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I 

 

Abstract 

 

Many flood forecasting systems rely on rainfall inputs, which come from 

observation networks (e.g., radar and rain gauges). However, for medium-term 

forecasts (~ 1 day ahead), numerical weather prediction (NWP) models must be used 

to produce the advanced flood forecasting with extended lead time. Recent advances 

in rainfall forecast from NWP models have created opportunities to incorporate 

forecast outputs directly into flood forecast systems in order to obtain an extended 

lead time. And flood forecast systems are increasingly moving toward using 

ensemble outputs of the NWP model, rather than single deterministic forecasts, to 

take account of uncertainties and to allow for skillful predictions. 

 

Recent research, however, has found that direct application of ensemble outputs 

from a numerical weather prediction (NWP) model into the flood forecasting area 

can result in considerable problems regarding variability and uncertainty, which are 

propagated into hydrological domains. First, the spatial scale of the hydrological 

model will not match the scale of the meteorological model, which is not at a high 

enough resolution yet. Second, the ensemble flood forecasting may need to have 

some kind of correction applied for the under-representation of uncertainty. 

Therefore, in order to use ensemble forecast outputs of the NWP model for flood 

forecasting effectively, it is important to establish some kind of methodologies to 

apply for ensemble flood forecasts. 

 

Given the current issues with ensemble flood forecasting, this study is attempting 

to deal with high-resolution ensemble information mainly from numerical weather 

prediction (NWP) and partly from radar-based prediction for the application of flood 

forecasting with a distributed hydrologic model and to discusses how uncertainty of 

ensembles is represented in flood forecasting. And several methods are proposed to 
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improve the accuracy of the flood forecasting considering rainfall forecast 

uncertainty. Main focuses and findings of this thesis are listed below. 

 

Chapter 2 describes the design of the meteorological experiment for ensemble 

forecasting, target event and area, and a hydrologic model for the flood forecasting.  

 

Chapter 3 investigates the applicability of ensemble forecasts of a numerical 

weather prediction (NWP) model for flood forecasting area based on the basic data 

of Chapter 2. Ensemble outputs with 30 hr forecast time and 2 km horizontal 

resolution, which is the state-of-the-art technique for operational applications in 

hydrological fields, are verified temporally and spatially whether they can produce 

suitable rainfall predictions or not during the Typhoon Talas event. Then, flood 

forecasting driven by ensemble outputs is carried out over Futatusno (356.1 km
2
) and 

Nanairo (182.1 km
2
) dam catchments of Shingu river basin (2,360km

2
), located on 

the Kii Peninsula of the Kinki area, Japan. Through the case study, it shows that 

ensemble forecast increases forecast accuracy and allows for skillful predictions, but 

the uncertainty of ensemble NWP rainfall is also significant at longer lead times. 

Therefore, it is important to establish methodologies to improve the accuracy of the 

ensemble flood forecasting. 

 

Chapter 4 presents the uncertainty propagation of rainfall forecast into 

hydrological response with catchment scale through distributed rainfall-runoff 

modeling based on the forecasted results of Chapter 3. The research questions that 

this chapter addresses are: How does rainfall forecast error translate to the flood 

forecast error, and how does flood forecast propagate as a function of catchment 

scale dependency. It is assumed that contributions to the uncertainty of predicted 

discharge come from the uncertainty of rainfall forecast, which is the difference 

between predicted and observed rainfall, so pay no attention to hydrological model 

uncertainties, which are classified into model parameter and structure errors. Chapter 
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4 shows that smaller catchments demonstrate a larger uncertainty in the flood 

forecasting. 

 

Chapter 5 proposes pre-processing methodologies based on appropriate members 

and a transposition scheme of ensemble forecast outputs from a numerical weather 

prediction (NWP) model. First, the selection of appropriate members is investigated 

by comparison of spatial distributions between observed radar rainfall and forecasted 

ensemble rainfall. And selected ensemble information is applied to the next forecast 

period to assess the accuracy improvement of flood forecasting. Second, as an 

approach for the accuracy improvement of the flood forecasting, transposition 

method, which is a spatial shift of ensemble rainfall distributions considering the 

correction of misplaced predicted rainfall distributions, is introduced. Finally, the 

above two methods are integrated in order to use advantages of characteristics of 

each method at the same time and apply to the next forecast period to confirm the 

accuracy improvement of the flood forecast skill. Through Chapter 5, the 

transposition method could enhance the mean and best value of the accuracy on flood 

forecasting. 

 

Chapter 6 enhances the transposition method proposed in Chapter 5 and suggests 

real-time updating of flood forecasting using newly proposed transposition scheme 

considering orographic rainfall for the QPF location correction and the accuracy 

improvement. In the first step of the proposed method, ensemble forecast rainfalls 

from a numerical weather prediction (NWP) model are separated into orographic and 

non-orographic rainfall fields using atmospheric variables (e.g., air temperature, 

horizontal wind, and relative humidity) and the extraction of topography effect. Then, 

the non-orographic rainfall fields are examined by the transposition scheme to 

produce additional ensemble information. And new ensemble NWP rainfall fields are 

calculated by recombining the transposition results of non-orographic rain fields with 

separated orographic rainfall fields for a generation of place-corrected ensemble 
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information. Then, the additional ensemble information is applied to the hydrologic 

model for post-flood forecasting with 6-hr intervals, which shows the accuracy 

improvement of flood forecasting with the proposed updating method. 

 

Chapter 7 proposes hybrid system blending of ensemble information from radar-

based forecast and numerical weather prediction (NWP) to improve the accuracy of 

rainfall and flood forecasting. First, an improved radar image extrapolation method, 

which is comprised of the orographic rainfall identification and the error ensemble 

scheme, is introduced. Then, ensemble NWP outputs are updated based on 1) mean 

bias of the error fields considering error structure and 2) transposition scheme 

considering the orographic rainfall introduced in Chapter 6. Finally, the improved 

radar-based prediction and two updated NWP rainfall considering 1) bias correction 

and 2) QPF location correction are blended dynamically with changing weight 

functions, which are computed from the expected skill of each radar prediction and 

updated NWP rainfall. The blending result based on bias correction shows sufficient 

reproducibility in peak discharge value compared with the result based on QPF 

location correction in updated flood forecasting, whereas the blending based on 

transposition scheme could reduce the width of the ensemble spread, which is 

expressed as the uncertainty in the flood forecasting.  

 

In conclusion, major findings that were mainly addressed in this study are: For 

extreme events, although the ensemble forecasts based on NWP model can generally 

catch the rainfall pattern, the uncertainties of rainfall in the flood forecasting area 

were significant, and for this reason, new methodologies (i.e., QPF location 

correction by transposition scheme, bias correction by error-field scheme, and hybrid 

blending scheme) using ensemble information from NWP model and radar-based 

prediction were proposed and could provide a clear indication of the accuracy 

improvement of flood forecasting. 
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Chapter 1 

 

Introduction  

 

1.1 Background 

 

Flood forecasting is an important mechanism to reduce the damaging effects of 

flood events and to acquire sufficient time for early flood warnings (Demeritt et al., 

2007). The identification of the need for flood forecasting and warning systems is 

witness to the reality of the limitations of structural flood protection systems. Due to 

the existence of residents in flood-prone areas and the need to meet expectations of 

community safety and protection of assets, an adequate flood forecasting and 

warning service is a growing necessity in many countries (WMO, 2011). The 

primary goal, in most cases, of flood forecasting and warning services is to provide 

reliable and timely information to civil protection services as well as to the general 

public. This should be accomplished with enough lead time to allow people to take 

measures to protect themselves from flooding or take other appropriate actions. 

 

Numerical Weather Prediction (NWP) models take advantage of present weather 

conditions as input to atmospheric models to predict the advance of weather systems 

for medium-term forecasts (~ 1 day ahead). Recent advances in NWP models have 

created opportunities to improve streamflow forecasts. The accuracy of weather 

forecasts has steadily improved over the years, but it has been challenging to 

integrate quantitative precipitation forecasts (QPF) into flood forecast systems 

(Cloke and Pappenberger, 2009; Cuo et al., 2011). 

 

   Using the outputs from a number of forecasts or realizations, the relative 

frequency of events from the ensemble numerical weather prediction can be used 
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directly to estimate the probability of a given weather or flood event. Ensemble 

forecasting is a form of Monte Carlo analysis: multiple numerical predictions are 

conducted using slightly different initial conditions that are all plausible given the 

past and current set of observations or measurements. Ensemble or probabilistic 

forecasts are more widely applied to NWP models, with the probabilistic outcome of 

a number of NWP runs being used to provide the “most likely” scenario for input 

into a hydrological model of so-called ensemble prediction systems (EPSs).  

 

   Several different hydrologic and flood forecasting projects now use EPS 

operationally or semi-operationally, and many centers may be considering the 

adoption of such an approach. In 1999, the European Flood Forecasting System 

(EFFS, 1999 ~ 2003) project was the first European research project based on EPS 

and addressed early flood warning (De Roo et al., 2003; Kwadijk, 2003; Bartholmes 

and Todini, 2005). In the light of the EFFS, a European commission created the 

European Flood Alert System (EFAS). In 2004, the Hydrological Ensemble 

Prediction Experiment (HEPEX) guided an international initiative to develop 

cooperative research between the meteorological and hydrological communities 

(Schaake et al., 2006, 2007; Thielen et al., 2008). Since then, EPS-based research has 

become a dominant feature of hydrological research and applications on all time 

scales (Mesoscale Alpine Programme Demonstration of Probabilistic Hydrological 

and Atmospheric Simulation of Flood Events (MAP D-PHASE) (Zappa et al., 2008), 

Prevention, Information and Early Warning (PREVIEW) (Bogner and Kalas, 2008), 

and other research projects on ensemble forecasts: Roulin et al., 2007; Bartholmes et 

al., 2009; Hopson and Webster, 2008; Olsson and Lindstrom, 2008). 

 

   The findings from EPS projects and case studies (hindcasts) evaluating ensemble 

flood forecasting clearly showed great potential for using EPS to increase flood early 

warning time, but equally emphasized the need for further research on the 

interpretation of ensemble outputs, sufficient events for statistical analysis, especially 
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pre/post-processing (i.e., some kind of correction) of the raw ensemble outputs. 

Given the current issue and problem with EPSs with NWP models, proper pre-

processing and corrections that deal with under-dispersivity (i.e., not enough spread, 

and thus under-representation) or bias (difference between predictions and 

observations) should be considered carefully in order to use EPSs effectively in flood 

forecasting systems on a small catchment scale. There are several ways to deal with 

NWP model biases in flood forecasting. One is to shift (or transpose) the spatial 

rainfall distribution that is derived from the ensemble forecasts of the NWP model to 

consider a QPF location correction. This approach accounts for biases with 

misplacement of spatial rain distributions, but it is possible to be vulnerable when 

ensemble forecasts themselves are uncorrected compared to true rainfall distributions. 

Another approach is to correct biases from previously predicted and observed rainfall 

and is generally preferred for flood forecasting, but bias correction methods have not 

been examined well in previous studies. Hamm and Elmore (2004) mentioned that 

NWP model ensembles perform poorly without bias correction, but a simple bias 

correction added to each ensemble member appears to significantly enhance the 

ensemble’s utility. Therefore, some kind of method of dealing with QPF location and 

bias correction for improved accuracy in rainfall and flood forecasting is the main 

subject to be discussed in this study. 

 

 

1.2 Research Aims and Objectives 

 

This study attempts to deal with ensemble forecast outputs of NWP model for 

flood forecasting applications with a distributed hydrologic model. Several methods 

are introduced herein to improve the accuracy of flood forecasting considering QPF 

location correction, bias correction of ensemble NWP outputs, hybrid blending of 

updated NWP rainfall with radar-based prediction by consideration of orographic 

rainfall identification, the error-field scheme, and the transposition scheme. The 
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primary objectives of this thesis are as follows: 

 

1) To examine the applicability of ensemble rainfall outputs of probabilistic weather 

prediction into flood forecasting, considering prediction uncertainty. 

 

2) To understand and assess the prediction uncertainty propagation from ensemble 

NWP rainfall outputs into a hydrological response with a catchment scale. 

 

3) To explore improvements in accuracy of flood forecasting by determining 

appropriate ensemble members of NWP rainfall predictions and transposition of 

NWP rainfall fields for the QPF location correction of misplaced spatial 

positions. 

 

4) To suggest a post-processed ensemble forecasting method for real-time updating 

and accuracy improvement of flood forecasts based on the QPF location 

correction from the enhancement of a transposition scheme that considers the 

separation of orographic and non-orographic rainfall. 

 

5) To blend the advantages of NWP ensemble information and radar-based 

prediction for accuracy improvement of rainfall and flood forecasting in 

viewpoint of the hybrid forecast. 

 

 

1.3 Outline of Thesis 

 

This thesis consists of eight chapters, and the analysis from chapter 3 to chapter 7 

is based on the ensemble NWP rainfall data and distributed hydrologic model 

presented in chapter 2. Figure 1.1 shows the roadmap of this thesis. The rectangles 

represent the title and objective of each chapter and the arrow represents the 
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relationship between the chapters. 

 

Chapter 2 describes the design of meteorological experiment for ensemble 

prediction, target event and area, and the applied rainfall-runoff model used in this 

thesis for flood forecasting.  

 

Chapter 3 investigates the applicability of using ensemble forecasts from a 

numerical weather prediction (NWP) model for flood forecasting area based on the 

basic data of Chapter 2, and reviews the reasons why NWP model ensembles are so 

attractive for flood forecasting area than deterministic model runs. Ensemble outputs 

with 30 hr forecast time and 2 km horizontal resolution, which is the state-of-the-art 

technique for operational applications in hydrological fields, are verified temporally 

and spatially as to whether they can produce suitable rainfall predictions or not 

during the Typhoon Talas event. Then flood forecasting driven by ensemble outputs 

is carried out for the Futatusno (356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments 

of the Shingu river basin (2,360km
2
), located in the Kii Peninsula of the Kinki region 

in Japan. 

 

Chapter 4 presents the propagation of NWP rainfall uncertainty as a hydrological 

response with spatial scale through distributed rainfall-runoff modeling based on the 

forecasted results of Chapter 3. Chapter 3 assumed that contributions to discharge 

uncertainty come from rainfall forecast uncertainty, which is the difference between 

predicted and observed rainfall; therefore, this chapter pays no attention to 

hydrological model uncertainties, which are classified into model parameter errors 

and model structure errors. For the assessment of uncertainty variability and 

propagation, error indexes (e.g., coefficient of variation, bias, RMSE) are estimated 

depending on the catchment scale. 
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Chapter 5 proposes pre-processing methodologies based on appropriate members 

and a transposition scheme of ensemble forecast outputs from the numerical weather 

prediction (NWP) model. First, the selection of appropriate members is investigated 

by comparing the spatial distributions between observed radar rainfall and forecasted 

ensemble rainfall, and selected ensemble information is applied into the next forecast 

period to assess the accuracy improvement of flood forecasting. Second, as an 

approach for improving accuracy in flood forecasting, the transposition method, 

which is a spatial shift in ensemble rainfall distributions that considers the correction 

of misplaced predicted rainfall distributions, is introduced. Finally, the above two 

methods are integrated in order to use advantages of the characteristics of each 

method at the same time and apply them to the next forecast period to confirm the 

accuracy improvement in flood forecasting skill. 

 

Chapter 6 enhances the transposition method proposed in Chapter 5 and suggests 

real-time updating of flood forecasting using a newly proposed transposition scheme 

that considers the orographic rainfall for the QPF location correction and the 

previously realized improvements in accuracy. In the first step of the proposed 

method, ensemble forecast rainfalls from a numerical weather prediction (NWP) 

model are separated into orographic and non-orographic rainfall fields using 

atmospheric variables (e.g., air temperature, horizontal wind, and relative humidity) 

and the extraction of the topography effect. Then the non-orographic rainfall fields 

are examined with the transposition scheme to produce additional ensemble 

information and new ensemble NWP rainfall fields are calculated by recombining the 

transposition results of non-orographic rain fields with the separate orographic 

rainfall fields to generate place-corrected ensemble information. Then, the additional 

ensemble information is applied into a hydrologic model for post-flood forecasting 

with a 6-hour interval. 
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Chapter 7 proposes a hybrid system that blends ensemble information from radar-

based forecasting and numerical weather prediction (NWP) to improve the accuracy 

of rainfall and flood forecasting. First, an improved radar image extrapolation 

method, which is comprised of the orographic rainfall identification and the error 

ensemble scheme, is introduced. Then ensemble NWP outputs are updated based on: 

1) mean bias of error fields that consider error structure and 2) transposition scheme 

that considers orographic rainfall introduced in Chapter 6. Finally, the improved 

radar-based prediction and two updated NWP rainfall models that consider 1) bias 

correction and 2) QPF location correction are blended dynamically with changing 

weight functions, which are computed from the expected skill of each radar 

prediction and updated NWP rainfall. The proposed method is verified temporally 

and spatially through target events and is applied to hybrid flood forecasting for 

updates with a 1-hour interval. 

 

Finally, Chapter 8 summarizes this thesis with concluding remarks containing the 

research contributions, limitations and further works relevant to this study. 
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Figure 1.1 Roadmap of this thesis. 
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Chapter 2 

 

Data, Study Area and a Hydrologic Model 

 

2.1 Design of Meteorological Experiment  

 

In early September 2011 heavy rainfalls happened over Japan due to the season's 

12th typhoon, Talas, which caused large flooding and enormous landslide disasters 

over Japan's Kinki region. It also caused unprecedented human damage, resulting in 

78 dead and 16 missing. Talas moved very slowly and had a huge gale diameter 

throughout its life. The total amount of precipitation from Talas in the Kii Peninsula 

was estimated to be over 2,000 mm. 

 

In Japan, an operational one-week ensemble prediction model from JMA was 

developed to provide probabilistic information of 51 ensemble members with a 

horizontal resolution of 60 km, and it used to be applied for hydrological applications 

(e.g., prior and optimized release discharge for dam operation; Matsubara et al., 

2013). However, operational short-term (1–2 day) ensemble prediction with much 

finer resolution has not yet been developed. For that reason, studies on ensemble 

forecast systems that are composed of 11 members (1 unperturbed and 10 perturbed 

member) with a horizontal resolution of 10 km and 2 km, the latter nested inside the 

former with a 6-hour lag, have been conducted by the Meteorological Research 

Institute (MRI) of JMA for the 2011 Typhoon Talas event. 

 

Both 10 km and 2 km resolution systems used the JMA Non-hydrostatic Model 

(NHM) as the forecast model (Saito et al., 2006; Saito, 2012). Whereas the 10 km 

resolution forecast adopted the cloud microphysical process and Kain-Fritsch 

convective scheme, the 2 km resolution forecast did not use a convective scheme 
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because of its cloud resolving resolutions. The domain of the two ensemble systems 

with 10 km and 2 km horizontal resolution are illustrated in Figure 2.1. 

 

The coarse resolution system of 10 km had a domain of 361×289 grid points with 

50 vertical levels and forecasted up to 36 hours in advance. For initial and lateral 

boundary conditions, 10 km used the analysis from the JMA non-hydrostatic 4DVAR 

(JNoVA) data assimilation system (Honda and Sawada, 2008) and the forecasts of 

JMA's high-resolution (TL959L60) global spectral model (GSM). The control run 

(cntl) is the forecast with a non-perturbed analysis, and the 10 perturbed forecasts 

were generated from JMA's 1-week global EPS (WEP) for the initial and boundary 

perturbations. The fine-resolution 2 km system was conducted from the downscale 

forecast of 10 km resolution systems. This system had a domain of 350×350 grid 

points with 60 vertical levels and forecasted up to 30 hours in advance. The initial 

and boundary conditions for each member at 2 km were interpolated from the 

forecasts on the corresponding member at 10 km resolution with a 6-hour lag. 10 km 

started running at 21 JST every day, and 2 km began 6 hours later. Figure 2.2 shows a 

schematic of forecast runs with 10 km and 2 km resolution. 

 

 

Figure 2.1 Forecast domains of 10 km and 2 km horizontal resolution. 
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Figure 2.2 Schematic of forecast runs with 10 km and 2 km horizontal resolution 

 

As the first look into the performances of two forecast systems, Figure 2.3 shows 

the accumulated rainfall by the Ministry of Land, Infrastructure, Transport and 

Tourism (MLIT)'s C-band composite radar data and its corresponding forecasts by 

control runs of 10 km and 2 km in the 0- to 30-hour forecasts at 2 km, which were 

correspondent to 6- to 36-hour forecasts at 10 km. These figures suggest that both 

control forecasts at 10 km and 2 km predicted well the precipitation amount and 

spatial location, and the 2 km forecast provided a more detailed distribution of the 

accumulated rainfall. 

