc activity without sacrificing 

the mice. The schematic image of the experimental design is shown as Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental image for the evaluation of immune response for transgene product. 
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I-2 Material and Methods 

 

Plasmid DNA 

pCpG-mcs was purchased from Invivogene (San Diego,DA, USA). The fLuc-expressing plasmids, 

pCMV-fLuc and pCpG-fLuc, were constructed as described previously [21]. pROSA-gLuc and 

pROSA-fLuc, plasmid expressing gLuc and fLuc, respectively, were constructed using In-fusion 

Advantage polymerase chain reaction. pCMV-fLuc was amplified in the Escherichia coli strain DH5α, 

whereas pCpG-mcs, pCpG-fLuc and pROSA-gLuc were amplified in the E. coli strain GT115 Plasmid 

DNA was purified using JETSTAR 2.0 Plasmid MAXI Plasmid Purification Kits (GENOMED GmbH, 

Löhne, Germany). Characteristics of the plasmid DNAs used are summarized in Table 1. 

 

Table 1.  Properties of plasmid DNA used in Chapter I. 

Plasmid 
Size 

(kbp) 

Number 

of CpG 
*
 

Enhancer Promoter cDNA 

pCMV-fLuc 7.1 846 hCMV hCMV 
Firefly 

luciferase 

pCpG-mcs 3.0 0 hCMV hEF1 None 

pCpG-fLuc 4.7 194 hCMV hEF1 
Firefly 

luciferase 

pROSA-gLuc 5.8 598 None hROSA26 
Gaussia 

luciferase 

pROSA-fLuc 6.7 622 None hROSA26 
Firefly 

luciferase 

* The Numbers of CpG dinucleotides in plasmid DNA are indicated. CMV, human cytomegalovirus; 

EF1 human elongation factor 1. 

 

Mice and plasmid DNA administration 

Four-week-old female ICR mice and 6-week-old female C57/BL6 mice, weighing approximately 20 

g each, were purchased from Japan SLC (Shizuoka, Japan). C57/BL6 mice were used only in the 

experiment in which interferon (IFN)-γ secretion from splenocytes was evaluated. All animal experiments 

were subject to deliberation and approval by the Ethics Committee for Animal Experiments at the 
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Graduate School of Pharmaceutical Sciences, Kyoto University. Plasmid DNA was administered to the 

mice using a hydrodynamics-based procedure, in which plasmid DNA dissolved in saline solution (whose 

volume equaled 8% of the total body weight) was injected into the tail vein of the mice within 5 s using a 

26-gauge needle. 

 

Cell culture 

Murine melanoma B16BL6 cells or B16BL6 cells stably expressing fLuc (B16BL6/fLuc) was 

cultured in Dulbecco’s modified Eagle medium (DMEM; Nissui Co. Ltd., Tokyo, Japan) supplemented 

with 10 % heat-inactive fetal bovine serum (FBS). splenocytes was cultured in RPMI 1640 medium 

supplemented with 10 % heat-inactivated FBS, 50 μM 2-mercaptoethanol, 2 mM L-glutamine, gLucose, 

sodium pyruvate. 

 

Luciferase Assay 

At indicated time points, blood was collected from the tail vein of mice. The blood samples were 

incubated at 4 °C for 2 h to allow clotting and then centrifuged at 8000 × g for 20 min to obtain serum 

samples. To measure luciferase activities in the liver, the liver was harvest and homogenized in 10 ml/g 

liver of lysis buffer (0.1 M Tris, 0.05 % TritonX-100, 2 mM EDTA, pH7.8), and the homogenates were 

centrifuged at 12000 × g for 10 min at 4 C. Then, the supernatant was mixed with luciferase assay buffer 

(PicageneDual, Toyo Ink, Tokyo, Japan), and the chemiluminescence produced was measured in a 

luminometer (Lumat LB 9507; EG and G Berthold, Bad Wildbad, Germany). 

 

Quantitation of antibody titers 

Serum samples were obtained as described above. The amount of fLuc-specific antibodies was 

measured by enzyme linked immunosorbent assay (ELISA) as described previously [29]. In brief, 96-well 

flat-bottom polystyrene plate was coated with 0.2 mg/ml of firefly luciferase (Promega, San Luis Obispo 

USA) by overnight incubation at 4 ºC. The wells were blocked with 5% bovine serum albumin 

(BSA)-containing phosphate buffered saline with Tween-20 (0.5 % Tween-20 in phosphate buffer saline 

(PBS)) for 1 h at 37 ºC. After washing, serially diluted serum samples were added to the wells. After 2 h 

incubation at 37 ºC and subsequent washing, horse raddish peroxidase (HRP)-labeled rabbit anti-mouse 

IgG (1:2000 dilution; Zymed Lab, San Francisco, CA) was added to each well. After 1 h incubation at 37 

ºC and subsequent washing, freshly prepared ο-phenylenediamine dihydrochloloride (Wako, Tokyo, 

Japan) solution containing H2O2 was added to each well. After 10 min incubation at room temperature, 

10 % H2SO4 was added to each well to stop the reaction and measured absorbance at 490 nm. 
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IFN-γ secretion from splenocytes 

C57BL6 mice received two injections of pROSA-gLuc with pCpG-mcs or pCpG-fLuc with a 3-week 

interval. One week after the second injection, splenocytes were isolated, purified and cultured in the 

presence of mitomycin C-treated murine melanoma B16BL6 cells or mitomycin C-treated B16BL6 cells 

stably expressing fLuc (B16BL6/fLuc) in 96-well culture plates for 2 days. The concentration of IFN-γ in 

supernatant was determined by an ELISA (Ready-SET-Go! Mouse IFN-γ ELISA; eBioscience, San Diego, 

CA, USA). 

Measurement of serum alanine aminotransferase (ALT) activity 

At the indicated time points after plasmid DNA administration, serum was collected as described 

above. Serum ALT level was measured using a quantification kit (Transaminase CII test Wako; Wako Pure 

Chemical, Osaka, Japan). 