 

Figure 2.3 (a) Accumulated rainfall by MLIT radar and corresponding control run 

forecasts at (b) 10 km and (c) 2 km resolution in a 30-hours period (2011/09/02 

03:00 ~ 09/03 09:00, 30 hours) over Japan’s Kinki region. The rectangle inside the 

domain denotes the verification area. 
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Spatial verifications of 10 km and 2 km forecasts are conducted using frequency 

bias in verification area of Figure 2.3(a). Verifications were carried out with 30 hours 

forecast time in the 2 km run (2011/09/02 03:00–09/03 09:00), and the average bias 

values are shown in the plot. The verification rainfall thresholds were considered 

from light (0.1 mm/h) to intense (30 mm/h). It should be kept in mind that, while 

high thresholds restrict rain events to heavy rain, low thresholds not only represent 

light rain but also consider all rains from light to heavy. Figure 2.4 points out that 10 

km control forecasts obviously under-predict intense rain events with high thresholds 

over 10 mm/h, whereas 2 km forecasts predict them well in overall thresholds. It 

means that a 2 km forecast is better, compared to a 10 km forecast, for predicting 

heavy rains such as typhoon events. Therefore, in this chapter, we introduced the 

results of ensemble prediction with a 2 km horizontal resolution due to the 

viewpoints of high resolution and better predictability of weather phenomena. Figure 

2.5 shows the ensemble NWP rainfall forecast at 2 km horizontal resolution during 

Typhoon Talas (2011/09/02/15:00 JST). 

 

 

Figure 2.4 Frequency bias from 10 km and 2 km control run forecasts in verification 

area. The shaded areas are distributions between 25% and 75 % quartile intervals. 
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Figure 2.5 Ensemble NWP rainfall forecast at 2km horizontal resolution 

(2011/09/02/15:00 JST) 

 

 

2.2 Target Area 

 

The Shingu river basin was selected as the target area to assess the flood forecast 

applicability using the ensemble NWP rainfall as illustrated in Figure 2.6. The 

Shingu river Basin is located in the Kii Peninsula of the Kinki area, Japan and covers 

an area of 2,360 km
2
. The average elevation of the study site is 644.6 m, and the 

slope is steep; this basin is a mountainous area. Figure 2.6(b) shows the drainage 

network, which consists of channel and hillslope components of the Shingu river 

basin. The five dams, Futatsuno, Kazeya, Komori, Nanairo, and Ikehara are located 

upstream. Of the five dam catchments, we focused on two sub-catchments, which are 
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Futatsuno (356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments (Nos. 1 and 4 of 

Figure 2.6(a)). Two additional dams, Kazeya and Ikehara (Nos. 2 and 5 of Figure 

2.6(a)), are located upstream of the Futatsuno and Nanairo catchments, respectively. 

Here, the observed outflows from the Kazeya and Ikehara dam were directly utilized 

as the upper boundary conditions for the subject dam basins to focus on only the 

Futatsuno and the Nanairo catchments. 

 

 

Figure 2.6 (a) Shingu river basin (b) drainage network represented by sets of channel 

(black line) and slope (gray line) elements. 
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2.3 Distributed hydrologic model: KWMSS 

 

We used a spatially-distributed hydrologic model, based on one-dimensional 

kinematic wave method for subsurface and surface flow (hereafter, KWMSS) with a 

conceptual stage-discharge relationship, which was introduced by Takasao and 

Shiiba (1988) and enhanced by Tachikawa et al. (2004). This model is based on 

“Object-oriented Hydrological Modelling System (OHyMoS)”. In this model, the 

rainfall–runoff modeling system accepts spatially variable information in terms of 

topographic and meteorological data. The drainage network is represented by sets of 

hillslope and channel elements from digital elevation model (DEM). The drainage 

network was represented by a 250 m × 250 m spatial resolution of DEM. Figure 2.7 

is a conceptualization of spatial flow movement and flow process in hillslope 

elements of KWMSS. The rainfall over all hillslope elements flows one-

dimensionally into the river nodes and then routes to the catchment outlet. The 

rainfall-runoff transformation conducted by KWMSS is based on the assumption that 

each hillslope element is covered with a permeable soil layer, as shown in Figure 2.7. 

This soil layer consists of a capillary layer and a non-capillary layer. In these 

conceptual soil layers, slow and quick flow are simulated as unsaturated Darcy flow 

and saturated Darcy flow, respectively, and overland flow occurs if water depth, h [m] 

exceeds soil water capacity.  
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where vc=kci [m/s], va=kai [m/s], kc=ka/β [m/s], α=i
1/2

/n [m
1/3

s
-1

], m = 5/3, i is the 

slope gradient, kc [m/s] is the hydraulic conductivity of the capillary soil layer, ka 

[m/s] is the hydraulic conductivity of the non-capillary soil layer, n [m
-1/3

s] is the 

roughness coefficient, ds [m] is the water depth corresponding to the water content, 

and dc [m] is the water depth corresponding to maximum water content in the 

capillary pore. The flow rate of each hillslope element q [m
2
/s] is calculated by 

equation (2.1), and combined with the continuity equation for channel routing by 

equation (2.2). The KWMSS does not consider vertical flow due to infiltration, but 

represents lagged subsurface flow with calibrated hydraulic conductivities and soil 

layer thicknesses (Tachikawa et al., 2004).  

 

 

Figure 2.7 Conceptualization of spatial flow movement and flow process in hillslope 

elements; the arrows indicate element models for calculating hydrological variables, 

such as water flux. 
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2.4 Verification Data 

 

The ensemble NWP rainfall forecast in this study is verified spatially against the 

Ministry of Land, Infrastructure, Transport and Tourism (MLIT) C-band composite 

radar data (radius of quantitative observation range: 120km, 1km mesh and 5 min 

resolution). MLIT C-band radar provides wide observation range and is installed to 

cover the entire nation, and is useful for large river flood-management tool in 

observing the seasonal rain front or typhoons. 

 

 

Figure 2.8 Conventional MLIT C-band Radar observation network in Japan 

 

AMeDAS (Automated Meteorological Data Acquisition System) is a high-

resolution surface observation network developed by the Japan Meteorological 

Agency (JMA) used for gathering regional weather data and verifying forecast 

performance. The system began operating on November 1, 1974, and currently 

comprises 1,300 stations throughout Japan (of which over 1,100 are unmanned), with 

an average separation of 17 km. In this study, for temporal verification of QPF with 
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ensemble NWP rainfall, the areal rainfall intensity of the AMeDAS is used. For 

comparison, the observed rainfall of AMeDAS over Kinki region (18 stations, 10 

min step) is interpolated using the thiessen polygon spatial distribution method. 

 

 

Figure 2.9 Observational sites of AMeDAS 

(http://www.jma.go.jp/jma/en/Activities/observations.html) 
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Chapter 3 

 

Preliminary Application Assessment of Flood 

Forecasting using High-Resolution Ensemble 

Numerical Weather Prediction Rainfall 

 

 

Abstract This chapter investigates the applicability of ensemble forecasts of 

numerical weather prediction (NWP) model for flood forecasting area based on the 

basic data of Chapter 2 and reviews the reasons why ensembles of NWP model are so 

attractive than deterministic model run. Ensemble outputs with 30hr forecast time 

and 2 km horizontal resolution are verified temporally and spatially whether they 

can produce suitable rainfall predictions or not during the Typhoon Talas event. 

Then flood forecasting driven by ensemble outputs is carried out over the Futatsuno 

(356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments of Shingu river basin, located 

in Kii Peninsula of the Kinki area, Japan.  

 

The results shows that ensemble rainfall of NWP model produced better results 

compared with deterministic control run in terms of quantitative precipitation 

forecast (QPF), and flood forecasts driven by ensemble outputs showed that in 

general it has a large proportion of under and over predictions at short lead times 

and exhibited a negative bias at longer lead times. Despite the deficient performance 

for longer lead times, it was shown that the ensemble flood forecast provides 

additional information to the deterministic forecast. 
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3.1 Introduction 

 

In early September, 2011, local heavy rainfalls due to season’s 12th typhoon, 

“Talas” caused large flooding and enormous landslide disasters over the Kinki, 

Chugoku, Shikoku, and Tokai regions in Japan. It also caused unprecedented human 

damages, resulting in 78 dead and 16 missing persons. In these types of extreme 

events, it is essential to be able to provide as much advance warning as possible. This 

advance warning requires both quantitative precipitation forecasting (QPF) and 

quantitative flood forecasting (QFF). Numerical Weather Prediction (NWP) models 

are now becoming standard for short-range (1~2days) forecasts. NWP models use 

current weather conditions as input to atmospheric models to predict the evolution of 

weather systems. These models represent the atmosphere as a dynamic fluid and 

solve for its behavior through the use of mechanics and thermodynamics. The 

accuracy of weather forecasts has steadily improved over the years, due to advances 

in NWP techniques and increased computing power (Buizza et al., 1999; Demeritt et 

al., 2007).  

 

The short-term Meso-Scale Model (MSM) of Japan Meteorological Agency 

(JMA) is now run operationally with a horizontal resolution of 5 km (Saito et al., 

2006; Saito, 2012). During the Typhoon Talas event, the MSM generally predicted 

the typhoon track well in the early period. However, the predicted rainfall intensity 

was weaker than the observed radar rainfall, and the movement was also faster as the 

lead time was longer. As a result, the rainfall forecast pattern moved to the north-

eastern part of the Kii peninsula quickly compared with the observed radar rainfall 

distribution.  

 

One of the methods to overcome the forecast failure of deterministic predictions 

is to use ensemble outputs of NWP models. Ensemble outputs of NWP models have 

been generated since the early 1990s (e.g., ECMWF ensembles started in 1993) and 
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probabilistic weather forecasts have been used to express forecast uncertainty. It is 

believed that NWP ensemble prediction systems exhibit greater forecast skill than 

any single NWP model control run or deterministic model run (Buizza et al., 1999; 

Demeritt et al., 2007; Cuo et al., 2011).  

 

Another method for an accuracy improvement of QPF and QFF areas can be 

achieved by increasing in the resolution of NWP models. In Japan, the JMA’s 

operational one-week ensemble prediction has been developed to support typhoon 

track forecast and to provide probabilistic information with a horizontal resolution of 

60 km and 51 ensemble members, and it used to be applied for hydrological 

applications. However, there is a limitation to use one-week ensemble prediction in 

respect of hydrological applications because one-week ensemble prediction has a 

coarse spatial resolution. With consideration for high-resolution and ensemble 

forecasts, the latest ensemble forecasts from NWP model with 30 hours forecast time 

and 2 km horizontal resolution has been experimentally generated by the 

Meteorological Research Institute (MRI) of the JMA. This ensemble forecast is still 

in research for an improvement in terms of the forecast accuracy, and it is expected 

that ensemble rainfall forecast can improve the forecast skill more than operational 

deterministic rainfall forecast.  

 

In the context of flood management, it is important to integrate NWP model 

output and flood forecasting. It is possible to incorporate NWP model outputs 

directly into flood forecasting systems to obtain an extended lead time (Xuan et al., 

2009). However, direct application of deterministic NWP model output can 

propagate uncertainties into the hydrologic domain. For this reason, the development 

of ensemble hydrological applications started in the late 1990s and is a field of 

ongoing research (De Roo et al., 2003; Gouweleeuw et al., 2005). Ensemble flood 

forecasting provides additional information to the deterministic flood forecast in the 

short forecast range, and provides a signal in terms of pre-warning and exceedance 
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probabilities for threshold values (e.g. critical discharge, levels causing inundation, 

and so on). 

 

This chapter investigates the applicability of ensemble forecasts of NWP model 

for flood forecasting area based on the basic data of Chapter 2 and reviews the 

reasons why ensembles of NWP model are so attractive than deterministic model run. 

For ensemble rainfall forecasts during typhoon Talas event, 4 sets of ensemble 

prediction outputs with 30 hours forecast time and 2 km horizontal resolution are 

used. (1
st
 forecast: 2011/09/01 03:00 ~ 09/02 09:00 JST, 2

nd
 forecast: 2011/09/02 

03:00 ~ 09/03 09:00 JST, 3
rd

 forecast: 2011/09/03 03:00 ~ 09/04 09:00 JST, 4
th

 

forecast: 2011/09/04 03:00 ~ 09/05 09:00 JST; each forecast period of 2 km 

resolution is overlapped with 6 hours, Figure 3.1). For the comparison between 

ensemble and deterministic forecasts, the deterministic output with 15 hours forecast 

time and same initial time at 03:00 JST simulated by meso-scale model (MSM) is 

considered. However, it is difficult to compare fully with ensemble forecasts because 

the deterministic forecast by MSM, which has same initial time at 03:00 JST, 

forecasts up to 15 hours. Therefore, the control run of ensemble forecast, which has 

same initial condition (JMA non-hydrostatic 4DVAR (JNoVA)) and boundary 

condition (JMA’s high-resolution (TL959L60) global spectral model (GSM)) with 

the meso-scale model is considered to deterministic forecast for the comparison with 

ensemble forecast. Figure 3.2 shows accumulated rainfall by control run and MSM 

forecast in 15 hours period during typhoon Talas event over Kinki region, Japan. This 

figure suggests that control run forecast is close to MSM forecast in terms of 

precipitation amount and spatial location. Then ensemble outputs are verified 

temporally and spatially whether they can produce suitable rainfall predictions or not 

compared with the deterministic control run output during the Typhoon Talas event. 

Finally, flood forecasting driven by ensemble and control run outputs is carried out 

over the Futatsuno (356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments of Shingu 

river basin, located in Kii Peninsula of the Kinki area, Japan.  
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Figure 3.1 Schematic of 4 sets of forecast runs with 10 km and 2 km resolution 

 

 

Figure 3.2 Accumulated rainfall by control run and MSM forecasts 
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3.2 Verification of Ensemble NWP rainfall 

 

3.2.1 Temporal verification 

 

For the purpose of temporal verification of QPF with ensemble NWP rainfall 

during the Talas event, the areal rainfall intensity of ensemble forecasts is compared 

with the Automated Meteorological Data Acquisition System (AMeDAS) over the 

Shingu River Basin. For comparison, the observed rainfall of AMeDAS (18 stations, 

10min step) is interpolated using the Thiessen polygon spatial distribution method.  

 

Figure 3.3 shows areal rainfall of ensemble forecast over the Shingu River Basin 

in the form of box plots plotted from 0 to 24 hours forecast time of ensemble forecast 

excluding overlapped forecast time (from 25 to 30 hours) compared with the areal 

rainfall of AMeDAS. In the 1
st
 and 2

nd
 forecast periods, the control run and ensemble 

forecast produced a suitable areal rainfall compared with the AMeDAS rainfall, but 

as shown in the 3
rd

 forecast result, on which focused in this study, the control run 

forecast was well not matched and did not produce the rainfall intensity because the 

spatial pattern of raincells moved to the north-eastern part of Kii peninsula quickly 

by that the MSM failed to correctly forecast, as mentioned in the introduction section. 

On the other hand, the upper range of the ensemble forecast was able to produce 

considerable rainfall intensity, and the amounts of maximum rainfall intensity are 

also similar to AMeDAS rainfall. In 4
th

 forecast period, the reason why rainfall 

intensities are overestimated can be explained by the fact that the last spatial rainfall 

pattern of the 3
rd

 forecast moved to the north-eastern part of the Kii peninsula; 

however, it started the forecast again from the Kii peninsula in the 4
th

 forecast. For 

this reason, rainfall intensities were very high in the 4
th

 forecast period compared 

with AMeDAS.  
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Figure 3.3 Areal rainfall of ensemble forecast in the form of box plots. 

 

To evaluate the accuracy of the control run and ensemble forecast in terms of 

areal rainfall intensity, we calculated two error indexes. The first is the normalized 

root mean square error (RMSE), which is normalized by the mean value of the 

observations during the each forecast period (30 hours). The second is the log ratio 

bias, which a relative error and provides information about the total amount of 

rainfall. A log ratio bias value of zero indicates a perfect forecast; positive and 

negative values indicate underestimated and overestimated forecasts, respectively.  
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where N is forecast time (30 hours) in each period, Ot and Ft are the observed and 

forecasted rainfall at time t. 
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In the index of normalized RMSE, the control run and ensemble mean have 

similar values from 1
st
 to 3

rd
 forecast period, but the best index of the ensemble 

spread could provide good value as compared with the deterministic control run. In 

the 4th forecast period, as mentioned above, the index of the control run and 

ensemble spread is relatively large, but the best index of the ensemble is estimated at 

0.89 (the control run is 3.85). In the index of the log ratio bias, the best index of 

ensemble spread could cover zero value (perfect forecast), whereas the control run 

forecast was underestimated for the 1
st
, 2

nd
, and 3

rd
 forecasts, and overestimated for 

the 4
th

 forecast period. 

 

 

Figure 3.4 Verification results of areal rainfall with normalized RMSE and log ratio 

BIAS.  
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3.2.2 Spatial verification 

 

The ensemble NWP rainfall forecast in this chapter have been verified spatially 

against the MLIT C-band composite radar data with 5 min interval and 1 km 

resolution, because their high spatial-temporal resolution is suitable to capture the 

spatial variability of rainfall. The ensemble forecast was expressed as probabilities of 

exceeding selected rainfall thresholds (1.0 and 5.0 mm/h). A contingency table can be 

constructed with a spatial comparison, in which each area with more than selected 

rainfall threshold is defined as "yes," and other areas are defined as "no" for both 

forecasted and observed rainfall fields. In this chapter, two indexes are considered for 

spatial verification of ensemble forecast in the Kinki region (Figure 3.5). First index 

is critical success index (CSI), which is also called the “threat score” and its range is 

0 to 1, with a value of 1 indicating a perfect forecast. It takes into account both false 

alarms and missed events. And second one is BIAS, which has range with 0 to ∞. 

CSI and BIAS are given by: 

 

       
hits

CSI
hits misses false alarms


 

   (3.3) 

 

hits false alarms
BIAS

hits misses





    (3.4) 

 

where hits are the number of correct forecasts over the threshold (i.e. rainfall is 

forecast and also observed), and misses are the number of times rainfall is not 

forecast, but is observed. False alarms are the number of times rainfall is forecast but 

is not observed.  
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Figure 3.5 Spatial verification area 

 

Figure 3.6 shows the results of CSI and BIAS in a comparison of radar data and 

ensemble forecasts with selected rainfall thresholds (1.0 and 5.0 mm/h) during the 1
st
, 

2
nd

, 3
rd

 and 4
th

 forecast period. In the 1
st
 forecast period of CSI with 1.0 mm/h 

threshold value, ensemble spread could provide better results than deterministic 

control run after 17 hours forecast time, whereas the CSI of control run is close to the 

ensemble mean value. In the 2
nd

 forecast period, although the CSI of control run are 

better than ensemble mean, the best index of the ensemble spread outperformed than 

the control run. In the 3
rd

 forecast period, as stated above, the spatial pattern of 

raincells moved to the north-eastern part of Kii peninsula quickly, so the CSI of 

control run decreased as lead time increased, whereas the best value of ensemble 

spread could provide the better result than the control run. In the 4
th

 forecast period, 

the control run was close to the ensemble mean, and ensemble spread could cover the 

control run.  
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 In the 3
rd

 forecast period with 1.0 and 5.0 mm/h threshold value, on which 

focused in this study, the BIAS decreased quickly as lead time increased. However, 

the best values of the ensemble spread could maintain higher forecast accuracy 

compared to the control run forecast. It showed that ensemble forecasts have an 

advantage in terms of spatial accuracy, although lower value of ensemble forecasts 

exists in each forecast period as lead time increases.  

 

 

Figure 3.6 CSI and BIAS with threshold values in verification area. 
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3.3 Ensemble Flood Forecasting 

 

As state above, we considered two dams located in the Shingu River Basin: 

Futatsuno (356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments, for an assessment 

of the ensemble flood forecast driven by ensemble NWP rainfall. Simulated 

discharge from the observed radar rainfall used the as the initial condition for the 

ensemble flood forecast in each forecast period. Figures 3.7 (a) and (b) show the 

results of the 30 hours ensemble flood forecast from 1
st
 to 4

th
 forecast periods over 

the Futatsuno and Nanairo dam catchments for Typhoon Talas event.  

 

As shown in Figures 3.7 (a) and (b), the 1
st
 and 2

nd
 forecast (rising limbs) of both 

the control run and ensemble forecast produced a suitable discharge, but were lower 

than the true value from 20 to 30hr lead times of the 2
nd

 forecast period over the 

Futatsuno dam catchment, caused by the underestimation of the rainfall forecast. In 

the 3
rd

 forecast period of peak discharge, the control run forecast was typically lower 

than the observed discharge, caused by its shift from the correct spatial position. The 

majority of ensemble members were also lower than the observed discharge, but a 

few ensemble members exceeded the control run forecast, and were close to the 

observed discharge in both the Futatsuno and Nanairo dam catchments. In the 4
th

 

forecast period (falling limb), both the control run and ensemble forecast were 

overestimated because the over-estimation in rainfall forecast (4
th

 forecast of Figure 

3.3) triggered a runoff over-estimation. From the results of ensemble flood forecast 

over the Futatsuno and Nanairo dam catchments, flood forecasts driven by ensemble 

outputs produced more suitable results compared with deterministic control run, but 

showed that in general it has a large proportion of under and over predictions at low 

lead times and exhibit a negative bias at longer lead times. 