 

Hematoxylin and eosin staining 

Mice were euthanized by cutting the vena cava, and the liver was gently infused with 2 ml of saline 

through the portal vein to remove the remaining blood. The liver was then fixed in 4 % paraformaldehyde 

in PBS, embedded in paraffin, sectioned and stained with hematoxylin and eosin (HE). The stained 

sections were examined using a microscope (Biozero BZ-8000, KEYENCE, Osaka, Japan).  

 

Histochemical analysis of the liver 

Mice were euthanized by cutting the vena cava, and the liver was gently infused with 2 ml of saline 

through the portal vein to remove the remaining blood. The liver was then embedded in Tissue-Tek OCT 

embedding compound (Sakura Finetechnical Co., Ltd., Tokyo, Japan), frozen in liquid nitrogen, and stored 

in 2-methyl butanol at -80 °C. Frozen liver sections (10 μm thick) were made using a cryostat (Jung 

Frigocut 2800E; Leica Microsystems AG, Wetzlar, Germany) by the routine procedure. The sections were 

fixed with 4% paraformaldehyde in PBS.  

To detect CD8
+
 cells and CD4

+
 cells in the liver, the fixed sections were blocked with 20% FBS in 

PBS for 1 h at 37 °C and incubated with biotinylated Abs specific to mouse CD8 (Acris antibody, Herford, 

Germany) or CD4 (ebioscience, San Diego, CA, USA) for 1 h at 37 °C. Samples were examined under a 

fluorescence microscope (Biozero BZ-8000). 

 

Spleen removal and macrophage depletion 

For spleen removal, mice were anaesthetized and shaved. Then, a 2-cm incision was made in the 

skin at the left flank. The peritoneal membrane was opened, and the entire spleen was removed intact. The 

peritoneal membrane and the skin were closed separately with surgical silk-thread. This procedure ensures 
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that the spleen is removed in total and that no splenic fragments are left behind [30].  

Macrophage depletion was performed by using clodronate-encapsulating liposome (clodronate 

liposome). Clodronate liposome was prepared by the method as described previously [31]. For 

macrophage depletion, mice received clodronate liposome administration 1 and 3 days before plasmid 

DNA administration, and then repeated every two days. 

 

Statistical analysis 

Differences were statistically evaluated by Student’s t-test. The level of statistical significance was 

set at P < 0.05. 

 

 

I-3 Results 

 

I-3-a Hydrodynamic injection of pROSA-gLuc resulted in stable gLuc activity in the serum 

To evaluate the stability of gLuc expression after hydrodynamic injection of pROSA-gLuc, serum 

gLuc activity was measured over time after hydrodynamic administration of 0.1, 1 or 10 μg of 

pROSA-gLuc, without sacrificing the mice. As shown in Figure 2A, stable gLuc activity was observed for 

more than 1 year, irrespective of the pROSA-gLuc dose administered. On the other hand, hydrodynamic 

injection of pCMV-gLuc (pCMV-based gLuc expressing plasmid) or pCpG-gLuc (pCpG-based gLuc 

expressing plasmid) also resulted in a long-term gLuc expression, although the time-dependent decline in 

gLuc activitywas greater than that after pROSA-gLuc administration (Figure 2B). 

 

                                   B 

 

 

 

 

 

 

 

 

Figure 2. gLuc activity in the serum after hydrodynamic delivery.  

(a) Time-course of gLuc activity in serum after hydrodynamic injection of 0.1 (circle), 1 (square) and 10 

μg (triangle) of pROSA-gLuc. (b)Time-course of gLuc activity in serum after hydrodynamic injection of 
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10 (asterisk) of pCpG-gLuc and 10 μg ((open diamond) of pCMV-gLuc.The results are expressed as the 

mean ± SD of five mice.  

 

I-3-b Hydrodynamic injection of pCpG-fLuc resulted in the stable fLuc activity in the liver at early 

time points and reduction of fLuc activity at later time points 

After the administration of fLuc-expressing plasmid DNAs that show stable and transient expression 

profile (pCpG-fLuc and pCMV-fLuc, respectively) to mice by hydrodynamic injection, fLuc activity in the 

liver was high at immediately after administration of pCMV-fLuc, and it started to decline within the first 

day after injection. After the initial decline, fLuc activity in the liver was constant after pCMV-fLuc 

administration (Figure 3). On the other hand, fLuc activity in the liver was constant for the first 1 week 

after the administration of pCpG-fLuc. Drastic decline in the fLuc activity was observed in the mice that 

received 30, 10 and 3 μg of pCpG-fLuc at 10, 12, 14 days after the administration, respectively.  

 

 

 

 

 

 

 

 

 

 

 

I-3-c Co-administration of fLuc-expressing plasmid affected gLuc activity from pROSA-gLuc 

pROSA-gLuc was co-administered with 10 μg of pCMV-fLuc or 0.1, 0.3, 1, 3 or 10 μg of 

pCpG-fLuc, and serum gLuc activity was measured as an indicator of the number of cells expressing both 

gLuc and fLuc (Figure 4A). The time course of serum gLuc activity after co-administration of 

pROSA-gLuc with 10 μg of pCMV-fLuc or 0.1 μg of pCpG-fLuc was similar to that obtained after 

administration of pROSA-gLuc alone. On the other hand, serum gLuc activity showed a sharp decline 

approximately 1 week after co-administration of pROSA-gLuc with 1, 3 or 10 μg of pCpG-fLuc. This 

reduction in serum gLuc activity was initiated earlier as the dose of co-administered pCpG-fLuc was 

increased. A slight reduction in serum gLuc activity was also observed in mice that received pROSA-gLuc 

with 0.3 μg of pCpG-fLuc. These results suggest that sustained fLuc expression from the co-administered 

pCpG-fLuc induces the reduction in serum gLuc activity. Sustained expression of fLuc, an antigenic 
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Figure 3. Time-course of fLuc activity in the 

liver after hydrodynamic injection of 

fLuc-expression plamids DNA at varying doses.  