 

 



Chapter 3 

 

 

31 

 

 

 

Figure 3.7 30 hours ensemble flood forecast results over (a) Futatsuno dam 

catchment and (b) Nanairo dam catchment 

 

 The scatter plots of Futatsuno and Nanairo dam catchments show that the 

ensemble forecasts had better results than the control run forecast in terms of the 

coefficient of determination (also called the “R-squared”) which is used to describe 

how well a regression line fits a set of observed data (Figure 3.8). In these results, the 

ensemble flood forecasts provided additional information (e.g. the indication of the 

possibility of an extreme event) that were not present in the deterministic forecast. 

And in the index of normalized RMSE and log ratio BIAS, the best index of the 

ensemble spread could provide good value as compared with the deterministic 

control run in each forecast period (Figure 3.9), and this additional information of 

ensemble forecast could be used for real-time flood forecast, dam inflow forecast, 

and dam release support considering forecast uncertainty.  
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Figure 3.8 Scatter plot of 30hr ensemble flood forecast over Futatsuno and 

Nanairo dam catchments 

 

 

Figure 3.9 Verification results of flood forecast with normalized RMSE and log ratio 

BIAS over (a) Futatsuno and (b) Nanairo dam catchments. 
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3.4 Summary and Discussion 

 

This chapter investigated the applicability of ensemble forecasts of numerical 

weather prediction (NWP) model for flood forecasting. At first, ensemble outputs are 

verified temporally and spatially with observed radar rainfall during the typhoon 

Talas event. Then flood forecasting driven by ensemble outputs was carried out over 

the Futatsuno (356.1 km
2
) and Nanairo (182.1 km

2
) dam catchments. Major findings 

from this chapter lead to the following conclusions. 

 

Although ensemble forecast could catch the rainfall pattern and produced more 

suitable results compared with deterministic control run in terms of quantitative 

precipitation forecast (QPF), the uncertainty of ensemble NWP rainfall was also 

significant at longer lead times. Flood forecasts driven by ensemble outputs showed 

that in general it has a large proportion of under and over predictions at short lead 

times and exhibited a negative bias at longer lead times. Despite the deficient 

performance for longer lead times, it was shown that the ensemble flood forecast 

provides additional information to the deterministic forecast. 

 

 From these results, although ensemble forecast is an attractive product for flood 

forecasting systems with an extended lead time and better quantify predictability than 

deterministic one, ensemble forecast also needs to be improved to provide reliable 

hydrologic prediction. It means that some kind of pre-processing (e.g. QPF location 

error correction, bias correction, blended and/or hybrid products) is required. 

Therefore, in order to use ensemble forecasts of NWP model for flood forecasting 

effectively, it is important to establish methodologies to improve the ensemble flood 

forecasting.  
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Chapter 4 

 

Assessment of Uncertainty Propagation of Ensemble 

NWP Rainfall to Flood Forecast with Catchment Scale 

 

 

Abstract This chapter presents the uncertainty propagation of rainfall forecast into 

hydrological response with catchment scale through distributed rainfall-runoff 

modeling based on the forecasted results of Chapter 3. The research questions that 

this chapter address is: How does rainfall forecast error translate to the flood 

forecast error, and how does flood forecast uncertainty propagate as a function of 

catchment scale dependency. It assumed that contributions to the uncertainty of 

predicted discharge come from the uncertainty of rainfall forecast, which is the 

difference between predicted and observed rainfall, so pay no attention to 

hydrological model uncertainties, which are classified into model parameter and 

structure errors. 

 

At first, forecast rainfall error based on the BIAS is compared with flood forecast 

error to assess the error propagation. Second, the variability of flood forecast 

uncertainty according to catchment scale is discussed using ensemble spread. Then 

we also assess the flood forecast uncertainty, which has the assumption that 

forecasted ensemble rainfall has not errors compared with observed radar rainfall, 

with catchment scale using an estimation regression equation between ensemble 

rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty with RMSE 

using specific discharge in catchment scale is discussed.  
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4.1 Introduction 

 

Advanced ensemble flood forecast systems include the combined use of 

meteorological NWP and hydrological models. The coupled use of NWP rainfall 

output and hydrologic flood forecasting requires an assessment of uncertainty 

through hydrological response. One of the biggest sources of uncertainty in flood 

forecasting comes from forecast rainfall. Due to the uncertainty of rainfall forecasts, 

flood forecasts are also uncertain. And the grid size in NWP models is often larger 

than the sub-catchment size in hydrological models, which results in the forecast 

rainfall data not being at the appropriate resolution required for flood forecasting. In 

addition, even small errors in the location of weather systems by NWP models may 

result in forecast rainfall for the catchment concerned being significantly wrong 

(Leahy et al., 2007; Ebert, 2001). 

 

The biases and uncertainties of rainfall forecast may be amplified when cascaded 

through the hydrological system, and small uncertainties in rainfall forecast may 

translate into larger errors in flood forecasting. As an example, Komma et al. (2007) 

showed that an uncertainty range of 70% in terms of NWP rainfall translated into an 

uncertainty range of 200% in terms of runoff for a lead time of 48 hours. They 

presented this to the nonlinearity of the catchment responses, but uncertainties such 

as forecast rainfall, parameter, and structure of a hydrologic model may contribute to 

the amplification of the uncertainty in terms of flood forecasting. In the context of 

flood forecasts, it is therefore important to assess the forecast rainfall uncertainty in 

terms of the effect on runoff. And uncertainties based on spatial scale are also 

important by means of the information for real-time flood forecast and the possible 

amount of flow to the reservoir and exceeding its capacity to optimize the water 

volume to be released. Therefore, uncertainty related to spatial scale must be 

assessed. 
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In general, errors are usually classified into input errors (e.g., forecast rainfall and 

measurement rainfall), model errors (e.g., model parameter and structure), and output 

errors (Figure 4.1). It is difficult to understand the full range and interaction of 

uncertainties in flood forecasting. Uncertainty related to model parameters tends to 

decrease with time as more recorded runoff data is available to adjust the model 

parameters (Leahy et al., 2007). This study is carried out under the assumption that 

model parameter and structure errors do not contribute to uncertainty of flood 

forecasting to remove the focus from forecast rainfall error. As a result, a distributed 

hydrologic model is considered to be the appropriate tool to assess rainfall forecast 

quality and to understand how uncertainty in the rainfall forecasts field may 

propagate throughout the watershed. Further, the integration of the rainfall forecast 

into runoff simulation at multiple locations in a catchment allows the investigation of 

the effects of catchment scale on the propagation of rainfall forecast errors in a flood 

forecast. 

 

The main objective of this chapter is to assess the error and uncertainty 

propagation due to NWP rainfall uncertainty on hydrological response through a 

distributed hydrologic model depending on catchment scale. The research question is 

as follows: How does ensemble NWP rainfall error translate into flood forecast, and 

how does flood forecast uncertainty propagate as a function of catchment scale 

dependency? To our knowledge, there exists research about rainfall uncertainty’s 

direct propagation into the hydrological domain, but the spatial scale dependency of 

uncertainty propagation of ensemble NWP rainfall into hydrological predictions has 

not been fully addressed. First, we compared forecast rainfall error based on the 

BIAS, which is used to measure error amplification, to flood forecast error driven by 

ensemble NWP forecast outputs to assess error propagation. Second, we discussed 

the variability of flood forecast uncertainty according to catchment scale using 

ensemble spread, which is driven by ensemble NWP rainfall through a distributed 

hydrologic model. We also assessed flood forecast uncertainty, which is under the 
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condition that ensemble NWP rainfall has not BIAS compared with observed radar 

rainfall and catchment scale using an estimation regression equation between 

ensemble NWP rainfall and discharge based on the BIAS. Finally, we assessed flood 

forecast uncertainty with RMSE using specific discharge in catchment scale. Note 

that we focused not only on the quantitative error propagation of rainfall forecast into 

flood forecast but also the variability of flood forecast uncertainty with catchment 

scale.   

 

 

Figure 4.1 Error framework for rainfall-runoff modeling used in flood forecasting. 
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4.2 Data and Methodology 

 

Ensemble rainfall forecast outputs of the NWP model introduced in chapter 3 are 

used as forcing data to hydrologic model to assess rainfall forecast uncertainty and to 

understand how uncertainty in the rainfall forecast may propagate throughout the 

watershed. Therefore, 4 sets of ensemble outputs with 30 hours of forecast time and 2 

km resolution during the typhoon Talas event are used (1st forecast, 2011/09/01 

03:00 ~ 09/02 09:00; 2nd forecast, 2011/09/02 03:00 ~ 09/03 09:00; 3rd forecast, 

2011/09/03 03:00 ~ 09/04 09:00; 4th forecast, 2011/09/04 03:00 ~ 09/05 09:00) 

(Chapter 3, Figure 3.1).   

 

The Shingu river basin was selected as the target area; the left and right sides 

exhibit different characteristics. The left side is the Totsukawa basin, and the right 

side is the Kitayamakawa basin. Their characteristics are completely different. The 

elevation of Totsukawa is higher than that of Kitayamakawa. And Kitayamakawa has 

a lower level in the channel. We first divided the Shingu river basin into 33 sub-

catchments from 54.24 ~ 2245 km
2
 (Figure 4.2, Table 4.1), including 6 gauged (5 

dams and 1 gauge station) and 27 ungauged locations, for the assessment of 

uncertainty of ensemble NWP rainfall into flood forecast with catchment scale. We 

also specified 33 sub-catchments into 3 types, small catchment (< 200 km
2
), medium 

catchment (200 ~ 1000 km
2
), and large catchment (> 1000 km

2
) to evaluate the 

variability with catchment scale. We also divided catchment characteristics into 2 

types, mountainous area (> 800 m) and flat area (< 800 m) considering average 

elevation (800 m) of the 33 sub-catchments. 
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Figure 4.2 33 sub-catchments and connections with flow directions.  

 

Table 4.1 Sub-catchment area at gauged and ungauged points. 

Catchment Area (km
2
) Catchment Area (km

2
) 

1 92.2 18 141.56 

2 165.99 19 347.35 

3 279.78 20 429.07 

4 150.56 21 94.23 

5 444.04 22 (Nanairo dam) 529.49 

6 54.24 23 (Komori dam) 633.22 

7 533.73 24 700.49 

8 105.72 25 1090.92 

9 (Kazeya dam) 656.08 26 56.68 

10 65.97 27 65.20 

11 766.19 28 1268.03 

12 65.04 29 783.85 

13 130.74 30 2091.38 

14 (Futatsuno dam) 1012.15 31 110.92 

15 112.13 32 2212.24 

16 72.65 33 (Ouga station) 2245.56 

17 (Ikehara dam) 203.27  
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There was no observed discharge data in sub-catchments, except in 5 dams and 1 

gauge station. For that reason, the parameter optimization of the hydrologic model 

was conducted using the MLIT C-band composite radar data, which has high spatial-

temporal resolution to capture the spatial variability of rainfall. The Shuffled 

Complex Evolution (SCE) global optimization method (Duan et al., 1994) was used 

for the parameter optimization of the hydrologic model using MLIT composite radar 

rainfall to acquire the reference data of each sub-catchment. In this study, the SCE 

optimization method was modified to minimize the objective function between 

observed inflows and simulated results for all 5 dams and 1 gauge station at the same 

time (Equation 4.1). Figure 4.3 shows the results of multi-calibration using the SCE 

optimization method and minimizing the objective function of 6 observation points. 

 

sin

sin 1

n

Ba

ba

Minimize OF RMSE


     (4.1) 

 

Observed radar data and its simulated discharge were used as reference data to 

compare the ensemble NWP rainfall forecast and flood forecast for the assessment of 

error propagation. Although the simulated discharge from observed radar rainfall 

does not specifically represent the true discharge, the simulated discharge from the 

observed radar data is nevertheless set as reference data for comparison with the 

discharge from ensemble prediction data. 
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Figure 4.3 Multi-calibration using SCE optimization method and minimizing the 

objective function of 6 observation points. 
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4.3 Results and Discussion 

 

4.3.1 Uncertainty Propagation of NWP Rainfall Forecast to Flood 

Forecast 

 

As stated above, rainfall forecast error of ensemble outputs from the NWP model 

is compared with the flood forecast error driven by those rainfall forecasts to assess 

the error propagation. It is important, however, to quantify error propagation from 

rainfall forecast to flood forecast using statistical measures that appropriately capture 

forecast deviations. For this reason, the BIAS was used to compare the mean 

conditions in the forecast and observation in terms of rainfall and flood forecast and 

to measure error amplification. Note that the BIAS of the basin-mean rainfall is 

directly compared with the discharge BIAS, and the BIAS is used for an average 

value of 30 hours of forecast time of rainfall and flood forecast results. Furthermore, 

the results are classified according to the forecast period of ensemble rainfall from 

the NWP model. 
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     (4.2) 

 

where N is the forecast time of each forecast period (30 hours); Ot and Ft are the 

observed and forecasted rainfall and discharge at time t, respectively; and i is each 

ensemble forecast (11 ensemble members).  

 



Chapter 4 

 

 

44 

 

 

Figure 4.4 Flood forecast results over 33 sub-catchments. 
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Figure 4.5 presents a comparison of rainfall and flood forecast errors from the 

first to the fourth forecast periods with linear regression equations based on a 

statistical measure, the BIAS, for 33 sub-catchments of the Shingu river basin 

represented in Figure 4.4. In the first and fourth forecast periods of Figure 4.5, 

rainfall forecast errors lead to proportional flood forecast errors with linear 

regression equations. The discharge BIAS is varies based on the same rainfall BIAS, 

so the discharge BIAS is different based on catchment scale. For small catchments, 

rainfall errors from forecast location error occur sensitively due to rainfall pixels of 

NWP model, which does not cover the small catchment exactly. For larger 

catchments, many rainfall pixels contribute to the rainfall forecast error propagation 

in the flood forecast. Therefore, the variability of flood forecast uncertainty 

according to catchment scale should be investigated. 

 

 

Figure 4.5 Propagation of rainfall forecast errors to flood forecast errors 
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4.3.2 Flood Forecast Uncertainty with Catchment Scale 

 

As mentioned above, the Shingu river basin is divided into 33 sub-catchments 

from 54.24 to 2245 km
2
, including 6 gauged and 27 ungauged locations, for the 

assessment of uncertainty of ensemble NWP rainfall into flood forecast with 

catchment scale. The Shingu river basin has 3 types (small, medium, and large 

catchments) and 2 characteristics (mountainous and flat area) for evaluation of the 

variability with catchment scale. 

 

First, for the evaluation of the variability of flood forecast uncertainty according 

to catchment scale, the mean value of the coefficient of variation (CV), which is a 

normalized measure of dispersion of a probability distribution or frequency 

distribution, was used (Equation 4.3). It is defined as the ratio of the standard 

deviation to the mean. The absolute value of the CV is sometimes known as relative 

standard deviation (RSD), which is expressed as a percentage. The coefficient of 

variation determines the risk. 

 

 

,

1
,

Ave. CV

N
i t
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i t
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N
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      (4.3) 

 

where N is the forecast time of each forecast period (30 hours), and ,i t  and 

,i t  are the standard deviation to the mean value of the flood forecast at each 

ensemble i and time t, respectively. 
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Figure 4.6 shows the flood forecast variability expressed by coefficient of 

variation using ensemble spread of the flood forecasting with catchment scale and 

characteristic. Each CV value refers to the average value from the first to the fourth 

forecast period. It is evident from Figure 4.6 that the coefficient of variation in 

medium and large catchments is close to 0.25, and this is maintained as the 

catchment increases. For small catchments, however, there is a larger variability than 

for medium and large catchments, and small catchments have a high coefficient of 

variation ( > 0.3). This result suggests that uncertainty variability occurs sensitively 

and diversely at the same time in different catchments, and small catchments have 

more sensitive variability in uncertainty. Therefore, flood forecasting in small 

catchment requires care due to the large variability of uncertainty. On the other hand, 

in medium and large catchments, there is less uncertainty than with small catchments, 

and the coefficient of variation converges into a uniform value. 

 

 

Figure 4.6 Flood forecast variability expressed by coefficient of variation with 

catchment scale and characteristic. 
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Flood forecast uncertainty (it is assumed that rainfall forecast has no errors 

compared to the observed radar rainfall) focuses on the discharge uncertainty with 

catchment scale and was assessed when rainfall BIAS was 1, using an estimated 

linear regression equation between each ensemble rainfall BIAS and discharge BIAS 

of 33 sub-catchments. Figure 4.7 compares the rainfall BIAS of ensemble members 

and discharge BIAS driven by those rainfall forecasts in each sub-catchment and 

linear regression equation. From Figure 4.7, the relationship between rainfall forecast 

errors and flood forecast errors is proportional in ensemble members to the linear 

regression equation, and is different with catchment scale. And as a result of 

separation of the forecast BIAS by each sub-catchment, we obtain 132 linear 

regression equations for 33 sub-catchments and 4 forecast periods. Then we calculate 

the discharge BIAS when rainfall BIAS is 1 using a linear regression equation for 

each sub-catchment to focus on the discharge BIAS with catchment scale. 
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Figure 4.7 Comparison of rainfall and discharge BIAS of ensemble members in each 

sub-catchment and linear regression equation. 
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Figure 4.8 represents the discharge BIAS. It is assumed that rainfall forecast has 

no error compared to observed radar rainfall (rainfall BIAS is 1 using the linear 

regression equation) with catchment scale and characteristic. Figure 4.8 shows that 

there is a discharge BIAS in all of small, medium and large catchments even though 

rainfall forecast has no errors compared to observed radar rainfall. This is due to the 

spatial variability of rainfall, even though basin-mean rainfall is similar to the 

observed radar rainfall. As an example, Lee et al. (2008) showed that input 

uncertainty is due to spatial variability of rainfall on catchment responses in rainfall-

runoff modeling. As stated above, however, we focused not only on the quantitative 

error propagation of rainfall forecast into flood forecast but also the variability of 

flood forecast uncertainty with catchment scale. The discharge BIAS in medium and 

large catchments has properties similar to those of the coefficient of variation in 

Figure 4.5. The small catchments indicate large variability of discharge BIAS. 

 

 

Figure 4.8 Flood forecast variability expressed by BIAS with catchment scale and 

characteristic. 
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Figure 4.9 represents the flood forecast uncertainty with root mean square error 

(RMSE) using specific discharge (discharge/catchment scale) of outlets with 

catchment scale. Figure 4.9 demonstrates properties similar to those resulting from 

the coefficient of variation and BIAS in Figures 4.6 and 4.8, respectively. In medium 

catchments, however, there are two types of characteristics in forecast uncertainty 

variability. In mountainous areas, discharge RMSE is less than that in flat areas, and 

this characteristic is also seen in Totsukawa and Kitayamaka, the left and right sides 

of the Shingu river basin, respectively.   

 

 

Figure 4.9 Flood forecast variability expressed by RMSE with catchment scale and 

characteristic. 
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4.4 Summary 

 

This chapter aimed to investigate the uncertain propagation of rainfall forecast 

into a hydrological response with a catchment scale through distributed rainfall-

runoff modeling based on the forecasted results of Chapter 3. The research questions 

that this chapter addresses are as follows: How does rainfall forecast error translate 

into flood forecast error, and how does flood forecast uncertainty propagate as a 

function of catchment scale dependency? Forecast rainfall error based on the BIAS 

was compared with flood forecast error to assess error propagation. Second, the 

variability of flood forecast uncertainty according to catchment scale was discussed 

using ensemble spread. Then we assessed the flood forecast uncertainty with 

catchment scale using discharge BIAS and RMSE. This chapter demonstrates that 

uncertainty variability occurs sensitively and diversely at the same time in different 

catchments, and small catchments have sensitive variability of uncertainty. Therefore, 

flood forecasting in small catchment should be careful due to the large variability of 

uncertainty. On the other hand, in medium and large catchments, there is less 

uncertainty than in small catchments. 
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Chapter 5 

 

Accuracy Improvement of Flood Forecasting using 

Pre-processing of Ensemble NWP Rainfall Fields 

 

 

Abstract This chapter proposes pre-processing methodologies with consideration of 

appropriate ensemble members and a spatial shift of ensemble NWP rainfall fields, 

in order to improve the accuracy of the ensemble flood forecasting. First, the 

selection of appropriate members is investigated by comparison of spatial 

distributions between observed radar rainfall and forecasted ensemble rainfall. And 

selected ensemble information is applied into the next forecast period to assess the 

accuracy improvement of flood forecasting. Second, as an approach for the accuracy 

improvement of the flood forecasting, transposition method, which is spatial shift of 

ensemble rainfall distributions considering the correction of misplaced predicted 

rainfall distributions, is introduced. Finally, above two methods are integrated in 

order to use advantages of characteristics of each method at the same time and apply 

into the next forecast period to confirm the accuracy improvement of the flood 

forecast skill. Through the Chapter 5, the analysis shows that appropriate ensemble 

members of NWP rainfall improves the accuracy of the mean value when ensemble 

forecasting a flood, whereas the transposition of NWP rainfall fields has a more 

suitable impact on the accuracy of the best values. 
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5.1 Introduction 

 

Flood forecasting is an important technique to reduce damages from flood 

disasters. The accuracy of weather forecasts has improved over the years, due to 

advances in NWP techniques and increased computing power. Thus, it is now 

possible to generate high-resolution rainfall forecasts at the catchment scale and to 

integrate quantitative precipitation forecasting (QPF) into flood forecasting systems 

with extended lead time (Demeritt et al., 2007; Cuo et al., 2011). 