Mice received administration of 10 μg of 

pCMV–fLuc (asterisk) or 1 (open circle), 3 

(closed triangle), 10 (closed square) or 30 μg 

(closed circle) of pCpG-fLuc. The results are 

expressed as the mean ± SD of five mice. . 
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protein, is capable of inducing a fLuc-specific immune response; I therefore hypothesized that the number 

of fLuc-expressing cells (which also simultaneously express gLuc) is reduced because of the removal of 

the transgene-expressing cells by the fLuc-specific immune response, which in turn is induced by 

sustained fLuc expression. The activities of both the luciferases (gLuc and fLuc) in the liver were 

measured 17 days after co-administration (Figure 4B). fLuc activity in the liver was higher in mice that 

received a low dose (0.1 or 0.3 μg) of pCpG-fLuc or 10 μg of pCMV-fLuc than in mice that received a 

higher dose (1, 3 or 10 μg) pCpG-fLuc, which suggests that the initial high and sustained expression 

obtained by a high dose pCpG-fLuc might induce a fLuc-specific immune response that removed the fLuc 

expressing cells. Similarly, gLuc activity in the liver of the mice that received pROSA-gLuc with 10 μg of 

pCMV-fLuc or 0.1 μg of pCpG-fLuc was much higher than the corresponding activity in mice that 

received higher doses of co-administered pCpG-fLuc, which strongly suggests the removal of 

transgeneexpressing cells by fLuc-specific immune response. Next, pROSA-gLuc was coadministered 

with pROSA-fLuc. Serum gLuc activity showed a sharp decline approximately 10 days after the 

co-administration of pROSA-gLuc with pROSA-fLuc (Figure 4C).                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. gLuc and fLuc activities in the serum and liver after co-administration of the respective 
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plasmids by hydrodynamic injection. 

(A) Time course of serum gLuc activity after co-administration of 10 μg of pROSA-gLuc with 10 μg of 

pCMV-fLuc (closed circle) or 0.1 (open circle), 0.3 (asterisk), 1 (open diamond), 3 (open triangle) or 10 

μg (open square) of pCpG-fLuc. (B) fLuc and gLuc activities in the liver 17 days after co-administration 

of 10 μg of pROSA-gLuc with 10 μg of pCMV-fLuc (open column) or 0.1 (horizontal lines), 0.3 (skewed 

lines), 1 (vertical lines), 3 (grey) or 10 μg (closed column) of pCpG-fLuc. (C) Time-course of gLuc 

activity in the serum after co-administration of 10 μg of pROSA-gLuc with 10 μg of pCpG-mcs (closed 

circle), pROSA-fLuc (open triangle) or pCpG-fLuc. The results are expressed as the mean ± SD of five 

mice 

 

I-3-d fLuc-specific humoral and cellular immune response were induced in mice that received 

hydrodynamic injections of pCpG-fLuc 

As a next step, I evaluated the fLuc-specific immune response in mice that received hydrodynamic 

injections of the fLuc-expressing plasmid DNA by measuring fLucspecific antibodies in the serum 14 

days after pCpG-fLuc or pCMV-fLuc administration. As shown in Figure 5A, fLuc-specific antibodies 

were detected in the serum of mice that had been administered with 1, 3 or 10 μg of pCpG-fLuc. On the 

other hand, fLuc-specific antibodies were scarcely detected in the serum of mice receiving 10 μg of 

pCMV-fLuc. 

To evaluate the cellular immune response specific for fLuc, I investigated IFN-γ production in spleen 

cells of immunized mice in response to the stimulation with fLuc. Spleen cells from mice immunized with 

pCpG-fLuc generated a large amount of IFN-γ. Splenocytes of mice receiving pCpG-fLuc produced 

significantly higher amountsof IFN-γ in response to fLuc than the splenocytes of mice (Figure 5B). 
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Figure 5. Induction of humral and cellular 

immune response specific for fLuc after 

hydrodynamic injection of fLuc-expression 

vector.  

(A) Mice received hydrodynamic injections of 10 μg 

of pCMV-fLuc (closed diamond), 1 (asterisk), 3 

(open triangle) or 10 μg (open circle) of pCpG-fLuc. 

Fourteen days after plasmid DNA administration, 

serum samples from the mice were collected, and 

antibody titers were measured by ELISA. The 

results are expressed as the mean ± SD of five mice. 

(B) Splenocytes collected from untreated mice or 

mice receiving pDNA administration were 

cocultured with B16BL6 (open columns) or 

B16BL6/fLuc cells (closed columns) for 2 days. 

IFN-γ concentration in the culture medium was 

measured by ELISA. The results are expressed as 

the mean ± SD of five mice. *p<0.05 compared to 

the B16BL6-stimulated group.  

 

 

I-3-e Reduction in serum gLuc activity immediately after co-administration of pROSA-gLuc with 

pCpG-fLuc in mice pre-administered with pCpG-fLuc 

I hypothesized that the fLuc-specific immune response induced by sustained fLuc expression 

eliminated fLuc expressing cells, thereby also resulting in decreased gLuc activity. This hypothesis was 

tested by pre-administering fLuc-expressing plasmid DNA, and evaluated whether the fLuc-specific 

immune response thereby induced affects the profile of gLuc expression from pROSA-gLuc that was 

subsequently co-administered with fLuc-expressing plasmid DNA. Specifically, saline, pCpG-fLuc or 

pCMV-fLuc was pre-administered through hydrodynamic injections, followed by co-administration of 

pROSA-gLuc with pCpG-fLuc or pCMV-fLuc 14 days later. As shown in Figure 6, a reduction in the 

gLuc activity was observed as early as 2 days after pCpG-fLuc co-administration in mice preadministered 

with pCpG-fLuc. In addition, serum gLuc activity began to decrease 7 and 9 days after co-administration 

of pROSA-gLuc with pCpG-fLuc in mice pre-administered with pCMV-fLuc or saline, respectively. On 

the other hand, co-administration of pROSA-gLuc with pCMV-fLuc in mice pre-administered with 
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pCpG-fLuc scarcely altered serum gLuc activity. 

 

Figure 6. Time course of serum gLuc 

activity after repeated hydrodynamic 

injections.  

The mice first received hydrodynamic 

injections of saline (circle), 10 μg of 

pCMV-fLuc (triangle) or 10 μg of 

pCpG-fLuc (square). Fourteen days after the 

first administration, the mice were 

co-administered 10 μg of pROSA-gLuc with 

10 μg of pCMV-fLuc (closed symbols) or 

pCpG-fLuc (open symbols). The results are 

expressed as the mean ± SD of five mice. 