 

At the same time, one of the rising research themes in the flood forecasting area 

is the development of ensemble prediction systems (EPSs). EPSs have been used to 

account for uncertainties and have resulted in better quantitative predictability for the 

same location and time. Several authors have utilized and investigated EPS, and 

found that ensembles increase forecast accuracy and allow for skillful predictions 

with lead time (Buizza et al., 1999; Bartholmes and Todini, 2005; Gouweleeuw et al., 

2005; Roulin and Vannitsem, 2005; Komma et al., 2007; Palmer and Buizza, 2007; 

Xuan et al., 2009; Velazquez et al., 2011; Hsiao et al., 2013; Yu et al., 2013, 2014).  

 

However, in many cases, the potential of forecasting with EPS is described 

alongside more cautious approaches to the considerable variability and uncertainty in 

operational flood forecasting. First, the time/spatial scale of the hydrological model 

is still much finer than that of the meteorological model. Although the NWP-based 

QPF can generally catch the rainfall pattern, the uncertainties of rainfall to the 

catchment scale were always significant. Schaake et al. (2004) analyzed the 

statistical properties of the prediction outcomes from the US National Centers for 

Environmental Prediction (NCEP) during 1997 and 1999 over the continental US. 

They stated that ensemble forecasts contain biases that must be removed before they 

are used as an input for hydrologic models. Second, NWP models have challenges 

with misplacement of the forecasting rainband, which means that the intensity and 
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shape of the forecasted storm cell may be correct, but the location of the storm cell is 

wrong. Errors in the location of a weather system in an NWP model depend on how 

it is being forced. If the weather system is moving freely across the forecast domain, 

the error might be expected to increase at around 6 to 8 km per hour (WMO, 2011). 

And Ebert and McBride (2000) stated that QPF quality needs to be improved, in 

order to provide reliable hydrologic prediction, and errors in location misplacement, 

timing, and intensity hampered the direct application of QPF from the NWP into 

hydrologic prediction models 

 

Given the current issue with ensemble forecasting methods, meteorological 

characteristics (e.g., spatial shift and rather coarse resolution) and proper pre-

processing should be considered carefully, in order to use EPS effectively in flood 

forecasting systems on a small catchment scale. The aim of this chapter is to address 

the uncertainties in ensemble hydrological forecasting driven by ensemble NWP 

rainfall and to explore an accuracy improvement of flood forecasting by pre-

processing ensemble NWP rainfall fields. For these objectives, we considered two 

different methods to apply into flood forecasting. First, we investigated the 

appropriate ensemble members of NWP rainfall during the current period to apply 

into the next target period of flood forecasting. Second, we examined transposition 

and considered the implications of the spatial variability of NWP rainfall fields in a 

current period to correct the misplaced spatial position and evaluate the continuity of 

transposition behavior from the current period to the next target period. Finally, we 

integrated the above two methods, in order to consider the forecast characteristics of 

each method at the same time and apply them into the next forecasting period to 

confirm their flood forecast ability. The flood forecasting results of these two 

methods on ensemble NWP rainfall prediction were compared with the results of 

original ensemble flood forecasting, which was carried out by Yu et al. (2013) using 

the Typhoon Talas event of 2011.  
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The ensemble surface precipitation (Psrf) from 2 km-downscaled NWP data with 

30 h forecast time was utilized as input data into a hydrologic model. The analysis 

was utilized the 2 sets of ensemble prediction outputs (1
st
 forecast: 2011/09/02 03:00 

~ 09/03 09:00 JST, 30 hours; 2
nd

 forecast: 2011/09/03 03:00 ~ 09/04 09:00 JST, 30 

hours). In Shingu river basin, we focused on two sub-catchments, which are 

Futatsuno (356.1km
2
) and Nanairo (182.1km

2
) dam catchments, and performed 

separately for the rising limb and peak discharge periods because these two periods 

are most important phases of real-time flood forecasting.  

 

 

5.2 Flood Forecasting using Selected Ensemble Members of 

NWP Rainfall 

 

For the purpose of accuracy improvement in flood forecasting, the ensemble 

NWP rainfall in rising limb of flood period (2011/9/2 3:00 ~ 9/3 9:00; 30 hours 

forecast time with 30 min intervals) have been verified spatially with C-band 

composite radar data from the Ministry of Land, Infrastructure, Transport and 

Tourism (MLIT) at a resolution of 1 km and 5 min in the verification area (Figure 5.1) 

to investigate the appropriate ensemble members. For this reason, we calculated two 

error indexes: the root mean square error (RMSE) and critical success index (CSI) 

with forecast time. We then selected the best 3 members using the 24 hours average 

RMSE and CSI values of each ensemble member because ensemble NWP rainfall is 

newly forecasted after 24 hours. 
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Figure 5.1 Verification area for calculation of RMSE and CSI value. 

 

In the CSI analysis, the ensemble forecasts were expressed as probabilities of 

exceeding a selected rainfall threshold (10mm/h), which were used to compare an 

obvious spatial distribution of observed MLIT radar data with forecasted NWP 

rainfall. A contingency table can be constructed with a spatial comparison, in which 

each area with more than 10mm/h is defined as "yes," and other areas are defined as 

"no" for both forecasted and observed rainfall fields. 
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where N is the total grid cells (100 × 100),  Ot and Ft are the observed and 

forecasted rainfall at time t, hits are the number of correct forecasts over the 

threshold (i.e., when the rainfall that is forecasted is also observed), and misses are 

the number of times rainfall is not forecasted, but is observed. False alarms are the 

number of times rainfall is forecasted, but not observed. 

 

 

Figure 5.2 RMSE and CSI values of each ensemble NWP rainfall and the selected 

members (blue color) in rising limb periods 

 

Figure 5.2 shows the results of the average RMSE and the average CSI of 24hr in 

a comparison of observed radar data and forecasted ensemble NWP rainfall during 

the rising limb period. As shown in Figure 5.2, we selected the best 3 values (blue 

color) for both RMSE and CSI value and applied them to the next peak discharge 

period of the flood forecasting (2011/09/03 3:00 ~ 09/04 9:00; 30h forecast time). 

Using the selected five members (cntl, m01, m03, m06 and m08) of ensemble NWP 

rainfall for the rising limb period, we first examined the ensemble flood forecasting 

in a rising limb period and applied the members into the flood forecasting for the 

next peak discharge period, which focused on in this study, to assess the accuracy 

improvement. Base on the simulated results in the rising limb and peak discharge 



Chapter 5 

 

 

59 

 

period, we compared the accuracy improvement with the results of the original 

ensemble flood forecasting for the former study (Yu et al., 2013) using the mean 

absolute error (MAE), which is a quantity used to measure how close each forecast 

was to the observation.  

 

Figure 5.3 shows the results of the 30 hours ensemble flood forecasting using the 

original and five selected ensemble members during rising limb and peak discharge 

periods over the Futatsuno dam catchment. The comparative results are reflected in 

Table 5.1, which shows the flood forecast skill of the original and five selected 

ensemble members, in terms of ensemble mean and best value of flood forecasting. 

First, as shown in Table 5.1, the accuracy of the mean value of the Futatsuno 

catchment from five selected ensemble members was improved, compared to the 

original ensemble’s skill, because the ensemble members, which have low efficiency 

criteria in the RMSE and CSI values, were excluded from the selection of 

appropriate ensemble members (Figure 5.2). The best member in the rising limb 

period (m08) also provided the best MAE value in peak discharge period, with the 

same MAE value as the original ensemble skill. Second, in the case of the Nanairo 

catchment, the accuracy of the mean value from the five selected ensemble members 

was also improved, compared to the original ensemble skill. The best member was 

m03, which provided the best MAE value in the rising limb period, but the best 

member was m08 in the peak discharge period. The best MAE values were the same 

between the original and five selected members because m03 and m08 were included 

in the five selected ensemble members. Thus, one of five selected ensemble members 

in the rising limb period was also represented in the peak discharge period as the best 

index. Based on these results, using the selected ensemble members can improve the 

accuracy of the mean value, while conserving the best value between the original and 

selected ensemble members in flood forecasting. 
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Figure 5.3 Ensemble flood forecasting using the five selected ensemble members 

during a rising limb period: upper and lower figures are the results of the rising limb 

and peak discharge period over the Futatsuno dam catchment. 
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Figure 5.4 Ensemble flood forecasting using the five selected ensemble members 

during a rising limb period: upper and lower figures are the results of the rising limb 

and peak discharge period over the Nanairo dam catchment. 
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Table 5.1 Comparisons between the original and five selected ensemble results in 

flood forecast skill: A bold red color indicates a better result, and members in 

parentheses refer to the member with the best flood forecast skill. 

Catchment 
Forecast 

Period 
Type 

MAE 

Mean Best 

Futatsuno 

Rising 

limb 

Original ensemble 655.7 378.3 (m08) 

Five Selected ensemble 555.0 378.3 (m08) 

Peak 

period 

Original ensemble 1548.0 774.3 (m08) 

Five Selected ensemble 1513.9 774.3 (m08) 

Nanairo 

Rising 

limb 

Original ensemble 270.8 206.2 (m03) 

Five Selected ensemble 220.9 206.2 (m03) 

Peak 

period 

Original ensemble 1125.3 784.9 (m08) 

Five Selected ensemble 1106.9 784.9 (m08) 
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5.3 Flood Forecasting using Transposition of Ensemble NWP 

Rainfall Fields 

 

We examined the transposition of ensemble rainfall fields and considered the 

misplacement from the original spatial position, in order to improve the flood 

forecast skill. For the transposition of ensemble rainfall fields, the catchment mask 

(100 km × 100 km) moved within the forecast domain with a maximum distance in 

the x and y directions of each at about 40 km with 5 km intervals (from L5 to L40), 

in 8 directions from the right side rotating in a counter-clockwise direction with 45˚ 

intervals (from D1 to D8) (Figure 5.5). 

 

 

Figure 5.5 A schematic diagram representing the of transposition of rainfall fields 

 

Therefore, we constructed 704 transposition members (11 ensemble members × 8 

distances × 8 directions) and compared the error indexes (RMSE and CSI) to assess 

the performance of the transposition method. We considered the top 10% 

transposition locations, which have high efficiency criteria for each RMSE and CSI 

value, of each ensemble member during the rising limb period (Table 5.2), in order to 

apply them to the flood forecasting of the peak discharge period and improve 
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accuracy. Table 5.2 shows the top 10% transposition locations during the rising limb 

period using the RMSE and the CSI values, respectively. To evaluate the continuity 

of transposition behavior, the top 10% transposition locations were compared with 

the top 10% during the peak discharge period. The yellow color marks in Table 5.2 

indicate the transposition locations that are continually satisfied during the two 

periods, and the percentage of transposition locations was recorded by a 50% and a 

30.3%, respectively, for the RMSE and CSI values. 

 

Table 5.2 The top 10% transposition locations of each ensemble member from 

RMSE and CSI in the rising limb period (D: direction, L: length (km)) 

Rank 

Ensemble 

Root Mean Square Error (RMSE) 

1 2 3 4 5 6 

cntl D7L5 D6L5 D5L5 D3L5 D2L5 D1L5 

m01 D6L5 D5L5 D7L5 D3L10 D6L10 D3L5 

m02 D7L5 D8L5 D1L5 D7L10 D2L5 D6L5 

m03 D6L5 D5L5 D7L5 D6L10 D5L10 D3L5 

m04 D5L5 D7L5 D6L5 D3L5 D1L5 D5L10 

m05 D5L5 D4L5 D6L5 D3L5 D5L10 D3L10 

m06 D7L5 D6L5 D6L30 D6L25 D6L35 D5L5 

m07 D5L5 D6L5 D7L5 D3L5 D5L10 D4L5 

m08 D2L20 D2L25 D6L5 D7L5 D5L5 D2L30 

m09 D6L5 D5L5 D7L5 D5L10 D3L5 D6L10 

m10 D6L35 D6L40 D6L30 D7L5 D6L25 D6L5 

 

Rank 

Ensemble 

Critical Success Index (CSI) 

1 2 3 4 5 6 

cntl D7L5 D6L5 D5L5 D1L5 D2L5 D3L5 

m01 D6L5 D5L5 D7L5 D6L10 D5L10 D3L5 

m02 D7L5 D1L5 D8L5 D2L5 D1L10 D2L20 

m03 D7L5 D6L5 D5L5 D3L5 D1L5 D8L5 

m04 D5L5 D6L5 D7L5 D3L5 D4L5 D5L10 

m05 D3L5 D4L5 D5L5 D3L10 D6L5 D3L15 

m06 D7L5 D6L5 D5L5 D1L5 D8L5 D7L10 

m07 D5L5 D6L5 D7L5 D5L10 D3L5 D4L5 

m08 D7L5 D6L5 D5L5 D2L5 D3L5 D1L5 

m09 D6L5 D5L5 D7L5 D3L5 D5L10 D2L5 

m10 D2L25 D7L5 D2L20 D5L5 D3L5 D2L5 



Chapter 5 

 

 

65 

 

Figure 5.6 indicates the results of the 30 hours ensemble flood forecast over the 

Futatsuno dam catchments during the rising limb and peak discharge periods using 

the top 10% transposition locations of the ensemble rainfall fields. Table 5.3 

compares the forecast skill of the original and transposition ensembles using the 

mean and best values of the flood forecasting. As shown in Figure 5.6 and Table 5.3, 

the mean and best values during the peak discharge period for the Futatsuno dam 

catchment improved. The top 10% of transposition locations during the rising limb 

period and the transposition ensemble range were closer to the observed discharge 

than the original ensemble range, as represented in Figure 5.6. 

 

In the case of the Nanairo dam catchment (Figure 5.7 and Table 5.3), the best 

values also improved during the rising limb and peak discharge periods. On the other 

hand, the mean values show that the original ensemble provided more the suitable 

results than the transposition ensemble because smaller catchments indicate a larger 

uncertainty in the flood forecast; also, the ensemble members with low values for the 

RMSE and CSI values (see Figure 5.2) were not chosen, which affected the results of 

the ensemble flood forecasting. Based on these results, we determined that the other 

members, which were not selected for the appropriate ensemble, have the potential to 

provide the best value to flood forecasting skill when using the transposition method. 

Second, flood forecasting using the transposition of ensemble rainfall fields 

improved the accuracy for the under-predicted areas, and had better values than flood 

forecasting using the original and selected ensemble members. 
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Figure 5.6 Ensemble flood forecasting using the transposition of ensemble rainfall 

fields during a rising limb period: upper and lower figures are the results of the rising 

limb and peak discharge period over the Futatsuno dam catchment. 

 



Chapter 5 

 

 

67 

 

 

 

Figure 5.7 Ensemble flood forecasting using the transposition of ensemble rainfall 

fields during a rising limb period: upper and lower figures are the results of the rising 

limb and peak discharge period over the Nanairo dam catchment. 
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Table 5.3 Comparisons of the original and transposition ensemble results in flood 

forecast skill: The bold red color indicates the better result, and members in 

parentheses refer to the member with the best flood forecast skill. 

Catchment 
Forecast 

Period 
Type 

MAE 

Mean Best 

Futatsuno 

Rising 

limb 

Original Ensemble 655.7 378.3 (m08) 

Transposition 622.8 280.0 (D2L5 of m08) 

Peak 

period 

Original Ensemble 1548.0 774.3 (m08) 

Transposition 1542.9 357.4 (D5L10 of m07) 

Nanairo 

Rising 

limb 

Original Ensemble 270.8 206.2 (m03) 

Transposition 274.5 196.3 (D3L5 of m03) 

Peak 

period 

Original Ensemble 1125.3 784.9 (m08) 

Transposition 1138.7 758.5 (D1L5 of m08) 
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5.4 Flood Forecasting using a Combination of Selected and 

Transposition Methods 

 

We also assessed the integrated method of considering the forecast characteristics 

of the above two methods simultaneously. We used the five selected ensemble 

members and the transposition locations of each ensemble member in Figure 5.2 and 

Table 5.2, respectively. Finally, we applied the constructed ensemble rainfall set from 

the rising limb period into the flood forecasting for the peak discharge period to 

assess the accuracy improvement and the applicability of combining the selected and 

transposition methods.  

 

 As shown in Figure 5.8, 5.9 and Table 5.4, the ensemble mean improved when 

integrating the selection and transposition methods over the two catchments, rather 

than using only the transposition method, because of the consideration of the five 

selected ensemble members, even though their mean values (Table 5.1) have higher-

quality accuracy. The integrated method also provided better results than typical 

ensemble forecasting. Based on these results, combining selection and transposition 

methods could improve the accuracy of flood forecasting, particularly the mean and 

best values in small catchments. 
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Figure 5.8 Ensemble flood forecasting with the combination of selected ensemble 

members and the transposition method during a rising limb period: upper and lower 

figures are the results of the rising limb and peak discharge period over the Futatsuno 

dam catchment. 
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Figure 5.9 Ensemble flood forecasting with the combination of selected ensemble 

members and the transposition method during a rising limb period: upper and lower 

figures are the results of the rising limb and peak discharge period over the Nanairo 

dam catchment. 
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Table 5.4 Comparisons of flood forecast skill between the original and combination 

of the two methods. A bold red color indicates the better result, and members in 

parentheses refer to the member with best flood forecast skill. 

Catchment 
Forecast 

Period 
Type 

MAE 

Mean Best 

Futatsuno 

Rising 

limb 

Original Ensemble 655.7 378.3 (m08) 

Combination 548.9 280.0 (D2L5 of m08) 

Peak 

period 

Original Ensemble 1548.0 774.3 (m08) 

Combination 1499.3 703.8 (D5L5 of m08) 

Nanairo 

Rising 

limb 

Original Ensemble 270.8 206.2 (m08) 

Combination 236.6 196.3 (D3L5 of m03)  

Peak 

period 

Original Ensemble 1125.3 784.9 (m08) 

Combination 1110.6 758.5 (D1L5 of m08) 

 

 

5.5 Summary 

 

This chapter investigated the accuracy improvement of flood forecasting in the 

Futatsuno and the Nanairo dam catchments when driven by three methods: with 

selected ensemble members, transposition of rainfall fields, and a combination of 

these methods using the spatial verification of the RMSE and CSI values. The 

selected ensemble members and the transposition locations for the rising limb period 

were adopted into flood forecasting for the peak discharge period to evaluate the 

continuity of behavior patterns and improvement in accuracy. 

 

In the flood forecast using selected ensemble members, this method can improve 

the accuracy of the mean value while conserving the best value between the original 

and selected ensemble members over two catchments. And the ensemble flood 
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forecasting using transposition of NWP rainfall fields produced better results than the 

original and selected ensemble members, in terms of the best values of flood forecast 

skill in all periods over the two catchments. Finally, the integration of the selected 

and transposition methods recovered the accuracy of the mean values for two periods 

over the Nanairo catchment, compared with the use of the transposition method alone, 

although the mean values from using the selected ensemble method have outstanding 

accuracy.  