 

I-3-f Serum gLuc activity decreased only upon simultaneous co-administration of pROSA-gLuc and 

pCpG-fLuc 

Next, it was investigated whether co-expression of fLuc and gLuc in the same cell was required for 

the reduction in gLuc expression observed after co-administration of pROSA-gLuc with pCpG-fLuc. To 

avoid co-expression of fLuc and gLuc in the same cells, I sequentially injected the two plasmids instead of 

a simultaneous injection because it was shown that the former protocol resulted in the expression of the 

transgenes in different cells with little overlap [28]. Mice were first co-administered pROSA-gLuc with 

pCpG-fLuc. Fourteen days after the first injection, pROSA-gLuc and pCpG-fLuc were co-administered or 

sequentially administered; the latter was administered with a 12-h interval (Figure 7A). Serum gLuc 

activity decreased in mice that received co-administration and not sequential administration. On the other 

hand, fLuc activity in the liver 14 days after the second injectionwas comparable between these two 

groups (Figure 7B), which suggests that the fLuc-specific immune response was induced in both groups.I 

further investigated whether reduction in gLuc activity after co-administration of pROSA-gLuc with 

pCpG-fLuc accompanies the reduction in gLuc expression from separately administered pROSA-gLuc. 

The mice first received hydrodynamic administration of 1 μg of pROSA-gLuc. One week after the first 

injection, the mice were administered saline (without any plasmid DNA) or coadministered 10 μg of 

pROSA-gLuc with pCpG-mcs or pCpG-fLuc (Figure 7C). Co-administration of pCpG-mcs hardly 

affected the gLuc expression from pROSA-gLuc. Serum gLuc activity was enhanced by the second 

administration of pROSA-gLuc, which reflects the fact that the dose of pROSA-gLuc was 10-fold higher 
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in the second administration than in the first administration. In the mice that received a second injection of 

pROSA-gLuc with pCpG-fLuc, serum gLuc activity began to decrease 7 days after the second injection 

and reached the levels found in the control mice that received saline during the second administration. 

This result implies that gLuc-expressing cells generated by the first pROSA-gLuc administration were not 

affected by the immune response induced by the second injection of ROSA-gLuc with pCpG-fLuc. 

 

Figure 7. Time course of serum gLuc 

activity and activities of both gLuc 

and fLuc in the liver after 

simultaneous or sequential 

hydrodynamic delivery 

(A) The mice initially received 

hydrodynamic injection of 10 μg of 

pROSA-gLuc with 10 μg of 

pCpG-fLuc. Fourteen days after the 

first injection, the mice received 

co-injection of 10 μg of pROSA-gLuc 

with 10 μg of pCpG-fLuc (open circles) 

or a sequential injection of 10 μg of 

pROSA-gLuc followed by 10 μg of 

pCpG-fLuc after a 12-h interval (closed 

circles). The results are expressed as 

the mean ± SD of five mice. *p<0.05 

compared to the simultaneous injection 

group. (B) fLuc and gLuc activities in 

the liver 21 days after simultaneous 

(open column) or sequential (closed 

column) injections of pROSA-gLuc 

with pCpG-fLuc. The results are 

expressed as the mean ± SD of five 

mice. * p<0.05 compared to the 

simultaneous injection group. (C) Mice 

initially received hydrodynamic 

injection of 1 μg of pROSA-gLuc.  

*
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Seven days after the first injection, the mice received saline injection (open circle) or co-administration of 

10 μg of pROSA-gLuc with 10 μg of pCpG-mcs (closed square) or pCpG-fLuc (closed triangle). The 

results are expressed as the mean ± SD of five mice. 

 

I-3-g Inflammatory cells, including CD8
+
 cells, were detected in the liver after pCpG-fLuc 

administration 

Mice were co-administered pROSA-gLuc with pCpG-fLuc or pCpG-mcs twice with an interval of 2 

weeks. The livers were collected from the mice 2, 4 or 6 days after the second injection, and liver sections 

were prepared to evaluate the effect of the fLuc-specific immune response. HE staining of the liver 

sections (Figure 8A) revealed a large number of infiltrating cells in the liver 2 days after the second 

administration of pCpG-fLuc. The number of infiltrating cells declined on day 4 and returned to a level 

comparable to that found in the pCpG-mcs group by day 6. The liver sections were stained with CD4- or 

CD8- specific antibodies to characterize the type of infiltrating cells (Figures 8B and 8C). A slight 

difference was observed in the number of CD4
+
 cells between the pCpG-mcs and pCpG-fLuc groups. By 

contrast, the number of CD8
+
 cells was higher in the pCpG-fLuc group than in the pCpG-mcs group 2 

days after the second administration; the number decreased on day 4 and returned to a level comparable 

with that found in the pCpG-mcs group by day 6. Because it was hypothesized that the removal of 

transgene-expressing hepatocytes by the infiltrating cells was related to hepatic injury, the time-course of 

serum ALT level was measured. 

As previously reported, an increase in serum ALT level was detected immediately after 

hydrodynamic injection, irrespective of the types of plasmid DNAs, indicating a transient increase in the 

permeability of cellular membrane by the injection. At 7 and 9 days after injection, the serum ALT level 

of mice receiving pCpG-fLuc was significantly higher than that of mice receiving pCpG-mcs (Figures 8D). 

This result also implies that hepatocytes expressing fLuc are damaged by the fLuc specific immune 

response. 
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Figure 8. Histological analysis of the liver after repeated hydrodynamic delivery of fLuc-expressing 

plasmids.  

(A–C) Mice received hydrodynamic co-injections of 10 μg of pROSA-gLuc with 10 μg of pCpG-mcs or 

pCpG-fLuc twice with an interval of 2 weeks. Livers were collected from the mice 2, 4 or 6 days after the 

second injection. The liver sections were subjected to HE staining (A) or immunofluorescenc staining 

using CD8- (B) or CD4-specific antibodies (C). Scale bar=100 μm. (D) Time-course of ALT levels in the 

serum in untreated mice (closed triangle) or mice receiving hydrodynamic injection of 10 μg of 

pCpG-fLuc (open circle) or pCpG-mcs (closed square). The results are expressed as the mean ± SD of five 

mice. *p<0.05 compared to the pCpG-mcs injected group. 
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I-3-h Spleen removal and macrophage depletion did not change the profile of serumgLuc activity 

after co-administration of pROSA-gLuc with pCpG-fLuc 

Although hepatocytes are the chief cell type expressing transgenes after hydrodynamic injections of 

plasmid DNA, transgene expression also occurs in nonparenchymal cells in the liver including Kupffer 

cells and in other organs such as the spleen [32]. Kupffer cells and splenic macrophages are known to 

function as APCs; therefore, the fLuc-specific immune response induced after hydrodynamic injection of 

pCpG-fLuc might be a result of fLuc expression in these cells. To test this hypothesis, the mice were 

given hydrodynamic injections of pROSA-gLuc with pCpG-fLuc or pCpG-mcs after spleen removal, 

macrophage depletion, or a combination of spleen removal and macrophage depletion (Figure 9). Neither 

treatment was found to affect the time course of serum gLuc activity after administration of pROSA-gLuc 

with pCpG-mcs (data not shown). However, the serum gLuc activity after co-administration of 

pROSA-gLuc with pCpG-fLuc decreased in splenectomized or macrophage-depleted mice. Moreover, 

even in mice subjected to both spleen removal and macrophage depletion, serum gLuc activity was 

observed to decrease 1 week after administration of pROSA-gLuc with pCpG-fLuc. On the other hand, 

there was a tendency that the degree of reduction in gLuc activity was slightly smaller in mice receiving 

splenectomy ormacrophage depletion than untreatedmice, and the treatments of splenectomy and 

macrophage depletion appeared to have an additive effect. 

 

 

Figure 9. Time course of serum gLuc 

activity with hydrodynamic injection 

after spleen removal and macrophage 

depletion.  

Mice were left untreated (circle) or 

subjected to macrophage depletion 

(triangle), spleen removal (square) or both 

treatments (diamond). The mice were then 

co-administered 10 μg of pROSA-gLuc 

with 10 μg of pCpG-mcs (closed symbols) 

or pCpG-fLuc (open symbols). The results 

are expressed as the mean ± SD of five 

mice. *p<0.05 compared to untreated mice. 
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I-4 Discussion 

 

In the present study, single pROSA-gLuc administration was found to result in serum gLuc activity 

that was stable for more than 1 year, implying that sustained gLuc expression did not induce a 

gLuc-specific immune response such as anti-gLuc antibody production. On the other hand, sustained fLuc 

expression induced a fLuc-specific immune response, suggesting that the antigenicity of fLuc protein is 

higher than that of the gLuc protein.  

Co-administration of high doses of pCpG-fLuc with pROSA-gLuc resulted in a reduction in serum 

gLuc activity, which is likely caused by the removal of transgeneexpressing cells as a consequence of the 

fLuc-specific immune response induced by sustained fLuc expression. On the other hand, 

co-administration of high doses of pCMV-fLuc, which results in a high but transient transgene expression, 

induced neither a detectable fLuc-specific immune response, nor a reduction in the serum gLuc activity. 

This suggests that the duration of fLuc expression would be an important factor for eliciting the 

fLuc-specific immune response, which in turn eliminates the fLuc-expressing cells. The results obtained in 

the present study indicate that long-term expression of a transgene has a higher risk of eliciting an immune 

response than short-term expression.  

Aubert et al. [33] demonstrated that a cytotoxic immune response was the chief mechanism 

responsible for the removal of transgene-expressing cells after retroviral-mediated β-galactosidase gene 

transfer in the liver. In addition, an ex vivo study suggested that a cytotoxic immune response resulted in 

the removal of transgene (green fluorescent protein)-expressing cells in concert with the helper T cells 

after an epidermal gene transfer [34]. In the present study, hydrodynamic injection of pCpG-fLuc induced 

a cellular immune response specific to fLuc. In addition, CD8
+
 cell infiltration wasobserved in the liver of 

themice that received pCpG-fLuc administration. These results suggest that fLuc-specific cytotoxic T 

lymphocytes play an important role in eliminating the fLuc-expressing cells, which is in agreement with 

previous studies [33]. In addition, hydrodynamic injection of pCpG-fLuc and pROSA-gLuc resulted in the 

increase in serum ALT levels at approximately 1 week after the administration, when the decline in gLuc 

activity occurred, also suggesting that hepatocytes expressing both fLuc and gLuc were damaged. 

Furthermore, fLuc-specific antibodies may be involved in the removal of the fLuc-expressing cells.  

A reduction in serum gLuc activity was observed only when pROSA-gLuc was co-administered with 

pCpG-fLuc. On the other hand, gLuc expression from preadministered pROSA-gLuc was scarcely 

affected by the second injection of pROSA-gLuc with pCpG-fLuc. From these results, it is likely that the 

decrease in serum gLuc activity after the simultaneous injection of pROSA-gLuc and pCpG-fLuc is 

caused by the elimination of cells expressing both gLuc and fLuc, as a consequence of the fLuc-specific 

immune response. This fact suggests that co-administration of pROSA-gLuc with a vector expressing a 
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gene of interest could be a useful method for monitoring the effect of an immune response to the product 

of interest in transgene-expressing cells. However, there is a possibility that transgene expression level 

from a plasmid vector may be affected by the simultaneously delivered plasmid vector via the interference 

in transgene expression process [35]. Detailed molecular studies would be required to exclude this 

possibility.  

When the transgene product is a secretory protein, the transgene-expressing cells secrete the products 

so that they may be taken up by APCs to elicit an immune response [36–39]. fLuc is a nonsecretory 

protein and is scarcely released from the fLuc-expressing cells. Therefore, a fLuc-specific immune 

response induced after pCpG-fLuc administration is likely a result of the direct gene delivery of plasmid 

DNA into APCs. By using a target sequence for miRNA-142-3p, a miRNA highly expressed in APCs, 

Brown et al. [40] demonstrated that transgene expression in APCs, resulting in sustained transgene 

expression, is the chief reason for the induction of an immune response to the transgene products. 