 

In this chapter 5, we assessed the pre-processing method separately for the rising 

limb and peak discharge periods because they are the most important phases of real-

time flood forecasting. However, it is very important to divide the periods, including 

the rising limb and peak discharge periods, when applying this method to an actual 

operation. Therefore, in further research, we need to consider the methodology 

required to divide the periods and to verify the applicability of these methods through 

a number of case studies.  
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Chapter 6 

 

Real-time Updating of Flood Forecasting using 

Transposition of Ensemble NWP Rainfall Fields 

considering Orographic Rainfall 

 

 

Abstract This chapter enhances the transposition method proposed in Chapter 5 and 

suggests real-time updating of flood forecasts using transposition of ensemble 

rainfall distributions that consider orographic rainfall for accuracy improvement. In 

the first step of the proposed method, ensemble forecast rainfalls from a numerical 

weather prediction (NWP) model are separated into orographic and non-orographic 

rainfall fields using atmospheric variables (e.g., air temperature, horizontal wind 

and relative humidity) and the extraction of topographic effect. Then the non-

orographic rainfall fields are examined by the transposition scheme to produce 

additional ensemble information and new ensemble NWP rainfall fields are 

calculated by recombining the transposition results of non-orographic rain fields 

with separated orographic rainfall fields for a generation of place-corrected 

ensemble information. Then, the additional ensemble information is applied into a 

hydrologic model for post-flood forecasting with a 6-hour interval and shows 

improvement in the accuracy of flood forecasting with the proposed update method. 
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6.1 Introduction 

 

The accuracy of weather forecasts has steadily improved over the years, due to 

advances in Numerical Weather Prediction (NWP) techniques and increased 

computing power. These NWP models represent the atmosphere as a dynamic fluid, 

solve for its behavior through the use of mechanics and thermodynamics, and use 

current weather conditions as input to atmospheric models to predict the evolution of 

weather systems.  

 

However, meteorological forecasting is difficult because the atmosphere is a 

nonlinear and chaotic system (Lorenz, 1969). A slight change in the initial and 

boundary layer conditions of a circulation system could result in unpredictable 

outcomes. Presently, one of the main alternatives is an ensemble NWP system with 

various initial and boundary conditions. It is believed that ensemble NWP systems 

exhibit greater forecast skill than any single NWP model control run or deterministic 

model run (Buizza et al., 1999; Demeritt et al., 2007). These recent advances in 

weather measurement and forecasting have created opportunities to improve flood 

forecasts (Cuo et al., 2011).  

 

At the same time, operational and research flood forecasting systems are 

increasingly moving towards using NWP model ensembles, known as ensemble 

prediction systems (EPSs), rather than single deterministic forecasts. EPSs in flood 

forecasting are now widely regarded as the state-of-the-art technique in forecasting 

science, following on the success of the use of ensembles for weather forecasting 

(Buizza et al., 2005; Gneiting and Raftery, 2005). EPSs have been used to account 

for uncertainties and make an attractive product for flood forecasting systems with 

the potential to extend lead time and better quantify predictability than any single 

deterministic run for the same location and time (Palmer and Buizza, 2007). Several 

authors also have utilized and investigated EPSs and have found that ensemble 
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forecasts in hydrological fields increase accuracy and allow for skillful predictions 

with extended lead time (Xuan et al., 2009; Roulin and Vannitsem, 2005; Yu et al., 

2013, 2014).  

 

However, in many cases, the potential of flood forecasting with EPS is described 

alongside cautious notes regarding variability and uncertainty of ensemble 

information. Several authors agreed that, compared to traditional deterministic 

forecasting, the additional information provided by EPS should help improve 

forecasting quality and provide flood forecasts with valuable information, but were 

less clear about exactly what that information was or how useful it might be for their 

operational purposes (Palmer, 2002; Legg and Mylne, 2004; Hlavcova et al., 2006). 

And, in some cases of medium-range meteorological forecasts, ensemble gave a clear 

flood signal up to 4 days in advance, but it has a restricted application for using EPSs 

effectively in flood forecasting systems on a small catchment scale because it needs 

localized higher accuracy in terms of rainfall prediction. As a result, EPSs with NWP 

models do not capture true rainfall distributions, in some cases, for short-range flood 

forecasting on a small catchment scale.  

 

EPSs with NWP models also have challenges with misplacement of spatial rain 

distributions, which means the intensity and shape of a rainfall pattern may be 

correct but the location of spatial storm distribution deviates from the true rainfall 

distributions. As a result, the misplacement of rain distributions demonstrates the 

poor reliability of quantitative precipitation forecasts. Ebert and McBride (2000) also 

stated that QPF quality needs to be improved in order to provide reliable hydrologic 

prediction, and errors in location misplacement, timing, and intensity hampered the 

direct application of QPF from the NWP into hydrologic prediction models. 

 

Given the current issue and problem with EPSs with NWP models, a proper pre-

processing that deals with spatial misplacement of rainfall distributions should be 
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considered carefully in order to use EPSs effectively in flood forecasting systems on 

a small catchment scale. Yu et al. (2014) have utilized and investigated this ensemble 

NWP rainfall forecast for flood forecasting and proposed a spatial shift (hereafter, 

transposition) of ensemble rain distributions to improve the accuracy of flood 

forecasts. However, in cases of the transposition of rain distributions in mountainous 

areas, the problem arises that the orographic rain patterns also move to non-mountain 

areas with the transposition scheme. As a result, it results in a great loss of the 

physical meaning of orographic rainfall. To prevent the problem of orographic 

rainfall shifting, we modified Yu et al. (2014)'s method of separating ensemble NWP 

rainfalls into orographic and non-orographic rain fields by solving physically based 

equations that included the atmospheric variables in advance of the transposition 

scheme.  

 

This chapter enhances the transposition method proposed in Chapter 5 and 

suggests a post-processing ensemble flood forecasting method for real-time updating 

and the accuracy improvement of flood forecasts that considers two points: the 

separation of the orographic rainfall and the correction of misplaced rain 

distributions using additional ensemble information through the transposition of rain 

distributions. Figure 6.1 shows a flowchart of the proposed process in chapter 6 for 

the real-time updating of flood forecasts using transposition of rainfall fields that 

considers orographic rainfall. The newly proposed method is comprised of 5 steps. 

The first step is the separation of ensemble NWP rainfalls into orographic and non-

orographic rain fields using the extraction of topography effect. Then, the non-

orographic rainfall fields are examined by the transposition scheme to produce 

additional ensemble information (step 2), and ensemble NWP rainfall fields are 

calculated by recombining the transposition results of non-orographic rain fields with 

those of orographic rainfall fields in order to generate place-corrected ensemble 

information (step 3). The recombined ensemble rain fields are spatially verified by 

C-band composite radar data from the Ministry of Land, Infrastructure, Transport and 
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Tourism (MLIT) of Japan for the previous 6 hours with error indexes—namely, the 

critical success index (CSI) and the root mean square error (RMSE)—to find out the 

appropriate ensembles and transposed locations (step 4). The best ensemble members 

and transposed locations give information to hydrologic models for real-time 

updating of post-flood forecasting within a 6-hour interval (Step 5) in the Typhoon 

Talas event of 2011. In this chapter, the results of ensemble prediction with 2 km 

horizontal resolution utilize the two sets of ensemble prediction outputs (1st forecast: 

2011/09/02 03:00–09/03 09:00 JST, 30 hours; 2nd forecast: 2011/09/03 03:00–09/04 

09:00 JST, 30 hours). Total analysis time is 54 hours with an overlap of 6 hours 

between the output sets, and 2 km ensemble rainfall prediction outputs are used as 

input data into a hydrologic model. 

 

This chapter has been organized in the following manner. After the introduction, 

Section 6.2 introduces the methodology for the calculation of orographic rainfall and 

transposition scheme for making ensemble information and section 6.3 addresses the 

results of real-time updating of flood forecasts. Finally, we summarize our major 

conclusions in section 6.4. 
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Figure 6.1 Flowchart of the proposed process for the real-time updating of flood 

forecasts using the transposition of ensemble NWP rainfall fields and considering 

orographic rainfall. 

 

 

6.2 Methodology 

 

6.2.1 Physically based Method for Orographic Rainfall 

 

Tatehira (1976) proposed a physically based method for calculating orographic 

and non-orographic rainfall fields from observed radar rainfall measurements. Many 

studies have applied and verified this method in a variety of hydrologic applications, 



Chapter 6 

 

 

81 

 

that have shown that this method was effective and adequate to consider orographic 

and non-orographic rainfall (Nakakita and Terazono, 2008; Nakakita et al., 2012). 

However, they used radar rainfall measurements to separate the orographic and non-

orographic rainfall in a previous study, whereas our approach applies this method 

into the ensemble NWP rainfall as mentioned previously. 

 

In this method, the orographic effect is calculated based on the seeder-feeder 

mechanism. The precipitation droplets or ice particles fall from an upper-level 

precipitating cloud (seeder) and collect cloud water as they pass through a lower-

level orographic stratus cloud (feeder) by collision and coalescence, thus producing 

greater precipitation on the mountainous area under the cap cloud than on the nearby 

flat regions. The availability of the process depends on sufficiently strong low-level 

moist flow to maintain the cloud water content in the orographic feeder cloud and the 

continuing effectiveness of precipitation particles from the seeder cloud. The strong 

rain bands that stagnate near the mountaintop (orographic rainfall) are estimated 

using additional atmospheric variables. The flux of cloud water content L (g/m3) in a 

rising air parcel, along with wind, is calculated by equation (6.1). 

 

ln
( ) v

c

dL
cL a L L WG WL

dt z

 
       

 
   (6.1) 

 

where ρv is the density of water vapor (g/m
3
), c is the ratio of cloud drops 

captured by seeder hydrometeors of an upper level, a is the ratio of precipitation 

particles to cloud drops, Lc is the threshold amount of water content before 

conversion into precipitation (g/m
3
) and G is the amount of saturated water vapor ρs 

increased by a rising saturated air parcel (g/m
4
) (i.e., –dρs/dz). Finally, W is the 

vertical wind velocity (m/s), which is estimated by an inner product of horizontal 

wind and gradient of topographic height using DEM. 
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These atmospheric variables (air temperature, horizontal wind, relative humidity) 

are estimated by the use of Grid Point Value (GPV) data from Japan Meteorological 

Agency (JMA) and are solved in a seven-layer model at heights of 200, 400, 1000, 

2000, 3000, 4000, and 5000 m in a -vertical coordinate system using the method 

of Nakakita et al. (1996). In equation (6.1), the first and second terms on the right-

hand side are related with that the amount of water content is decreased. The third 

term shows the water vapor condensing as the air parcel ascends with a unit distance. 

The last term expresses the influence of atmospheric compressibility, and can be 

ignored because its order is less than that of the other terms. The amounts of cloud 

water content in an inflow and outflow mesh (Lin and Lout) can be calculated by the 

integral of equation (6.1) with respect to time t.  

 

 c a tc c
out in

WG aL WG aL
L L e

c a c a

    
   

  
   (6.2) 

 

In this chapter, the ensemble NWP rainfall (RNWP) is interpreted to be the 

summation of orographic rainfall (Ro) and non-orographic rainfall (Rn) (Equation 

(6.3)). Nakakita and Terazono (2008) suggested equation (6.4) for orographic rainfall 

intensity Ro (mm/h) and assumed that the ratio c of cloud drops captured by 

raindrops is estimated by equation (6.5). Finally, the orographic rainfall is supposed 

to be a function of non-orographic rainfall and is calculated by solving simultaneous 

equations (6.2) ~ (6.5) in multi-atmospheric layers 

 

NWP o nR R R        (6.3) 

 

3.6in out
o

L WG t L
R H

t

  
  


    (6.4) 

 

0.731 30.6778 10Nc R        (6.5) 
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where Lin and Lout are amounts of cloud water content (g/m
3
) in an inflow and 

outflow side mesh, respectively. Δt is a timescale (s) during which an air parcel 

passes through one mesh, and H is the thickness of each layer (m).  

 

Figure 6.2 shows the procedure for the separation of orographic and non-

orographic rainfall. First, cloud water content is calculated from atmospheric 

variables of grid mesh in each layer vertically, and the ensemble NWP rainfall 

(RNWP) is assumed to be that of the lowest layer (200 m height). It is separated into 

orographic (Ro1) and non-orographic (Rn1) rainfall by solving equations (6.2) ~ 

(6.5). It is supposed that the non-orographic rainfall (Rn1) is expressed as the sum of 

the orographic rainfall (Ro2) and non-orographic rainfall (Rn2) in the upper layer. In 

this way, orographic rainfall and non-orographic rainfall in each layer can be 

repeatedly separated from the lowest to the highest layer. Then, the non-orographic 

rainfall field of highest layer is utilized as an input domain for the transposition 

scheme to make additional ensemble information and the total orographic rainfall in 

each layer gives the value by recombining the transposition results of the non-

orographic rainfall field. 

 

 

Figure 6.2 Procedure for a calculating orographic and non-orographic rainfall. 

 



Chapter 6 

 

 

84 

 

6.2.2 Transposition of Non-orographic Rainfall Fields 

 

As previously stated, we examined the transposition scheme of non-orographic 

rainfall fields in order to produce additional ensemble information and consider the 

misplacement from the original spatial position. Many EPSs are based on a Monte 

Carlo framework of an NWP model with one realization starting from a central 

analysis (the control forecast) and others generated by perturbing the initial and/or 

boundary conditions (the perturbed forecasts) (Cloke and Pappenberger, 2009). In 

this chapter, we also used ensemble NWP rainfall created by perturbation of initial 

and boundary conditions, and we took into consideration the transposition scheme 

for additional ensembles. The technique for making additional ensemble information 

is fairly straightforward in this chapter: we utilized spatial transposition of each 

separate non-orographic rain field. 

  

Figure 6.3 shows a schematic of transposition that uses non-orographic rainfall 

fields and recombines them with the total orographic rainfall in each vertical layer. 

For the transposition with separated non-orographic rainfall fields from the 

established ensemble prediction, the transposed catchment mask (100 km × 100 km) 

moved into the original forecast domain from location 1 to location 80 with a 

maximum distance in the x and y directions of each at about 20 km with a 5 km 

interval in order to produce additional ensemble information. We finally constructed 

an additional 891 transposed ensemble domains (existing 11 ensemble members × 80 

locations + 11 original locations of established ensemble members). Then, the final 

place-corrected ensemble rainfall fields are estimated by integrating the transposed 

non-orographic rain fields with the total orographic rainfall, which is calculated in 

each vertical layer. 

 

In previous research, Yu et al. (2014) have also utilized the transposition method 

to address the uncertainties in ensemble hydrological forecasting and to improve the 
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accuracy of flood forecasts. They investigated the appropriate transposed locations of 

ensemble rainfall fields during the current period to apply the transposed information 

into the next target period of flood forecasting and then evaluated the continuity of 

misplacement behavior of ensemble rainfall from the current period to the next target 

period. Our approach agrees with that of Yu et al. (2014) in terms of the accuracy 

improvement of flood forecasting skill, but differs from the previous approach in two 

main aspects. The first is that our approach considered the separation of rainfall 

distribution into orographic and non-orographic rainfall as mentioned above. 

Secondly, our approach took into account the transposed information with a 6-hour 

interval and applied it to flood forecasts for real-time updating, whereas Yu et al. 

(2014) considered 30 hours of the current period to find out the appropriate 

transposed locations and separately applied the 30 hours of the next target period. 

Our approach in this paper mainly focuses on the real-time updating of flood 

forecasts using a transposed ensemble approach with a 6-hour interval. 

 

 

Figure 6.3 A schematic of transposition scheme that uses non-orographic rainfall 

fields and recombines them with the total orographic rainfall in each vertical layer. 
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6.3 Results and Discussion 

 

6.3.1 Transposition Considering Misplaced Spatial Location 

 

As stated above, we separated the established 11 ensemble rainfall fields into 

orographic and non-orographic rainfall using a physically based method to take 

advantage of the non-orographic rainfall as part of a transposition scheme for 

additional ensemble information. Based on the results of separated orographic and 

non-orographic rainfall, we investigated how the orographic rainfall comprised and 

dominated the total rainfall over the verification area.  

 

Figure 6.4 shows the accumulated orographic and non-orographic rainfall by 

control run forecast and comprises the proportion of accumulated orographic rainfall 

in total rainfall during the 30 hours of the 1st forecast period. The comprising ratio of 

the orographic rainfall is calculated as follows: 

 

, ,

,

, ,

o i j

i j

total i j

R
ratio

R
     (6.6) 

 

where Ro,i,j and Rtotal,i,j are the accumulated orographic and total rainfall of each 

grid cell. 
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Figure 6.4 (a) Accumulated non-orographic rainfall by control forecast,  

(b) accumulated orographic rainfall, and (c) its comprising ratio in total rainfall 

(Figure 2.3(c)). The rectangle inside the domain denotes the verification area. 

 

From Figure 6.4, note that there is an abundance of non-orographic rainfall in a 

non-mountainous area, whereas orographic rainfall was predominant in the 

verification area, which is a mountainous region. Moreover, the ratio of orographic to 

non-orographic rainfall in the verification area exceeded 50 percent and the 

maximum percentage is 99.8 percent. From these results, it is apparent that 

orographic and non-orographic rainfall should be separated and that only non-

orographic rain fields should be utilized for spatial transposition because orographic 

rain patterns also move to non-mountainous areas with the transposition scheme if  

they are not separated.  

 

We also visualized the orographic and non-orographic rainfall patterns separated 

from 11 established ensemble members with mean areal rain rates of the Shingu river 

basin during 54 hours and 2 forecast periods. Figure 6.5 shows comparisons of 

orographic (circle) and non-orographic (square) rainfall during the forecasted 

ensemble NWP rainfall in two forecast periods (1st forecast: 2011/09/02 03:00–

09/03 09:00 JST (30 hours), 2nd forecast: 2011/09/03 03:00 ~ 09/04 09:00 JST). 

Mean areal rain rates (mm/h) over the Shingu river basin are shown in the plot. 

Through Figure 6.5, areal orographic rainfall rates are dominant over non-orographic 
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rainfall until 20 mm/h, whereas the component ratio of the orographic rainfall 

decreases with a two-dimensional trend line over 20 mm/h.   

 

 

Figure 6.5 Comparisons of orographic (circle) and non-orographic (square) rainfall 

during the forecast time of the ensemble NWP rainfall. 

 

Then, as stated above, we constructed 891 transposed ensemble domains by 

integrating the transposed non-orographic rain fields with the orographic rain fields 

in order to produce additional ensembles and investigate the misplaced spatial 

locations. Transposed ensemble domains have been verified spatially with MLIT 

observed radar rain data in the verification area to investigate the appropriate 

ensemble members and transposition locations, which have high efficiency criteria 

during the previous 6-hour interval for updating flood forecasts. We used two 

popular indices to evaluate transposed ensemble domains: critical success index (CSI) 

for qualitative verification and root mean square error (RMSE) for quantitative 

verification, expressed as follows: 
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where N is the total grid cells (100 × 100) in the verification area, Oi,j and Fi,j are 

the observed and forecasted rainfall of each grid cell at forecast time t, H is the 

number of correct forecasts over the threshold (i.e., when the forecast rainfall is also 

observed), and M is the number of times rainfall is not forecast, but is observed. FA is 

the number of times rainfall is forecast, but not observed. 

 

For the calculation of CSI value, the ensemble forecasts were expressed as 

probabilities of exceeding a selected rainfall threshold (10 mm/h), which were used 

to compare an obvious spatial distribution of observed MLIT radar data with 

forecasted NWP rainfall. A contingency table can be constructed with a spatial 

comparison, in which each area with more than 10mm/h threshold is defined as 

"yes," and other areas are defined as "no" for both forecasted and observed rainfall 

fields (Table 6.1). 

 

Table 6.1 A contingency table showing the frequencies of predicted and/or observed 

events determined by threshold (T) 

  Predicted 

 

Observed 

 rain < T rain > T 

rain < T zeroes (Z) false alarms (FA) 

rain > T misses (M) hits (H) 
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Figure 6.6 shows the results of the average CSI and RMSE of the previous 6 

hours (2011/09/02 03:00–09:00) in a comparison of observed radar rainfall and each 

transposed NWP rainfall domain during the first forecast period. Each grid value 

represents the average CSI and RMSE when a transposed mask dominated each grid 

as the center moved to an original domain within zero points of the x and y locations.  

 

   Based on comparison of observed radar domain and each transposed output, most 

CSI values provided a well-matched spatial pattern in case of transposition from 

central and left grid points to an original domain, whereas members 1 and 5 were 

close to zero value in overall grid points. From the CSI results, the forecast rainfall 

patterns moved slowly compared with real rainfall patterns because the rainfall's 

direction of progress was from left to right. On the other hand, the RMSE value 

(Figure 6.6(b)) showed well-matched values in the middle areas. Figure 6.7 also 

shows the results of the average CSI and RMSE from 6 to 12 hours (2011/09/02 

09:00–15:00). From the results of Figures 6.6 and 6.7, we confirmed that spatial 

distribution patterns of the CSI and RMSE comparison results during the first 6 hours 

and next 6 hours were similar, and it can be said that misplacement behaviors of 

rainfall distribution have the continuity of transposition locations in each spatial 

distribution pattern.  