Hydrodynamic injection also delivers plasmid DNA into Kupffer cells in the liver and spleen cells, both of 

which function as APCs; I therefore evaluated the role of Kupffer and splenic cells in the induction of the 

immune response. I found that, even in mice that had been subjected to both spleen removal and 

macrophage depletion, serum gLuc activity declined after hydrodynamic administration of pROSA-gLuc 

with pCpG-fLuc, which implied that the fLuc-specific immune response could eliminate fLuc-expressing 

cells in the absence of macrophages in the liver (Kupffer cells) or spleen (splenic macrophages), or in fact 

any splenic cells. It is known that the liver has some dendritic cells; gene transfer to the dendritic cells 

might occur after hydrodynamic injection of plasmid DNA [41] and these dendritic cells might function as 

APCs. In addition, hepatocytes might also function as APCs after hydrodynamic injection because 

hepatocytes have been previously reported to exhibit antigen presenting ability [42–44]. Further studies 

are required for determining which types of cells functioned as APCs in the induction of the fLuc-specific 

immune response after hydrodynamic injection of pCpG-fLuc.  

Although induction of an immune response to a transgene product is a serious problem in gene therapy, 

eliciting the immune response is, in turn, desirable for DNA vaccination. My results demonstrate that 

single pCpG-fLuc administration could induce a strong cytotoxic immune response against fLuc; therefore, 

hydrodynamic administration of the recombinant pCpG vector encoding an antigenic protein might prove 

to be potent as a DNA vaccine because it also shows sustained transgene expression. On the other hand, in 

the development of DNA vaccine by hydrodynamic gene delivery, the administration of adjuvant is 

desirable to induce stronger immune response because the degree of immune activation is limited even 

after hydrodynamic delivery of CpG-rich plasmid DNA [45].  

In conclusion, the present study demonstrates that high levels of sustained expression of a transgenic 

antigen induce an immune response and that the cells expressing the transgene product are eliminated, 
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probably as a result of the transgene product-specific immune response. 
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Chapter II 

Importance of transgene expression level in each cell on the induction of 

transgene expression-specific immune response 

 

II-1 Introduction 

 

Induction of transgene product-specific immune response is a serious concern in gene therapy 

because it can result in serious adverse effects and reduction in the therapeutic effect by affecting the 

transgene expression profile [46, 47]. It has been demonstrated that several factors such as the antigenicity 

of the protein and transgene expression profileare important for the induction of the immune response [48]. 

In Chapter I, I demonstrated that hydrodynamic injection of long-term expression plasmid vector encoding 

transgene product with antigenesity induced transgene-specific immune response in a dose-dependent 

manner [49]. There are several literatures reporting about the importance of transgene expression level in 

the induction of the immune response [50, 51]. However, in these previous studies, transgene expression 

level was evaluated by measuring the amount of transgene product in organ or in the blood, so that it was 

not clear whether total amount of transgene product or the level of transgene expression per cell is 

important for the induction of immune response.  

In Chapter I, I found that hardly affected immune response was induced by hydrodynamic gene 

transfer in mice that received spleen removal or macrophage depletion [49]. In addition to my result, it has 

been shown that reduction in transgene expression level in denderitic cells (DCs) by utilization of 

DC-specific micro RNA hardly affected immune response induced after hydrodynamic gene transfer [25]. 

From these facts, it was hypothesized that the major transgene-expressing cells after hydrodynamic gene 

transfer, hepatocytes, are the chief APCs in the induction of transgene-specific immune response after 

hydrodynamic gene transfer. It has been reported that hepatocytes might work as APCs in some situations 

[52-54]. If hepatocytes work as APCs after hydrodynamic gene transfer, transgene expression level per 

hepatocyte is important factor for the induction of transgene-specific immune response as enough amount 

of antigenic protein in APCs is required for the antigen presentation. 

In Chapter II, I investigated the impact of transgene expression level in each cell on the induction of 

transgene-specific immune response and investigated whether hepatocytes work as APCs after 

hydrodynamic gene transfer. I chose Cypridina luciferase (cLuc) as a model antigen protein because of its 

characteristics as secretory reporter protein [55-57]. As simultaneous hydrodynamic injection of two types 

of plasmid DNAs results in the overlap in the cells expressing different transgenes while sequential 

injection of the vectors results in the expression in the different cells [28], I utilized this experimental 

procedure to obtain equal amount of total transgene expression level with different level of transgene 
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expression per cell (Figure 10). In addition, ovalbumin (OVA) was also used as a model antigen to 

investigate whether hepatocytes work as APCs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Experimental image for the evaluation of immune response for transgene expression per 

cell. 

 

II-2 Material and Methods 

 

Plasmid DNA 

pCpG-mcs was obtained as described in Chapter I. Plasmid vectors encoding cLuc, pCpG-cLuc and 

pCMV-cLuc, were constructed by cLuc cDNA fragment ( obtained from pCMV-Cypridina Luc vector, 

Thermo Fisher Scientific, Waltham, MA, USA) into pCpG-mcs and pcDNA3.1 (Life Technologies, 

Carlsbad, CA, USA), respectively. pROSA-cLuc, a plasmid expressing cLuc, pROSA-gLuc, a plasmid 

expressing Gaussia luciferase (gLuc), was constructed as described in Chapter I. pCpG-OVA and 

pCMV-OVA were constructed as described previously [58,59].  

 

Mice and plasmid DNA administration 

Four-week-old female ICR mice (approximately 20 g body weight), six-week-old female BALB/c 

mice (approximately 20 g body weight) were purchased from Japan SLC (Shizuoka, Japan). All animal 

experiments were brought under deliberation and approved for the Ethics Committee for Animal 

Experiments at the Graduate School of Pharmaceutical Sciences, Kyoto University. Administration of 

plasmid DNA to mice was performed by the hydrodynamics-based procedure in which plasmid DNA 

dissolved in 8 % vol/ body weight of saline were injected into the tail vein of mice over less than 5 s. 

 

2nd

injection

1st

injection

simultaneous injection
sequential injection

Kobayashi et al. J Pharmacol Exp Ther 2004.
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Cell culture 

CD8 OVA1.3 T cells, T hybridoma cells against SIINFEKL-Kb [60], were a generous gift from Dr. C. 

V. Harding (Case Western Reserve University, Cleveland, OH). Hepatocytes were isolated from mice 

according to a standard two-step perfusion protocol [62, 63]. CD8OVA1.3 T cells were cultured in 

Dulbecco’s modified Eagle medium (Nissui Co.Ltd, Tokyo, Japan) supplemented with 10 % heat-inactive 

fetal bovine serum (Equitedh-Bio, Kerrville, TX), 0.5 mM monothioglycerol, 2 mM L-glutamine, 

antibiotics and nonessential amino acid (all from Life Technologies, Carlsbad, CA). CD8 OVA1.3 T cell 

and primary hepatocytes were co-cultured in RPMI 1640 medium (Nissui Pharmaceuticals, Tokyo, Japan) 

supplemented as described for Dulbecco’s modified Eagle medium. 

 

Luciferase Assay 

At indicated time points, blood was collected from the tail vein of mice. To measure luciferase 

activities in the liver, the liver was harvest and homogenized in 10 ml/g liver of lysis buffer (0.1 M Tris 

(pH 7.8), 0.05 % TritonX-100, 2 mM EDTA), and the homogenates were centrifuged at 12000 × g for 10 

min at 4 C. Then, the supernatant was mixed with Cypridina luciferase assay buffer (Thermo Fisher 

Scientific, Rockford, USA) or luciferase assay buffer (PicageneDual, Toyo Ink, Tokyo, Japan) to measure 

cLuc activity and gLuc activity, respectively. The chemiluminescence produced was measured in a 

luminometer (Lumat LB 9507; EG and G Berthold, Bad Wildbad, Germany). 

 

Detection of antibody  

Serum samples were obtained as described above. The amount of cLuc-specific and OVA-specific 

antibodies was measured by enzyme linked immunosorbent assay (ELISA) as described previously [49].  

 

Interferon (IFN)-γ production 

Indicated days after gene transfer, spleens were isolated from the immunized mice and single cell 

suspensions were prepared. Cells were stimulated by addition of 0.1 mg/ml cLuc or 0.5 mg/ml OVA for 4 

days. IFN-γ levels in the supernatant were measured by ELISA using antibodies for capture and detection 

in accordance with the Manufacturer’s protocol (Ready-SET-Go! Mouse IFN-γ ELISA, eBioscience, San 

Diego, CA, USA).  

 

PKH26 cell labeling 

PKH26 was purchased from Sigma-Aldrich, and used to label cells as described in manufacturer’s 

protocol. PKH26-labeled cells were seupended in Hanks’ balanced salt solution and intravenously 

administrated into mice. 
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Histochemical analysis of the liver 

Livers were collected from euthanized mice and embedded in Tissue-Tek OCT embedding 

compound (Sakura Finetechnical Co., Ltd., Tokyo, Japan), frozen in liquid nitrogen. Frozen liver sections 

(10 μm thick) were made using a cryostat (Jung Frigocut 2800E; Leica Microsystems AG, Wetzlar, 

Germany) by the routine procedure. The sections were fixed with 4% paraformaldehyde in PBS.  

 

Antigen presentation assay 

Hepatocytes were purified as described above and co-incubated with CD8 OVA1.3 T cells in RPMI 

1640 medium as described above. After 24 h incubation, culture supernatants were collected and 

Interleukin-2 (IL-2) levels in the supernatants was measured by ELISA (BD OptiEIA Mouse IL-2, BD 

Biosciences, San Diego, CA) as an indicator of CD8 OVA 1.3 T cell stimulation [62-64].  

 

Statistical analysis 

Differences were statistically evaluated by Student’s t-test. The level of statistical significance was 

set at P <0.05. 

 

II-3 Results and Discussion 

 

Expression profile of cLuc after administration of different doses of pCpG-cLuc, pROSA-cLuc or 

pCMV-cLuc was evaluated. After hydrodynamic delivery of pCpG-cLuc and pROSA-cLuc, serum cLuc 

activity was stable at early time points (data not shown). After the administration of high doses of 

pCpG-cLuc or pROSA-cLuc, cLuc activity in the serum declined approximately 10 days after the 

administration, which suggests the removal of transgene-expressing cells by cLuc-specific immune 

response. On the other hand, administration of pCMV-cLuc resulted in high serum cLuc activity at early 

time points followed by immediate decline (data not shown).  

Next, pROSA-gLuc was co-administrated with different doses of pROSA-cLuc to further investigate 

the effect on transgene-expressing cells. gLuc activity in the serum was stable after co-administration of 

pROSA-gLuc with 1 and 10μg pROSA-cLuc while reduction in serum gLuc activity was observed 9 days 

after the co-administration of pROSA-gLuc with 20 and 30 μg of pROSA-cLuc (data not shown). In 

addition to serum gLuc activity, serum cLuc activity strated to decline at 9 days after the co-administration 

of pROSA-gLuc with 20 and 30 μg of pROSA-cLuc, which implies the removal of cells expressing both 

cLuc and gLuc by cLuc-specific immune induced by the administration of high doses of pROSA-cLuc. 