 

   Furthermore, we considered the top 10% transposition locations, which have high 

efficiency criteria for each RMSE and CSI value, of a total 891 additional ensemble 

members during the 6-hour interval, in order to apply them to post-flood forecasting 

and assess the accuracy improvement for the application assessment of real-time 

updating of flood forecasts. As stated above, the real-time updating of flood forecasts 

with a 6-hour interval starts with the assumption that misplacement behaviors of 

rainfall distribution have continuity between 0 and 6 hours and from 6 to 12 hours of 

transposition locations. Therefore, a verification measure using correlation 

coefficients was adopted to conduct a continuity assessment of misplacement 
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behaviors of rainfall distribution with critical success index (CSI) in each 6-hour 

update step. The correlation coefficient has been computed as follows: 
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  (6.9) 

 

where A is the average CSI results of each ensemble member from 0 to 6 hours 

(i.e., Figure 6.6(a)), B represents the average CSI results of each ensemble member 

from 6 to 12 hours (i.e., Figure 6.7(a)), cov is the covariance of average CSI results 

between 0 to 6 hours and 6 to 12 hours of transposition locations, and A and B  

are the standard deviations of average CSI results from 0 to 6 hours and from 6 to 12 

hours, respectively. 

 

Table 6.2 shows the continuity assessment of transposition behaviors of 

forecasted rainfall distribution using the correlation coefficient of the critical success 

index (CSI) in each 6-hour update step for real-time updating of flood forecasts, and 

the correlation coefficient with CSI distribution was recorded over 0.42 to 0.95. It 

means that the transposition scheme is continually satisfied during the two 6-hour 

update steps and is appropriate for real-time updating of flood forecasts.   
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Table 6.2 Continuity assessment of transposition behaviors of rainfall distribution 

using correlation coefficients in each 6-hour update step. 

Period Correlation Coefficient 

1
st
  

forecast 

0 ~ 6 h with 6 ~ 12 h 0.949 

6 ~ 12 h with 12 ~ 18 h 0.531 

12 ~ 18 h with 18 ~ 24 h 0.829 

18 ~ 24 h with 24 ~ 30 h 0.418 

2
nd

  

Forecast 

0 ~ 6 h with 6 ~ 12 h 0.504 

6 ~ 12 h with 12 ~ 18 h 0.619 

12 ~ 18 h with 18 ~ 24 h 0.842 

18 ~ 24 h with 24 ~ 30 h 0.834 
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Figure 6.6 Average CSI and RMSE results over 6 hours (2011/09/02 03:00 ~ 09:00) 

in a comparison of observed radar rainfall and each transposed NWP rainfall domain 

during the first forecast period. 
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Figure 6.7 Average CSI and RMSE results over 6 hours (2011/09/02 09:00 ~ 15:00) 

in a comparison of observed radar rainfall and each transposed NWP rainfall domain 

during the first forecast period. 
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6.3.2 Real-time Updating of Post-Flood Forecasts 

 

The proposed approach has been tested in the Futatsuno and Nanairo dam 

catchments of the Shingu river basin for the real-time updating of flood forecasts for 

the largest flood event of 2011, which was caused by Typhoon Talas. Figures 6.8 and 

6.9 show the ensemble flood forecasts using the original 11 ensemble members in the 

first and second forecast periods and corresponding post-flood forecasts after 6, 12, 

18 and 24 hours by transposition updating over the Futatsuno and Nanairo dam 

catchments, respectively. Each figure illustrates a complete set of the forecast 

discharge for the ensemble range (grey range), the top 10% ensemble members (180 

ensembles, dark grey curve), the ensemble mean (blue curve), the simulation result 

using observed radar rainfall (black curve) and the observed discharge data of outlet 

point (red point) for each dam catchment.  

 

At first, in the 1st forecast period (rising limb period, left side of Figure 6.8) over 

the Futatusno dam catchment, the ensemble spread of the original ensemble 

forecasting provided a well-matched hydrograph temporal pattern during 0 to 18 lead 

times, which were lower and less predictable than the true value from 18 to 30 lead 

times over the Futatsuno dam catchment; this was caused by an underestimation of 

the rainfall forecast. After updating using the transposition scheme, the ensemble 

spread of the flood forecast is close to peak discharge in the rising limb period and is 

maintained through the updating, at 6-hour intervals, of the transposition information. 

In the second forecast period (peak discharge period, right side of Figure 6.8), the 

ensemble spread of the original ensemble forecasting could not represent the peak 

discharge, whereas an additional ensemble spread of updated flood forecasts, using a 

transposition scheme, provided the accuracy improvement of ensemble mean value 

and covered the observed discharge in the peak discharge period. 
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Second, in the first forecast period (rising limb period, left side of Figure 6.9) 

over the Nanairo dam catchment, additional ensemble spread of flood forecasting 

using a transposition scheme with a 6-hour update interval could cover the overall 

observed discharge during the update periods. Meanwhile, in the second forecast 

period (peak discharge period, right side of Figure 6.9), although the ensemble 

spread from updated flood forecasts via the transposition method was under-

predicted compared with the observed discharge, the accuracy of the ensemble 

spread and mean value improved with a 6-hour update interval during the peak 

discharge period over the Nanairo dam catchment.  

 

We also used the index to evaluate accuracy improvement with the results of the 

original ensemble flood forecasts and post-flood forecasting using the RMSE, which 

is a quantity used to measure how close each forecast was to the observation. Table 

6.3 shows the RMSE comparisons of ensemble mean value from updated flood 

forecasting, by transposition scheme, in each update period. Each value represents 

the RMSE in each update period, and the bold percentages in parentheses indicate 

the improvement ratio compared to the RMSE of prior updated flood forecasting in 

the same period. As Table 6.3 shows, our newly proposed method for real-time flood 

forecast updating could enhance the accuracy of post-flood forecasts with a 6-hour 

update interval, although post-flood forecasting after 12 hours in the rising limb 

period over the Nanairo dam catchment indicated a decrease (-9.6%) in accuracy due 

to a slight over-prediction compared to post-flood forecasting after 6 hours, but 

ensemble spread could cover the observed discharge. Finally, from the results of real-

time updating of post-flood forecasts, QPF location correction using a transposition 

scheme that considers orographic rainfall could improve the accuracy of flood 

forecasts, but exhibited a negative bias of ensemble mean value as lead time 

increased. 
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Figure 6.8 Ensemble flood forecasting using the original 11 ensemble members in 

the first and second forecast period and corresponding post-flood forecasting after 6, 

12, 18 and 24 hours via transposition updating over the Futatsuno dam catchment. 
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Figure 6.9 Ensemble flood forecasting using the original 11 ensemble members in 

the first and second forecast period and corresponding post-flood forecasting after 6, 

12, 18 and 24 hours via transposition updating over the Nanairo dam catchment. 
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Table 6.3 RMSE comparisons of updated flood forecasting results.  

Catchment 
Forecast 

Period 

Original 

Forecast 

Transposition Updating 

+ 6 h + 12 h + 18 h + 24 h 

Futatsuno 

1
st
 forecast 940.2 876.8 

(+16.6%) 

915 

(+9.2%) 

962.3 

(+13.3%) 

190.5 

(+79.8%) 

2
nd

 forecast 1978.7 1695.1 

(+23.2%) 

1881.8 

(+3.5%) 

1810.3 

(+20.6%) 

712.8 

(+59.1%) 

Nanairo 

1
st
 forecast 316.2 336.9 

(+3.9%) 

418.7 

(-9.6%) 

406.9 

(+7.4%) 

110.8 

(+75.1%) 

2
nd

 forecast 1485.9 1460.2 

(+11.9%) 

1529.6 

(+8.8%) 

1378.2 

(+6.6%) 

895.8 

(+48.1%) 

 

 

6.4 Summary 

 

This chapter aimed to enhance the transposition method proposed in Chapter 5 

and to propose a new real-time updating method for flood forecasting using 

transposition of ensemble rainfall distributions considering orographic rainfall. At 

first, ensemble forecast rainfalls from the NWP model are separated into orographic 

and non-orographic rainfall fields using atmospheric variables of GPV data and 

extraction of the topography effect. Then the non-orographic rainfall fields are 

shifted by the transposition scheme to produce additional ensemble information and 

new ensemble rainfall fields are calculated by recombining the transposition results 

of non-orographic rainfall fields with separated orographic rainfall. Then, the 

additional ensemble information is applied into a hydrologic model for post-flood 

forecasting with a 6-hour interval. Major findings from this chapter led to the 

following conclusions. 
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Orographic rainfall was dominant in the Shingu river basin, which is located in a 

mountainous region; the percentage of orographic rainfall in the verification area 

exceeded 50 percent and its maximum proportion of total rainfall is 99.8 percent. 

From the continuity assessment of transposition behaviors of forecasted rainfall 

distribution using a correlation coefficient in each 6-hour update step, the 

transposition scheme is continually satisfied during both update steps and has 

continuity for misplaced locations in the spatial distribution pattern. Thus, our newly 

proposed method for updating flood forecasts in real time could enhance the under-

predicted part of the original ensemble flood forecast method and improve the 

accuracy of post-flood forecasting with 6-hour update intervals.  

 

In Chapter 6, our transposition scheme focuses on QPF location error correction 

considering orographic rainfall but not predicted bias correction, which is a 

quantitative correction that uses the difference between observed and predicted 

rainfall. For this reason, it is possible to be vulnerable when forecasted rainfall 

intensity is under-predicted and suitable spatial distribution fails compared with 

observed reference data. Therefore, bias correction and/or hybrid products with 

radar-based prediction are required to achieve more reliable hydrologic predictions; 

bias correction and blending method for accuracy improvement will be addressed in 

Chapter 7. 
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Chapter 7 

 

Hybrid Flood Forecasting blending Ensemble NWP 

Rainfall and Radar-based Prediction considering 

Orographic Rainfall and Error Field Scheme 

 

 

Abstract This chapter proposes hybrid system blending ensemble information from 

radar-based prediction and numerical weather prediction (NWP) to improve the 

accuracy of rainfall and flood forecasting. First, an improved radar image 

extrapolation method proposed by Nakakita et al. (2012), which is comprised of the 

orographic rainfall identification and the error ensemble scheme, is introduced. Then, 

ensemble outputs of NWP model are updated based on two different methods. The 

first one is a bias correction method using mean bias of error fields proposed by Kim 

et al. (2009). The second one is transposition update method considering orographic 

rainfall introduced in Chapter 6. Finally, the improved radar-based prediction and 

updated ensemble NWP rainfall are blended dynamically with changing weight 

functions, which are computed from the expected skill of each radar prediction and 

updated NWP rainfall with 3 hrs lead time.  

 

 The proposed method is verified temporally and spatially through a target event and 

is applied to the hybrid flood forecasting for updating with 1-hr intervals. The newly 

proposed method based on bias correction shows sufficient reproducibility in peak 

discharge value compared with the result based on QPF location correction in 

updated flood forecasting, whereas the blending based on transposition scheme 

could reduce the width of ensemble spread, which is expressed as the uncertainty, in 

the flood forecasting. 
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7.1 Introduction 

 

The quantitative precipitation forecast (QPF) integration is particularly needed in 

small- and medium-sized mountainous basins where, given the short response time 

of the watershed, a precipitation forecast is necessary for an extension of the lead 

time of the flood warning (Toth et al., 2000). For the very short-term and short-term 

QPF, different methodologies have been developed over several decades. One of 

them can be achieved through the extrapolation of radar reflectivity field, another 

one would be the mesoscale Numerical Weather Prediction (NWP) model. 

 

Many basins in Japan are characterized by steep mountainous regions, generating 

orographic rainfall events. Orographic rainfall may cause localized heavy rainfall to 

induce flash floods and sediment disasters. However, the accuracy of radar-based 

rainfall prediction was not enough because of the complex geographical pattern of 

the mountainous areas. In order to prevent flood disasters and reduce damage due to 

localized heavy rainfall, characteristics of orographic rainfall must be identified and 

the characteristics should be considered in a short-term rainfall prediction procedure. 

For this reason, Nakakita et al. (2012) proposed an improved radar image 

extrapolation method by combining orographic rainfall identification scheme and the 

error-field scheme considering error structure. This method improved prediction 

accuracy in mountainous areas by separating radar rainfall into orographic and non-

orographic rain fields, and also considered future prediction error using 

characteristics of current prediction error with error-field scheme (Nakakita and 

Terazono, 2008; Kim et al., 2009; Nakakita et al., 2012).  

 

The accuracy of radar-based rainfall prediction performs best for very short lead 

time, but the accuracy of radar prediction rapidly decreases with increasing lead 

times. As an alternative to radar prediction, QPFs can also be produced by numerical 

weather prediction (NWP) models. NWP models simulate the dynamics and physics 
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of the atmosphere, and therefore they produce more reliable forecasts over longer 

lead times compared with radar-based prediction (Golding, 2009). 

 

The combination of radar-based prediction with outputs of an NWP model, which 

is used in short-lead-time forecast, has also provided a considerable advance in 

science, allowing the prediction of cell development and decay, as well as trajectory. 

Blending is the merging of rainfall prediction outputs through radar image 

extrapolation method with outputs of an NWP model. Hybrid blending system of 

radar-based prediction with NWP rainfall could potentially produce more skillful 

forecasts than either NWP forecast or radar prediction alone. Several authors have 

attempted and investigated the blending approaches using two different data sources 

to improve the accuracy of rainfall prediction in a few hrs (Golding, 1998; Pierce et 

al., 2001; Lin et al., 2005; Bowler et al., 2006; Atencia et al., 2010). However, to our 

knowledge, there is research about the merging of two different data sources with 

NWP and radar directly, but the accuracy improvement of each prediction method 

with NWP and radar prior to blending technique has not been addressed well in 

previous research. 

 

The main objective of this chapter is to blend the advantages of ensemble 

information of radar-based prediction with NWP rainfall for the accuracy 

improvement of rainfall and flood forecasting in viewpoint of the hybrid forecast. At 

first, the accuracy of radar image extrapolation method is improved considering 

orographic rainfall identification and the error-field scheme proposed by Nakakita et 

al. (2012). And the mesoscale ensemble NWP is also updated using two different 

methods. The first method is the NWP updating with error-field scheme considering 

bias correction with future prediction error characteristics proposed by Kim et al. 

(2009). The second one is the NWP updating with the transposition scheme of 

rainfall fields considering QPF location correction with the separation of orographic 

and non-orographic rainfall introduced in Chapter 6. Finally, improved radar-based 



Chapter 7 

 

 

104 

 

prediction and updated ensemble NWP rainfall forecast by two different methods are 

merged with changing weight function through CSI and RMSE indexes of the 

previous 3 hrs lead time. The proposed blending method is verified through 2011’s 

largest rainfall event for Typhoon Talas and is applied to the hybrid flood forecasting 

on two sub-catchments, which are Futatsuno (356.1km
2
) and Nanairo (182.1km

2
) 

dam catchments. Figure 7.1 shows a flowchart of the proposed process for the flood-

forecasting-blending-improved radar-based prediction and updated ensemble NWP 

rainfall forecast. 

 

 

Figure 7.1 Flowchart of the proposed process for flood forecasting blending 

improved radar-based prediction and updated ensemble NWP rainfall forecasts. 
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7.2 Data and Methodology 

 

7.2.1 Meteorological Input Data and a Hydrologic Model 

 

The radar data come from the C-band composite radar, provided by Japan’s 

MLIT at a resolution of 1 km and 5 min, and topology data come from the DEM 

produced by Japan’s Geospatial Information Authority at a resolution of 1 km. The 

target area for radar rainfall prediction is the Kinki region of Japan (Figure 7.2). The 

datasets are projected onto 123 × 123 grid cells (369 × 369 km with 3 km resolution). 

Atmospheric variables (e.g., air temperature, horizontal wind, relative humidity) for 

the separation of orographic and non-orographic rainfall are estimated by the use of 

GPV data from JMA.  

 

In case of the short-term ensemble NWP rainfall forecast, ensemble prediction 

with a horizontal resolution of 2 km and 30 hrs forecast time implemented by the 

MRI is used. The analysis utilizes the 2 sets of ensemble prediction outputs (1
st
 

forecast: 2011/09/02 03:00 ~ 09/03 09:00 JST, 30 hrs; 2
nd

 forecast: 2011/09/03 03:00 

~ 09/04 09:00 JST, 30 hrs). And a distributed hydrologic model based on “Object-

oriented Hydrological Modelling System” (OHyMoS) is used for flood forecasting 

by blending improved radar-based prediction and updated ensemble NWP rainfall 

forecasts in viewpoint of the hybrid forecast. In this model, the one-dimensional 

kinematic wave method is applied to each grid-cell for subsurface and surface flow 

simulation. A digital elevation model (DEM) with 250 m resolution is used to 

calculate the flow direction and to delineate a sub-catchment for each river segment.  
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Figure 7.2 Target area for radar rainfall prediction and verification area for CSI and 

RMSE calculation 

 

7.2.2 Improved Radar Image Extrapolation Method 

 

Many methods for short-term rainfall prediction based on radar data have been 

proposed. Golding (1998) highlighted that radar-based prediction techniques are able 

to capture the initial precipitation state. However, as the forecast’s lead time 

increases, the skill of the forecasts rapidly decreases, mainly due to the fact that 

growth and decay precipitation processes are not taken into account. Nakakita et al. 

(2012) described a short-term rainfall prediction method using a radar image 

extrapolation method by combining orographic rainfall identification and the error-

field scheme considering error structure. The proposed prediction scheme not only 

improved the prediction accuracy of the original image extrapolation method by 

considering the orographic rainfall but also analyzed the prediction error structure by 

mean bias of error fields spatially and temporally.  
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Introduction of Translation Model 

 

The translation model by Shiiba et al. (1984) is used for short-term radar rainfall 

prediction. In this model, the horizontal rainfall intensity distribution, R(x, y) with the 

spatial coordinate (x, y) at time t is defined as follows: 

 

  (7.1) 

 

where ur(x, y) and vr(x, y) are advection velocities along (x, y), respectively, and 

δ(x, y) is the rainfall growth-decay rate with lead time. As with other similar 

equations for the rainfall intensity distribution, characteristics of the translation 

model are defined by the vectors ur(x, y), vr(x, y), and δ(x, y), which are specified on 

each grid as follows: 

 

    (7.2) 

 

    (7.3)  

 

    (7.4) 

 

The advection velocities can express the patterns of the non-uniform movement 

of rainfall, such as rotation and sheer strain (Takasao et al., 1994). In order to 

optimize the parameters c1 ~ c9 using observed radar rainfall data, equations (7.2) ~ 

(7.4) are approximated by the central difference scheme on the rectangular horizontal 

area with (e.g. 3×3 km) grid size and  (e.g. 5 min) time resolution.  

 

( , ) ( , ) ( , )
( , ) ( , ) ( , )r r

R x y R x y R x y
u x y v x y x y

t x y


  
  

  

1 2 3( , )ru x y c x c y c  

4 5 6( , )rv x y c x c y c  

7 8 9( , )x y c x c y c   

x y  t
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   (7.5) 

 

Here, M and N are the number of grids along the x and y-axis, respectively, and K 

is the number of rainfall patterns used for the optimization. The parameters c1 ~ c9 

are optimized sequentially using the square root information filter and rainfall 

observations.  

 

1 1 1
2

2 2
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c ijk

k K i j
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 
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 

 

 

The translation model provides expected rainfall movement under an assumption 

that the vectors ur(x, y) and vr(x, y) are time invariant for the next several hrs. It 

further assumes that there is no growth-decay of rainfall during that time (i.e., δ(x, y) 

= 0 for all x and y). 
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Translation Model considering Orographic Rainfall 

 

Figure 7.3 shows the procedure for short-term radar rainfall prediction using the 

translation model with consideration of orographic rainfall. This procedure is 

composed of 4 steps. First, cloud water content is calculated using atmospheric 

variables from GPV data in each layer and grid. Supposing that the observed radar 

rainfall (Rradar) is that of the lowest layer (200 m height), it is separated into 

orographic (Ro1) and non-orographic (Rn1) rainfall by solving equations (6.2) ~ (6.5) 

in Chapter 6 and using the extraction of topography effect. And it is assumed that the 

non-orographic rainfall (Rn1) can be expressed as the sum of the orographic rainfall 

(Ro2) and non-orographic rainfall (Rn2) in the upper layer at height of 200 m. In this 

way, orographic rainfall of each layer can be calculated from the lowest to the 

highest layer at heights of 200, 400, 1000, 2000, 3000, 4000, and 5000 m repeatedly. 