To investigate the importance of transgene expression level per cell on the induction of 
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transgene-specific immune response mice received single injection of high dose (30 μg) of pROSA-cLuc  

or thrice injection of low dose (10 μg) of pROSA-cLuc. After single administration of high dose of 

pROSA-cLuc, serum cLuc greatly decreased at day 10 while serum cLuc activity was stable for 3 weeks 

in mice that received thrice injection of low dose of pROSA-cLuc despite the fact that cLuc level in the 

serum was comparable between these two groups at early time points (data not shown). From this result, it 

was implied that high level of transgene expression per cell is necessary for the induction of immune 

response. To evaluate cLuc-specific humoral immune response, the amount of cLuc-specific antibody in 

the serum was measured on day 14. cLuc-specific antibody was detected in the both groups, although 

more cLuc-specific antibody was detected in single administration of high dose of pROSA-cLuc group 

than that in 3 times injection of low dose of pROSA-cLuc group (data not shown). Next, to evaluate 

cLuc-specific cellular immune response, splenocytes were collected from the gene-delivered mice and 

stimulated with cLuc. Significantly higher amounts of IFN-γ was produced from splenocytes of mice that 

received single administration of high dose of pROSA-cLuc than that form the splenocytes of mice that 

received thrice injection of low dose of pROSA-cLuc (data not shown). On the other hand, IFN-γ was 

hardly produced from splenocyte of mice that received thrice injection of low dose of pROSA-cLuc, 

which suggests that cellular immune response was hardly induced in this group. These results imply that 

cLuc-specific cellular immune response was more important in the reduction in cLuc activity, which is 

supposed to be caused by the removal of cLuc-expressing cells, than humoral immune response. In 

addition to my results, importance of cellular immune response is in the removal of transgene-expressing 

cells was also reported by Ian et al [65]. In addition, these results also suggest that high level of transgene 

expression per cell is required for the induction of transgene-specific cellular immune response after 

hydrodynamic gene transfer.  

As it was found that transgene expression level per cell is important for the induction of immune 

response, I hypothesized that transgene product in hepatocytes were presented by hepatocytes to stimulate 

T cells. To investigate the hypothesis, I selected OVA as model antigen and CD8 OVA 1.3 T cell, CD8-T 

cell expressing a TCR specific for the OVA epitope was used as model T cell. First, it was confirmed that 

hydrodynamic injection of pCpG-OVA induced OVA-sepcific humoral and cellular immune response by 

the procedure described above (data not shown). Then, to investigate whether antigen presentation, which 

is mediated by direct contact of APCs with T cells, occurs in the liver after hydrodynamic gene transfer, 

PHK26-labeled CD8 OVA 1.3 T cells were intravenously administered to mice that had received 

hydrodynamic gene transfer. As a result, more CD8 OVA1.3 T cells were detected in the liver of mice 

receiving pCpG-OVA than that in the mice receiving pCpG-mcs or pCpG-cLuc (data not shown).  

To investigate whether antigens are presented by hepaocytes, mice received pCpG-OVA administration 

and hepatocytes were isolated from the mice. The isolated hjepatocytes were cocultured with CD8 
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OVA1.3 T cells and IL-2 secretion from CD8 OVA1.3 T cells was measured. As a result, amount of IL-2 

released from CD8 OVA1.3 T cells coclutured with hepatocytes collected from mice receiving pCpG-OVA 

was significantly higher than that from CD8 OVA1.3 T cells cocultured with hepatocytes collected from 

mice receiving pCpG-cLuc or pCpG-mcs (data not shown), which suggests that OVA-specific epitope was 

presented by hepatocytes collected from mice receiving pCpG-OVA administration. 

In conclusion, it was found that the level of transgene expression per cell is important in the 

induction of transgene-specific immune response after hydrodynamic gene transfer. Moreover, it was also 

demonstrated that hepatocytes may work as APC after hydrodynamic gene transfer. 
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Summary 

 

In this thesis, the effect of transgene expression profile and types of transgene expressing cells on the 

induction of transgene-specific immune response was investigated. The main findings obtained in each 

chapter are as follows. 

 

I. Elucidation of the effect of the duration of transgene expression on the induction of 

transgene-specific immune response 

A high level of sustained fLuc expression in the liver triggered antigen-specific immune responses 

while short-term expression of the fLuc elicits little, if any, immune response. Moreover, fLuc-specific 

immune response induced by the sustained transgen fLuc expression removed the cells expressing fLuc in 

turn. When gLuc-expressing vector was coadminstered with sustained fLuc-expressing vector, sudden 

decrease in gLuc expression at approximately 1 week after the coadministration occurred, which indicates 

that cells expressing both fLuc and gLuc were recognized and attacked by fLuc-specific immune response. 

By histological analysis of the liver sections of mice, CD8
+
 cell infiltration was observed, implying that 

the transgene-expressing hepatocytes were removed by the infiltrating cells. In addition, spleen removal 

and macrophage depletion did not change the profile of serum gLuc activity after co-administration of 

pROSA-gLuc with pCpG-fLuc, suggesting that fLuc-specific immune response induced by sustained fLuc 

expression is not dependent on the transgene expression in these types of cells.  

 

II. The importance of transgene expression level in each cell on the induction of transgene 

expression-specific immune response 

In Chapter II, the importance of transgene expression level in each cell on the induction of transgene 

expression-specific immune response was investigated. By using pROSA-cLuc, it was found that the 

transgene expression level per cells, not the total amount of transgene, is important in the induction of the 

transgene-specific immune response after hydrodynamic gene transfer. In addition, it was also suggested 

that higher level of transgene-expresion level per cells was required for the induction of transgene-specific 

cellular immune response than that was required for the induction of transgene-specific humoral immune 

response.  

After pCpG-OVA hydrodynamic gene transfer, CD8 OVA1.3 T cells accumulated in the liver while 

nearly no CD8 OVA1.3 T cells were found after pCpG-cLuc and pCpG-mcs injection, which suggests that 

CD8 OVA1.3 T cells received antigen presentation in the liver via direct contact. IL-2 secretion from CD8 

OVA1.3 T cells co-cultured with hepatocytes collected from mice receiving pCpG-OVA implies that 

hepatocytes expressing high level of an antigenic transgene product work as APCs to prime 
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transgene-specific immune response after hydrodynamic gene transfer. 

 

In conclusion, I demonstrated that a high level of sustained expression of antigenic transgene induces 

an immune response that removes the cells expressing the transgene product and that the transgene 

expression level per cells, not the total amount of transgene product, is important in the inducition of 

transgene-specific immune response after hydrodynamic gene transfer. In addition, transgene expression 

in the spleen and macrophages are not important in the induction of transgene-specific immune response 

after hydrodynamic gene transfer, while high level of transgene expression per cell is important in the 

immune induction. Moreover, it was demonstrated that hepatocytes with high level of transgene 

expression may prime transgene-specific immune response after hydrodynamic gene transfer. These 

results provide useful information to treat with the immune response in gene therapy. 
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