The separation of orographic and non-orographic rain fields agrees with previous 

separation method based on seeder-feeder mechanism using NWP rainfall fields in 

Chapter 6, but shot-term radar rainfall prediction method in this chapter needs the 

composition scheme after advection procedure of non-orographic rainfall. Second, 

under the assumption that non-orographic rainfalls are not affected by orographic 

effects, only the separated non-orographic rain fields in the highest layer at heights of 

5000 m are advected with translation model up to 3 hrs lead time. At the specific lead 

time, newly atmospheric variables are calculated from GPV data because 

atmospheric variables, such as water vapor and wind, are expected to change, even if 

orographic rain fields are stagnant for several hours. Supposing that the advected 

non-orographic rain fields are of the top layer at the specific lead time, new 

orographic rain fields are calculated by solving equations (6.2) ~ (6.5) in Chapter 6 

from the top layer to the lower layer. Lastly, prediction rain fields are calculated by 

combining the orographic and non-orographic rain fields. 
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Figure 7.3 Procedure for short-term radar rainfall prediction with translation model 

considering orographic rainfall (Nakakita et al., 2012) 

 

 

Ensemble Forecasting Method using Prediction Error Field  

 

Kim et al. (2009) introduced a stochastic prediction method considering the 

spatial distributions of error in prior prediction rain fields in the translation model, 

and the extended prediction fields not only improved the accuracy of the original 

prediction by the translation model but also gave reliability with variant form of 

rainfall fields. This error-field scheme, which employs a stochastic approach, 

represents the uncertainty affecting the forecasting of motion and evolution of the 

rainfall field. The proposed scheme for a stochastic error field simulation uses a 

certain time length of previous prediction error data to simulate future prediction 

errors as shown in Figure 7.4, and Nakakita et al. (2012) integrated radar rainfall 

prediction method considering orographic rainfall with the stochastic prediction 

method of Kim et al. (2009).  
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The stochastic prediction method has the assumption that a temporal persistence 

of the error characteristics continues from the current time (to) to the prediction target 

time. In Figure 7.4, the observed rainfall fields, the deterministic prediction fields, 

and the prediction error fields are sequentially illustrated until the current time. The 

spatial distribution of an absolute prediction error (Ek) was considered with the forms: 

 

, , ( 1,2,......, )k o k p kE R R k n     (7.7) 

 

where Ro,k is an observed radar rainfall field, Rp,k is a predicted rainfall field using 

the Translation Model, and n is the number of error fields. 

 

The absolute prediction error fields are calculated and statistically analyzed. The 

calculation in equation (7.7) is conducted for each corresponding grid cell of Ro,k and 

Rp,k. For the calculation of error fields, total 11 consecutive previous radar prediction 

results (previous 60 min with 5 min interval) are calculated. The current 

characteristic of the prediction error through total 11 consecutive previous radar 

observation and prediction results can be presented by basic statistic fields such as 

the ensemble mean field E . It assumed that if the spatio-temporal characteristics of 

the prediction error are maintained for several hrs, the statistical characteristics of the 

error on the prediction lead time  are similar to the characteristics of the 

current error. Finally, the bias-modified prediction field (Rp,0) is calculated by adding 

the ensemble mean field E  to the prediction field (Rp) at time : 

 

,0p pR R E      (7.8) 

 

0t T 

0t T 
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Figure 7.4 Schematic drawing of the error-ensemble prediction algorithm  

(Kim et al., 2009). 

 

7.2.3 Mesoscale NWP updating Method 

 

NWP Updating with Error-Field Scheme 

 

For the purpose of NWP updating with forecast time interval, the error-field 

scheme considering the spatial distributions of error in forecasted rain fields, which 

is the same method as the error-field scheme of improved radar image extrapolation 

method, is implemented. At first, ensemble NWP rainfall with 11 members and 2 km 

horizontal resolution is forecasted up to 30 hrs. After 3 hrs, the mean bias of error 

fields is calculated using 6 consecutive previous observed radar images and original 

ensemble NWP rainfall outputs (previous 3 hrs with 30 min interval). And then mean 

bias of 3 hrs error fields gives the information to post ensemble NWP rainfall 

forecasting (Figure 7.5). These updated 3 hrs in ensemble NWP rainfall are then used 

to run the blending method, which merges with radar rainfall prediction from 

improved radar image extrapolation method. 
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Figure 7.5 Procedure of NWP updating using error-field scheme. 

 

 

NWP Updating with Transposition Scheme 

 

The transposition scheme considering orographic rainfall introduced in Chapter 6 

is also used for the NWP updating and blending with radar-based prediction from 

improved radar image extrapolation method. Figure 7.6 shows the proposed process 

for NWP updating using transposition of rainfall fields considering orographic 

rainfall. As stated in Chapter 6, at first, ensemble NWP rainfall is separated into 

orographic and non-orographic rain fields using the extraction of topography effect. 

Then the non-orographic rainfall fields are examined by the transposition scheme to 

produce additional ensemble information for QPF location error correction, and 

ensemble NWP rainfall fields are calculated by recombining the transposition results 

of non-orographic rain fields with the orographic rainfall. After 6 hours from the 

starting of the ensemble NWP rainfall forecast, the recombined ensemble rain fields 
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are spatially verified by MLIT C-band composite radar data with error indexes, 

which are critical success index (CSI) and root mean square error (RMSE) to find out 

the best ensembles and transposed locations. And for the NWP updating and 

blending with radar-based prediction, the best 20 transposed ensemble domains from 

the CSI and RMSE verification are selected, and give information to the next NWP 

updating step with 1 hr interval. These updated 3 hours forecast data in transposed 

NWP rainfall are then used to run the blending method, which merges the updated 

NWP rainfall with radar-based prediction from the improved radar image 

extrapolation method. 

 

 

Figure 7.6 Procedure of NWP updating using transposition scheme 
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7.2.4 Blending NWP with Radar-based Prediction 

 

To make optimized short-term rainfall prediction until 3 hrs ahead, the results of 

the radar-based prediction considering orographic rainfall and error-field scheme 

with each updated ensemble NWP rainfall based on the error-field scheme and the 

transposition scheme integrated using a blending method proposed in this chapter. 

The blending forecast outputs are produced and updated with 1 hr time step intervals 

according to merging weights, which are computed from the expected skills of the 

radar-based prediction and the updated NWP forecast.  

 

In the blending of the radar based prediction with updated NWP rainfall using 

error-field scheme, given the starting time to of the ensemble NWP rainfall forecast 

for a given event, the blending method with updated NWP rainfall using error-field 

scheme is configured to start a blend forecast after 6 hrs (to+6h) until 3 hrs ahead 

(to+9h) on a 30 hr forecast window of ensemble NWP rainfall forecast because it 

takes 3 hrs for the calculation of mean bias between observed radar and original 

ensemble NWP rainfall in updating step, and also takes 3hrs for the calculation of 

weights for first blending forecast step.  

 

On the other hand, in the blending of the radar-based prediction with updated 

NWP rainfall using transposition scheme, the blending method is configured to start 

a blend forecast after 9 hrs (to+9h) until 3 hrs ahead (to+12h) because it takes 6 hrs 

for the calculation of the best 20 transposed ensemble domains from the CSI and 

RMSE verification, and also takes 3hrs for the calculation of weights for first 

blending forecast step. Then, a 1 hr forecasting time step interval after 6 hrs and 9 hrs 

for blending forecasts using error-field scheme and transposition scheme, 

respectively, is adopted and updated at 1km resolution on the 100 km × 100 km 

domain of verification area shown in Figure 7.2. 
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For the calculation of weights for the blending forecast step, one needs to 

investigate several indexes and thresholds prior to setting the optimal blending 

procedure over the verification area. In order to compute the weights in a suitable 

way, we used the tested indexes, which are CSI and RMSE, to consider each 

characteristic for the lead times of 30, 60, 90, 120, 150, and 180 min and the 

thresholds of 0.1, 0.5, 1.0, 5.0, 10.0 and 20.0 mm/h.  

 

 

H
CSI

H M FA


 
     (7.9) 
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, 1
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i j i j

i j
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

     (7.10) 

 

where N is the total grid cells (100 × 100) in verification area, Oi,j and Fi,j are the 

observed and forecasted rainfall of each grid cell at forecast time t, H is the number 

of correct forecasts over the threshold (i.e., when the rainfall that is forecasted is also 

observed), and M is the number of times rainfall is not forecasted but is observed. FA 

is the number of times rainfall is forecasted but not observed. 

 

At to+6h time point in the blending with updated NWP rainfall using the error-

field scheme, CSI and RMSE indexes of updated NWP rainfall and radar prediction 

are computed from the previous 3 hrs (to+3h) to 3 hrs ahead (to+6h) compared with 

previous observed radar data for the lead times of 30, 60, 90, 120, 150, and 180 min 

and the thresholds of 0.1, 0.5, 1.0, 5.0, 10.0, and 20.0 mm/h. High thresholds restrict 

rain events to heavy rains, while low thresholds not only represent light rains but also 

consider all rains from light to heavy rains. Therefore, estimated CSI and RMSE 

indexes from the lead times of 30, 60, 90, 120, 150 and 180 min and the 5 mm/h 

threshold, which can be take into account a suitable threshold for both light and 



Chapter 7 

 

 

117 

 

heavy rains, are used for each merging weight of updated NWP rainfall forecast and 

radar-based prediction. And estimated CSI and RMSE from to+3h to to+6h are 

introduced in the equations (7.11) and (7.12) with square type to estimate the weights 

for the blending forecast from to+6h until 3 hrs. In RMSE index, low value has 

preference, so it was subtracted from 1. Through these weights of updated NWP 

rainfall and radar-based prediction by computing CSI and RMSE indexes from to+3h 

to to+6h, two coefficients are computed as follow equation (7.13) with average value 

of two weights. Coefficients of NWP and radar depend on the prediction lead time 

because the accuracy of each method depends on the prediction lead time. The sum 

of two coefficients of NWP and radar is 1, and computed coefficient of each lead 

time from to+3h to to+6h gives information to hybrid blending forecasts from to+6h 

to to+9h in case of the blending with the error-field scheme. Finally, the hybrid 

blending forecast is computed from equation (7.14), and blending forecasts are 

updated with a 1 hr time step interval after 6 hrs in case of error-field scheme. 

 

On the other hand, in the blending with updated NWP rainfall forecast using the 

transposition scheme, at to+9h time point, CSI and RMSE indexes of updated NWP 

forecast and radar-based prediction are computed from previous 3 hrs (to+6h) to 3 hrs 

ahead (to+9h), and estimated CSI and RMSE indexes from the lead times of 30, 60, 

90, 120, 150, and 180 min and the 5 mm/h threshold are used for each merging 

weight of updated NWP rainfall and radar-based prediction. However, in case of 

blending with error-field scheme, 11 ensemble members for blending with radar- 

based prediction are equal to that after the NWP updating, whereas in case of 

blending with transposition scheme, the selected best 20 ensemble members from the 

CSI and RMSE verification are changed in each 6 hrs transposition step. For this 

reason, the weights from equations (7.11) and (7.12) could not be used for own 

ensemble member; therefore, we used the coefficients of updated NWP rainfall and 

radar prediction with the average weights of the selected best 20 ensemble members 

in each NWP updating step based on equation (7.15). And computed coefficient of 
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each lead time from to+6h to to+9h gives information to hybrid blending forecasts 

from to+9h to 3 hrs ahead (to+12h). Finally, the hybrid blending forecast is computed 

from equation (7.16), and blending forecasts are updated with a 1 hr time step 

interval. 
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   where wnwp,i,1 and wnwp,i,2 are weights from CSI and RMSE calculation of each 

member of ensemble NWP rainfall, wradar,1 and wradar,2 are weights from CSI and 

RMSE calculation of radar prediction outputs, Cnwp and Cradar are coefficients of 

ensemble NWP rainfall and radar prediction for blending of each lead time, i is 

ensemble members of NWP (11 ensemble members in case of blending with error-

field scheme and 20 ensemble members in case of blending with transposition 

scheme), Rnwp and Rradar are outputs of each grid cell from ensemble NWP and radar 

prediction, and Rblend is the forecasted blending rainfall with NWP and radar of each 

grid cell. 

 

  



Chapter 7 

 

 

120 

 

7.3 Results and Discussion 

 

7.3.1 Verification Results of Rainfall Prediction 

 

Improved Radar Image Extrapolation Method 

 

As the view into the performances of each radar prediction method, Figure 7.7 

shows accumulated rainfall by MLIT C-band composite radar data and its 

corresponding radar prediction results with 3 hrs lead time and scatter plots during 

typhoon Talas event. The prediction result by advection of translation model could 

not represent the accumulated rainfall distribution over 1,000 mm in mountainous 

regions, whereas the prediction result considering orographic rainfall expressed the 

orographic rainfall distribution generated from orographic effect, and the prediction 

result combining orographic rainfall and error-field scheme could reproduce the 

accumulated rainfall distribution compared with observed radar rainfall. 

 

 

Figure 7.7 Accumulated rainfall results with 3 hrs lead time and scatter plots by each 

method during typhoon Talas 
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And a simple verification measure using correlation coefficient was adopted for 

the purpose of the performance assessment of each prediction method. The 

correlation coefficient has been computed as follows: 
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  (7.17) 

 

where F is the prediction rainfall, Oi is the observed radar rainfall, cov is the 

covariance of F and O, F and O are the standard deviations of F and O, 

respectively, and N is the number of grid cells within the domain. 

 

Table 7.1 shows the computed correlation coefficients for each prediction method. 

The correlation coefficient does not measure the forecast accuracy and does not take 

into account the bias in the forecasts. However, it is able to describe the association 

between the forecasts dataset and the reference dataset (e.g., corr = 1 indicates a 

perfect positive linear relationship between forecasts and reference observations). 

Therefore, even though the correlation coefficient cannot be considered an 

exhaustive measure of forecasts quality, it was considered suitable to provide a 

comparative analysis of the observed radar rainfall and each prediction method. 

 

Table 7.1 Computed correlation coefficients for each prediction method. 

Translation model Orographic rainfall Orographic + error field 

0.385 0.721 0.974 
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From these results, Figure 7.7 suggests that improved radar image extrapolation 

method considering both orographic rainfall and the error-field scheme predicted 

accurately the accumulated rainfall amount and spatial location compared with the 

observed radar rainfall, and the scatter plots of each prediction method show that 

improved radar prediction method combining orographic rainfall and error-field 

scheme had better results than other prediction methods. 

 

And CSI and RMSE were used again to investigate the performance of each 

prediction method as well as the use of the calculation of weights to blend the 

ensemble NWP forecast and radar-based prediction. The performance of each 

prediction method was estimated by selecting increasing rainfall intensity thresholds 

of 0.1, 0.5, 1.0, 5.0, 10.0, and 20.0 mm/h and increasing lead time of 30, 60, 90, 120, 

150, and 180 min during the target forecast period (2011/09/02 03:00 ~  09/04 

09:00 JST, 54 hrs). 

 

Figure 7.8 shows one of prediction results of average values of CSI and RMSE 

during the target forecast period with increasing lead time and 5 mm/h rainfall 

threshold. The average CSI decreases with lead time between 30 min and 3 hrs for all 

prediction methods, but the CSI of improved prediction method considering both 

orographic rainfall and error field was maintained over 0.7 value with lead time, and 

it provided the best result over other methods in spatial forecast location. In the 

average RMSE with lead time, proposed radar prediction method also improved the 

accuracy from 90 min to 180 min lead time. On the other hand, the simple advection 

by translation model provided the best RMSE index from 30 min to 60 min lead time. 

This result implies that simple radar image extrapolation produces a suitable 

prediction result in case of very short-range prediction of an extreme typhoon event.  
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Figure 7.8 Average values of CSI and RMSE of each radar prediction result 

 

 

NWP Updating with Error-Field Scheme 

 

Figure 7.8 shows average values of CSI and RMSE of updated NWP rainfall by 

error-field scheme with lead time and 5 mm/h rainfall threshold compared with the 

radar prediction considering orographic rainfall and error-field scheme. In CSI 

results, all ensembles were maintained to be closed to 0.8 values. In RMSE results, 

average RMSE has from 17 to 18 value with lead time except for 1 member (member 

8 in Figure 2.5) over the 21 value. Through the comparison between updated NWP 

rainfall and radar prediction result, the average CSI and RMSE by updated NWP 

rainfall produced higher performances than radar prediction result. It can be 

explained by Figure 7.10. In a previous study, CSI and RMSE results of raw control 

run during 2 sets of ensemble prediction outputs (1
st
 forecast: 2011/09/02 03:00 ~ 

09/03 09:00 JST, 30 hrs; 2
nd

 forecast: 2011/09/03 03:00 ~ 09/04 09:00 JST, 30 hrs) 

had low values because forecasted rain field movement was faster as the lead time 

was longer, so the rainfall forecast pattern has been deviated from verification area. 
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In this situation, mean bias by error fields of observed radar and NWP give to raw 

NWP forecasting. As a result, updated NWP has been improved through the accurate 

spatial information from mean field of error structure (Figure 7.10).  

 

 

Figure 7.9 Average values of CSI and RMSE of updated ensemble NWP rainfall 

using error-field scheme 

 

 

Figure 7.10 Average values of CSI and RMSE for control run of original ensemble 

NWP and updated NWP rainfall for 3 hrs lead time with 1 hr interval 
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NWP Updating with Transposition Scheme 

 

Figure 7.11 shows average values of CSI and RMSE of updated NWP rainfall by 

transposition scheme with lead time and 5 mm/h rainfall threshold compared with the 

radar prediction considering orographic rainfall and error-field scheme. In CSI 

results, all ensembles were maintained to be closed to 0.6 values. In RMSE results, 

average RMSE has from 20 to 22 value. Through the comparison between updated 

NWP rainfall and radar prediction result, contrary to updated NWP rainfall with 

error-field scheme, the average CSI and RMSE of radar prediction produced higher 

performances than updated NWP rainfall result. This is because the transposition 

scheme is not a method for the bias correction, just the QPF location error correction, 

so transposition scheme could improve the forecast performance by more than 

original ensemble NWP rainfall, which is indicated in the original control run result 

of Figure 7.10. However, radar prediction considering the orographic rainfall and 

bias correction from error-field scheme provided better results than the updated NWP 

rainfall in CSI and RMSE verification.  

 

Figure 7.12 shows comparison of updated ensemble NWP rainfall using error-

field scheme and transposition scheme in terms of average values of CSI and RMSE 

with lead time and 5 mm/h rainfall threshold. From this result, the updated NWP 

rainfall considering bias correction from the error-field scheme provided better 

results than that considering location correction from the transposition scheme. 
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Figure 7.11 Average values of CSI and RMSE of updated ensemble NWP rainfall 

using transposition scheme 

 

 

Figure 7.12 Comparison of updated ensemble NWP rainfall using error-field scheme 

and transposition scheme 
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Blending with Error-Field Scheme 

 

As stated above, the radar-based prediction considering orographic rainfall and 

error-field scheme with updated ensemble NWP rainfall was blended up to 3 hrs with 

1 hr time step according to weights, which are computed from the CSI and RMSE. 

The estimated weights from CSI and RMSE indexes of updated NWP forecast and 

radar prediction are computed from the previous 3 hrs (to+3h) to 3 hrs ahead (to+6h) 

for the calculation of blending coefficient, and computed coefficient of each lead 

time from to+3h to to+6h gives information to hybrid blending forecasts from to+6h 

to to+9h in case of the blending with the error-field scheme.  

 

In the use of estimated coefficient in the blending step, we considered 3 different 

methods. The first method is the use of the coefficient of same lead time before 3 hr 

(e.g., the blending coefficient for 1 hr lead time (to+7h) at to+6h time point and use of 

the estimated coefficient of 1 hr lead time (to+4h) at to+3h time point). The second 

method is the use of the average coefficient of prior same lead time for time series 

statistical analysis (e.g., the blending coefficient for 1 hr lead time (to+16h) at to+15h 

time point and use of the average coefficient of 1 hr lead time (to+7h, +10h and +13h) 

at to+6h, +9h and +12h time point). The third method is the use of the average 

coefficient from prior 3 hrs until 3 hrs ahead (e.g., the blending coefficient for all 

lead time from to+6h to to+9h and use of the average coefficient of all lead time from 

to+3h to to+6h).  

 

Figure 7.13 shows average CSI and RMSE results among 3 different blending 

methods with regard to the estimation of coefficient with lead time and 5 mm/h 

threshold. Case A means the method using the coefficient of same lead time before 3 

hr, Case B means the method of the average coefficient of prior same lead time for 

time series statistical analysis , and Case C means the method of the average 

coefficient from prior 3 hrs until 3 hrs ahead as stated above. Through Figure 7.13, 
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we confirmed that average CSI and RMSE results of three methods are almost the 

same performance. These results can be explained by the estimated coefficient used 

in blending of the updated NWP rainfall using error-field scheme and radar-based 

prediction with lead time represented in Figure 7.14. The estimated coefficient is also 

almost constant with lead time by the bias correction from error-field scheme, so 

average CSI and RMSE results of three methods are almost the same performance in 

Figure 7.13. In this chapter, the coefficient of same lead time before 3 hr (Case A) is 

used for blending of updated NWP rainfall and radar-based prediction. 

 

Figure 7.15 shows average values of CSI and RMSE among radar-based 

prediction considering orographic rainfall and error-field scheme, updated NWP 

rainfall with error-field scheme, and blending of radar prediction and updated NWP 

rainfall with lead time and 5 mm/h threshold. Through Figure 7.15, the blending of 

updated NWP rainfall using error-field scheme and radar prediction improved the 

rainfall prediction accuracy with lead time than the results of radar prediction and 

updated NWP rainfall. 
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Figure 7.13 Comparison of average CSI and RMSE results among three different 

blending methods with regard to the estimation of coefficient 

 

 

Figure 7.14 Estimated coefficient used in blending of the updated NWP rainfall using 

error-field scheme and radar-based prediction 
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Figure 7.15 Average values of CSI and RMSE among radar prediction, updated NWP 

rainfall with error-field scheme, and blending forecast 
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Blending with Transposition Scheme 

 

Figure 7.16 shows average values of CSI and RMSE among radar-based 

prediction considering orographic rainfall and error-field scheme, updated NWP 

rainfall with transposition scheme, and blending results with lead time and 5 mm/h 

threshold. Figure 7.17 represents comparison result of blending using error-field 

scheme and transposition scheme. From Figure 7.16, the blending of updated NWP 

rainfall using transposition scheme and radar prediction could provide better 

prediction accuracy with lead time than the results of radar prediction and updated 

NWP rainfall alone. However, the blending result considering bias correction from 

error-field scheme had a higher performance than the result considering QPF location 

correction from transposition scheme represented in Figure 7.17. And Table 7.2 and 

7.3 represent comparisons of average CSI and RMSE values with lead time and all 

rainfall intensity thresholds. From these results, the improvement achieved by 

merging the radar prediction with the updated NWP rainfall using error-field scheme 

becomes more appreciable as the forecasts advance in lead time and the rainfall 

intensities become higher. 
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Figure 7.16 Average values of CSI and RMSE among radar prediction, updated NWP 

rainfall with transposition scheme, and blending forecast 

 

 

Figure 7.17 Comparison of average values of CSI and RMSE of blending results 

using error-field scheme and transposition scheme 
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Table 7.2 Average CSI value among radar prediction, NWP updating, and blending 

with lead time and thresholds 

Lead Time Type 
Thresholds (mm) 

0.1 0.5 1.0 5.0 10.0 20.0 

60 min 

Radar Prediction 0.81 0.79 0.78 0.66 0.55 0.38 

NWP update (Transposition) 0.89 0.82 0.77 0.57 0.43 0.23 

NWP update (Error) 0.94 0.92 0.90 0.76 0.65 0.45 

Blend (Transposition) 0.96 0.93 0.91 0.76 0.64 0.42 

Blend (Error) 0.97 0.95 0.93 0.81 0.71 0.51 

120 min 

Radar Prediction 0.80 0.78 0.77 0.65 0.54 0.38 

NWP update (Transposition) 0.88 0.81 0.75 0.55 0.41 0.22 

NWP update (Error) 0.94 0.91 0.89 0.75 0.64 0.44 

Blend (Transposition) 0.95 0.92 0.90 0.75 0.63 0.41 

Blend (Error) 0.96 0.94 0.93 0.79 0.69 0.49 

180 min 

Radar Prediction 0.80 0.78 0.77 0.63 0.52 0.36 

NWP update (Transposition) 0.87 0.80 0.74 0.53 0.40 0.21 

NWP update (Error) 0.94 0.91 0.89 0.74 0.63 0.42 

Blend (Transposition) 0.95 0.92 0.89 0.74 0.60 0.38 

Blend (Error) 0.96 0.94 0.92 0.78 0.68 0.47 

 

Table 7.3 Average RMSE value among radar prediction, NWP updating, and 

blending with lead time and thresholds 

Lead Time Type 
Thresholds (mm) 

0.1 0.5 1.0 5.0 10.0 20.0 

60 min 

Radar Prediction 17.92 18.02 18.10 19.81 23.07 31.65 

NWP update (Transposition) 18.58 18.66 18.74 20.55 24.10 32.94 

NWP update (Error) 16.17 16.21 16.27 17.8 20.56 28.58 

Blend (Transposition) 15.29 15.32 15.37 16.56 19.47 27.91 

Blend (Error) 14.41 14.43 14.46 15.56 18.08 25.90 

120 min 

Radar Prediction 18.63 18.72 18.79 20.50 23.84 32.30 

NWP update (Transposition) 19.76 19.85 19.94 21.81 25.43 34.19 

NWP update (Error) 16.79 16.83 16.88 18.29 21.18 29.26 

Blend (Transposition) 16.23 16.26 16.31 17.48 20.38 28.97 

Blend (Error) 15.15 15.17 15.20 16.28 18.84 26.77 

180 min 

Radar Prediction 20.28 20.37 20.44 22.23 25.77 35.26 

NWP update (Transposition) 20.51 20.62 20.72 22.63 26.32 35.03 

NWP update (Error) 17.25 17.29 17.33 18.71 21.56 29.73 

Blend (Transposition) 17.79 17.84 17.90 19.14 22.22 31.03 

Blend (Error) 16.14 16.16 16.19 17.30 19.94 28.01 
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7.3.2 Application in Hybrid Flood Forecasting 

 

The proposed approach for ensemble NWP updating and the blending with radar 

prediction has been applied to the flood forecasting in the viewpoint of hybrid 

forecasting on two sub-catchments, which are Futatsuno (356.1km
2
) and Nanairo 

(182.1km
2
) dam catchments for the largest flood event by typhoon Talas of 2011. 

Figure 7.18 represents the strategy for hybrid flood forecasting using blending and 

updated NWP results. At first, the blending result with updated NWP rainfall and 

radar prediction is configured to start a blend forecast after 6 hrs (to+6h: error field 

scheme) and 9 hrs (to+9h: transposition scheme) until 3 hrs ahead (to+6h and to+9h: 

error field scheme, to+9h and to+12h: transposition scheme). Then updated NWP 

rainfall is used for post-flood forecasting after 3 hr from 6 hrs (to+6h: error-field 

scheme) and 9 hrs (to+9h: transposition scheme) up to a 30-hr forecast window. And 

this process is continued with a 1 hr time step interval. 

 

 

Figure 7.18 Strategy for hybrid flood forecasting with blending and updated NWP 

rainfall 
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Figures 7.19 ~ 7.22 show the ensemble flood forecasting using the original 11 

ensemble members and the hybrid flood forecasting with blending and updated NWP 

rainfall after 6, 9, 12, 15, 18, 21, and 24 hrs considering bias correction by error-field 

scheme in the rising limb and peak discharge period over the Futatsuno and Nanairo 

dam catchment. Each figure illustrates a complete set of the forecasted discharge for 

the ensemble range (grey range), the ensemble mean (blue curve), and the simulation 

result using observed radar rainfall (black curve) and observed discharge data of 

catchment outlet point (red point).  

 

Through the Figure 7.19, 3 hrs forecasting from the blending result is well 

matched to observed discharge in overall time period. And the ensemble mean and 

spread from the combination of blending and updated NWP rainfall by error-field 

scheme could represent the peak value and cover the observed discharge until the 

starting point of the hybrid flood forecasting at 18 hrs. However, the hybrid flood 

forecasting is over-predicted from the starting point of 18 hrs and 21 hrs. It can be 

explained by the bias between observed and predicted data expressed in Figure 3.3 of 

Chapter 3. In Figure 3.3, the observed rainfall intensity from 15 to 21 hrs lead time in 

2nd forecast period increases, whereas the predicted ensemble NWP mean rainfall 

decreases and is under-predicted from 15 to 21 hrs lead time, so mean bias between 

observed and predicted data is largely estimated. The post-flood forecasting using 

updated NWP rainfall in hybrid flood forecasting at + 18 hrs and + 21 hrs starting 

point in Figure 7.19 uses the large mean bias estimated by 3-hr comparisons between 

observed and predicted data from 15 to 18 hrs and from 18 to 21 hrs lead time, 

respectively, so the hybrid flood forecasting is over-predicted from the starting point 

of 18 hrs and 21 hrs. In the 2nd forecast period (peak discharge period, Figure 7.20), 

the ensemble mean and spread of the original ensemble forecasting could not 

represent the peak discharge, whereas hybrid flood forecasting with combination of 

blending and updated NWP rainfall by error-field scheme provided the accuracy 

improvement of ensemble mean value and covered the observed discharge in peak 
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discharge period in overall updating step. 

 

Through the result of hybrid flood forecasting in the rising limb period over the 

Nanairo dam catchment expressed by Figure 7.21, the ensemble mean and spread is 

similar to a curve shape of the observed discharge, but it is over-predicted generally. 

In this chapter, simulated discharge from the observed radar rainfall used the as the 

initial condition for hybrid flood forecasting in each updating step, and simulated 

discharge from the observed radar rainfall (Black curve) is over-predicted compared 

with the observed discharge. This led to over-prediction of hybrid flood forecasting. 

In the 2nd forecast period (peak discharge period, Figure 7.22), the ensemble mean 

value and spread of the original ensemble forecasting are under-predicted compared 

with the peak discharge, whereas hybrid flood forecasting outperforms original flood 

forecasting, and the ensemble spread could cover and represent the peak discharge 

impeccably in the overall updating step. 

 

The results of the hybrid flood forecasting from the combination of blending and 

updated NWP rainfall considering bias correction by error-field scheme are reflected 

in the verification results using bias index according to elapsed time with blending 

time step in Figure 7.23. From the bias correction by error-field scheme, the accuracy 

of hybrid flood forecasting is improved compared with the ensemble flood 

forecasting using the original 11 ensemble members. And the bias of ensemble mean 

and spread are close to 1 value in each updating step. 
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Figure 7.19 Hybrid flood forecasting considering bias correction by error-field 

scheme in the rising limb period over the Futatsuno dam catchment 

 

 



Chapter 7 

 

 

138 

 

 

Figure 7.20 Hybrid flood forecasting considering bias correction by error-field 

scheme in the peak discharge period over the Futatsuno dam catchment 
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Figure 7.21 Hybrid flood forecasting considering bias correction by error-field 

scheme in the rising limb period over the Nanairo dam catchment 

 



Chapter 7 

 

 

140 

 

 

Figure 7.22 Hybrid flood forecasting considering bias correction by error-field 

scheme in the peak discharge period over the Nanairo dam catchment 
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Figure 7.23 Verification results of hybrid flood forecasting considering bias 

correction by error-field scheme 

 

Figures 7.24 ~ 7.27 show the ensemble flood forecasting using the original 11 

ensemble members and the hybrid flood forecasting with blending and updated NWP 

rainfall after 9, 12, 15, 18, and 21 hrs considering QPF location correction by error-

field scheme in the rising limb and peak discharge period over the Futatsuno and 

Nanairo dam catchment. Through the result of hybrid flood forecasting expressed by 

Figures 7.24 ~ 7.27, 3-hr forecasting from the blending result is close to observed 

discharge in overall time period, and the blending and updated NWP rainfall based 

on QPF location correction by transposition scheme could reduce the width of 

ensemble spread in the flood forecasting. However, ensemble mean value and spread 

from the combination of blending and updated NWP rainfall by transposition scheme 

could not represent the peak value or cover the observed discharge. These results 

considering QPF location correction by transposition scheme are also reflected in the 

verification results using bias index according to elapsed time with blending time 

step in Figure 7.28. 
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Figure 7.24 Hybrid flood forecasting considering location correction by transposition 

scheme in the rising limb period over the Futatsuno dam catchment 

 

 

Figure 7.25 Hybrid flood forecasting considering location correction by transposition 

scheme in the peak discharge period over the Futatsuno dam catchment 
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Figure 7.26 Hybrid flood forecasting considering location correction by transposition 

scheme in the rising limb period over the Nanairo dam catchment 

 

 

Figure 7.27 Hybrid flood forecasting considering location correction by transposition 

scheme in the peak discharge period over the Nanairo dam catchment 
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Figure 7.28 Verification results of hybrid flood forecasting considering QPF location 

correction by transposition scheme 
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7.4 Summary 

 

This chapter attempted to improve the accuracy of rainfall and flood forecasting 

by blending the advantages of ensemble information of NWP rainfall forecast and 

radar-based prediction in viewpoint of the hybrid forecast. For this objective, 

improved radar-based image extrapolation was implemented with consideration of 

orographic rainfall identification and the error fields, and ensemble NWP rainfall 

with 30-hr forecast time were also updated using error-field scheme and transposition 

scheme. Finally, updated NWP rainfall and improved radar prediction were blended 

with time-varying weights through CSI and RMSE, and then the proposed blending 

method was verified through 2011’s largest rainfall event and is applied to the hybrid 

flood forecasting on two sub-catchments, which are Futatsuno (356.1km
2
) and 

Nanairo (182.1km
2
) dam catchments. The results of this chapter lead to the following 

conclusions: 

 

Improved radar image extrapolation method with consideration of orographic 

rainfall identification and the error fields showed better performance than other radar 

prediction methods in spatial forecast location in verification results of accumulated 

rainfall distribution, correlation coefficient, CSI and RMSE indexes. 

 

Ensemble NWP rainfall were improved with quantitative bias correction using 

mean field bias of error fields, and updated NWP rainfall produced higher 

performances than radar prediction results considering the orographic rainfall and the 

error-field scheme. Updated NWP rainfall considering QPF location correction by 

the transposition scheme also outperformed the ensemble flood forecasting using the 

original 11 ensemble members, but radar prediction considering orographic rainfall 

and the error-field scheme provided better results than the updated NWP rainfall in 

CSI and RMSE verification.   
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The improvement achieved by merging the radar prediction with the updated 

NWP rainfall becomes more appreciable as the rainfall forecasts advance in lead time 

and the rainfall intensities become higher in case of both the error-field scheme and 

the transposition scheme. And hybrid flood forecasting with combination of blending 

and updated NWP rainfall by error-field scheme and by transposition scheme could 

improve the under-predicted part of original ensemble NWP rainfall in rising limb 

and peak discharge period over the two catchments. The newly proposed method 

based on bias correction shows sufficient reproducibility in peak discharge value 

compared with the result based on QPF location correction in updated flood 

forecasting, whereas the blending based on transposition scheme could reduce the 

width of ensemble spread, which is expressed as the uncertainty, in the flood 

forecasting. From these results, the bias correction by error-field scheme added to 

each ensemble member appears to significantly enhance the ensemble’s utility and 

provide a more effective way than the QPF location correction by transposition 

scheme for accuracy improvement in rainfall and flood forecasting areas. 
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Chapter 8 

 

Concluding Remarks 

 

This study discussed high-resolution ensemble information mainly from 

numerical weather prediction (NWP) model based forecast and partly from radar 

based forecast for the application of real-time flood forecasting with a distributed 

hydrologic model. This study mainly consists of three parts: 

 

1) Investigation of the applicability of ensemble forecasts of numerical weather 

prediction (NWP) model for flood forecasting area. 

 

2) Assessment of the uncertainty propagation of rainfall forecast into 

hydrological response with catchment scale through distributed rainfall-runoff 

modeling based on the forecasted ensemble results of numerical weather prediction 

(NWP) model. 

 

3) Development of the real-time flood forecasting for the accuracy improvement 

based on the QPF location correction and quantitative bias correction using the 

transposition scheme and error field scheme, respectively, in viewpoint of the hybrid 

forecast. 

 

From these main objectives, acquired results are provided as follows: 

 

In Chapter 3, Ensemble rainfall from numerical weather prediction (NWP) model 

with 30hr forecast time and 2 km horizontal resolution are verified temporally and 

spatially to assess whether they can produce suitable rainfall predictions or not 

during the Typhoon Talas event. Then flood forecasting is carried out over the two 
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catchments, which are Futatsuno (356.1 km
2
) and Nanairo (182.1 km

2
) dam 

catchments of Shingu river basin, located in Kii Peninsula of the Kinki area, Japan. 

The results show that although ensemble rainfall could catch the rainfall pattern and 

produced more suitable results compared with deterministic control run, the 

uncertainty of ensemble NWP rainfall was also significant at longer lead times. 

Flood forecasts driven by ensemble outputs showed that in general it has a large 

proportion of under and over predictions at short lead times and exhibited a negative 

bias at longer lead times. Despite the deficient performance for longer lead times, it 

was shown that the ensemble flood forecast provides additional information to the 

deterministic forecast. 

 

In Chapter 4, the uncertainty propagation of rainfall forecast into hydrological 

response with catchment scale through distributed rainfall-runoff modeling based on 

the forecasted results of Chapter 3 was investigated. The results show the fact that 

uncertainty variability occurs sensitively and diversely at the same time in different 

catchments, and small catchments have sensitive variability of uncertainty. Therefore, 

it should be careful in case of flood forecasting in small catchment due to the large 

variability of uncertainty.  

 

Chapter 5 proposes pre-processing methodologies based on appropriate members 

and a transposition scheme of ensemble forecast outputs from numerical weather 

prediction (NWP) model for the accuracy improvement of flood forecasting in the 

Futatsuno and the Nanairo dam catchments. First, the selection of appropriate 

members is investigated by comparison of spatial distributions between observed 

radar rainfall and forecasted ensemble rainfall. And selected ensemble information is 

applied into the next forecast period to assess the accuracy improvement of flood 

forecasting. Second, as an approach for the accuracy improvement of the flood 

forecasting, transposition method, which is spatial shift of ensemble rainfall 

distributions considering the correction of misplaced predicted rainfall distributions, 
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is introduced. Finally, above two methods are integrated in order to use advantages of 

characteristics of each method at the same time and apply into the next forecast 

period to confirm the accuracy improvement of the flood forecast skill. The results 

show that, in the flood forecast using selected ensemble members, this method can 

improve the accuracy of the mean value with conserving the best value between the 

original and selected ensemble members over two catchments. And the ensemble 

flood forecasting using transposition of NWP rainfall fields produced better results 

than the original and selected ensemble members, in terms of the best values of flood 

forecast skill in all periods over the two catchments. Finally, the integration of the 

selected and transposition methods recovered the accuracy of the mean values for 

two periods over the Nanairo catchment, compared with the use of the transposition 

method alone, although the mean values from using the selected ensemble method 

have outstanding accuracy. 

 

Chapter 6 aimed to enhance the transposition method proposed in Chapter 5 and 

to propose newly real-time updating method for flood forecasting using transposition 

of ensemble rainfall distributions considering orographic rainfall. At first, ensemble 

forecast rainfalls from NWP model are separated into orographic and non-orographic 

rainfall fields using atmospheric variables of GPV data and the extraction of 

topography effect. Then the non-orographic rainfall fields are shifted by the 

transposition scheme to produce additional ensemble information. And newly 

ensemble rainfall fields are calculated by recombining the transposition results of 

non-orographic rainfall fields with separated orographic rainfall. Then the additional 

ensemble information is applied into hydrologic model for post-flood forecasting 

with 6 hours interval. The results show that the newly proposed method for real-time 

updating for flood forecasting could enhance the under-predicted part of original 

ensemble flood forecast and improve the accuracy of post-flood forecasting with 6 

hours updating interval. However, the transposition scheme focuses on QPF location 

error correction considering the orographic rainfall but not predicted bias correction, 
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which is quantitative correction using the difference between observed and predicted 

rainfall. For this reason, it is possible to be vulnerable when forecasted rainfall 

intensity is under-predicted and suitable spatial distribution fails compared with 

observed reference data. Therefore, bias correction and/or hybrid products with radar 

based prediction are required to be more reliable hydrologic prediction. 

 

Chapter 7 attempted to improve the accuracy of rainfall and flood forecasting 

with blending the advantages of ensemble information of NWP rainfall forecast and 

radar based prediction in viewpoint of the hybrid forecast. For this objective, 

improved radar based image extrapolation was implemented with consideration of 

orographic rainfall identification and the error fields, and ensemble NWP rainfall 

with 30 hours forecast time were also updated using error field scheme and 

transposition scheme. Finally, updated NWP rainfall and improved radar prediction 

are blended with time-varying weights through CSI and RMSE, then the proposed 

blending method is verified through 2011 largest rainfall event and is applied into the 

hybrid flood forecasting on two sub-catchments. The results show that the 

improvement achieved by merging the radar prediction with the updated NWP 

rainfall becomes more appreciable as the rainfall forecasts advance in lead time and 

the rainfall intensities become higher in case of both the error field scheme and the 

transposition scheme. And hybrid flood forecasting with combination of blending 

and updated NWP rainfall by error field scheme and by transposition scheme could 

improve the under-predicted part of original ensemble NWP rainfall in rising limb 

and peak discharge period over the two catchments.  

 

The newly proposed method based on bias correction shows sufficient 

reproducibility in peak discharge value compared with the result based on QPF 

location correction in updated flood forecasting, whereas the blending based on 

transposition scheme could reduce the width of ensemble spread, which is expressed 

as the uncertainty, in the flood forecasting. From these results, the bias correction by 
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error field scheme added to each ensemble member appears to significantly enhance 

the ensemble’s utility and provided a more effective way than the QPF location 

correction by transposition scheme for accuracy improvement in rainfall and flood 

forecasting areas. 
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