
Numerical Optimization Methods

based on Discrete Structure for

Text Summarization and Relational Learning

Masaaki Nishino

Department of Intelligence Science and Technology

Graduate School of Informatics

Kyoto University

Doctoral dissertation, 2014

Contents

1 Introduction 1
1.1 Numerical Optimization for Natural Language Processing and Ma-

chine Learning . 1

1.2 Optimization Algorithm based on Discrete-Structure-based De-

composition . 3

1.3 Text Summarization and Relational Learning 4

1.4 The Outline of this Thesis . 5

2 Lagrangian Relaxation for Scalable Text Summarization while Maxi-
mizing Multiple Objectives 14
2.1 Text Summarization as a Combinatorial

Optimization Problem . 14

2.2 An Objective Function for Text Summarization 17

2.2.1 Relevance Score . 18

2.2.2 Redundancy Score . 19

2.2.3 Coverage Score . 20

2.2.4 ILP Formulation . 22

2.3 Lagrangian Relaxation . 23

2.3.1 Maximizing the Relevance Score 25

2.3.2 Maximizing the Redundancy Score 26

2.3.3 Maximizing the Coverage Score 28

1

2.4 Evaluation . 28

2.4.1 Settings . 28

2.4.2 Results and Discussions . 30

2.5 Related Work . 32

2.6 Chapter Summary . 34

3 A Sparse Parameter Learning Method for Probabilistic Logic Pro-
grams 35
3.1 Parameter Estimation for Probabilistic

Logic Program . 36

3.2 Preliminaries . 37

3.3 Parameter Learning . 39

3.3.1 Motivating Examples . 39

3.3.2 Learning Algorithm . 40

3.3.3 Projected Gradient Algorithm 42

3.3.4 Computation of gradient . 44

3.4 Discussion . 46

3.5 Evaluation . 47

3.5.1 Settings . 47

3.5.2 Results . 49

3.6 Related Work . 51

3.7 Chapter Summary . 52

4 Accelerating Graph Adjacency Matrix Multiplications with Adjacency
Forest 54
4.1 Adjacency Matrix Multiplications in

Data Analysis . 54

4.2 Motivating Use Cases . 56

4.2.1 Personalized PageRank . 57

4.2.2 Non-negative Matrix Factorization 58

2

4.3 Adjacency Forest . 58

4.3.1 Single Tree Adjacency Forest 59

4.3.2 Matrix Multiplication with a STAF 61

4.3.3 Properties of the Matrix Multiplication Algorithm 63

4.3.4 General Adjacency Forest 64

4.4 Reduce Size of Adjacency Forest . 68

4.5 Evaluation . 69

4.5.1 Settings . 69

4.5.2 Results . 71

4.6 Related Work . 75

4.7 Chapter Summary . 77

5 Conclusion 79
5.1 Summary of the Results . 79

5.2 Future Research Directions . 81

3

List of Tables

2.1 2 × 2 contingency table . 20

2.2 ROUGE scores of the DUC 2004 dataset. We use bold font when

the ROUGE score is significantly different from CLASSY 30

2.3 Comparison of ILP and LR: objective function value and compu-

tation time. The numbers in parenthesis are standard deviations. . . 30

3.1 Negative Log-Likelihood (lower is better) and the number of prob-

abilistic parameters contained on the WebKB learning experiment. 49

4.1 Preprocessing time with different m. 71

4

List of Figures

2.1 The relation between the number of iterations and objective values

for the DUC’04 dataset. 31

3.1 Shape of the penalty term h(w), where N = 1 and ε = 0.001. 42

3.2 Negative log-likelihood for different λ. 50

3.3 The number of estimated probabilistic parameters for different λ. . 50

3.4 KL divergence on Smokers dataset with different numbers of evi-

dences. 51

4.1 (a) Example matrix, and (b) a STAF that represents the matrix. . . 60

4.2 Example of adjacency forest representing the matrix in Fig. 4.1 (a). 66

4.3 Two STAFs that represent sub-matrices (4.1) and (4.2). 66

4.4 Comparison of computation times needed for computing PPR. . . . 72

4.5 Compression ratio with different m. 73

4.6 Comparison of computation times needed for NMF. 74

4.7 Used heap memories. 75

4.8 Relation between similarities (Jaccard coefficient) of rows and

compression ratio. 76

5

Abstract

Numerical optimization problems have an important role in natural language

processing (NLP) and many machine learning (ML) tasks, which are accom-

plished by first making a mathematical model, and then solving certain optimiza-

tion problems based on the developed model. The difficulty in solving a numerical

optimization problem affects the efficiency of a task, and it is therefore important

to design a model such that it can formalize the task well, thereby making the op-

timization problem easy to solve. In this thesis, we propose novel numerical op-

timization methods for text summarization and relational learning, both of which

are typical ML and NLP tasks that can be solved using numerical optimization

methods. The key point to our methods is exploiting the discrete structure in-

herent to the problem domains for decomposing them into small subproblems.

This approach has two merits. The first merit is efficiency, i.e., we can use a

discrete structure inherent to a problem by decomposing the problem into small

subproblems, thereby solving the original problem efficiently. The second merit is

flexibility in the design of the optimization problems. We have to be careful when

making a new optimization problem for a given NLP or ML task because an easy

problem may become a far more difficult problem if we extend it by adding new

constraints or objectives. Our technique is flexible from the viewpoint that it can

extend existing optimization problems without making the new problem difficult

to solve. In the thesis, we treat three different tasks for text summarization and

relational learning, and present a concrete optimization method for each of them.

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Prof. Aki-

hiro Yamamoto. His helpful advice and our extensive discussions were indispens-

able to this study. I would also like to state my appreciation to the committee

members, Prof. Tatsuya Akutsu and Prof. Sadao Kurohashi, for reviewing this

thesis and for their insightful comments.

In addition, I would like to express my gratitude to co-authors, Dr. Norihito

Yasuda, Dr. Tsutomu Hirao, Dr. Jun Suzuki, Prof. Shin-ichi Minato, Prof. Toru

Kobayashi, Dr. Masaaki Nagata, and Mr. Ryoji Kataoka. The knowledge I have

learned from them through our collaborations has greatly helped my research. In

particular, I would like to thank Dr. Yasuda for his extensive contribution.

I would also like to give a special thanks to the members of NTT Cyber Solu-

tions laboratories, NTT Communication Science laboratories, the JST ERATO

Minato discrete structure manipulation systems project, and Yamamoto-Cuturi

laboratory for their useful comments regarding my research.

Finally, I would like to thank my family, including my parents Hatsuhide and

Toshie, my parents-in-law Syozo Yokose and Hideko Yokose, my wife Junko, and

my daughter Ena, for supporting me in my research. In particular, Junko allowed

me to be fully engaged in my research and consistently offered her encourage-

ment. I would like to dedicate this thesis to her.

Chapter 1

Introduction

1.1 Numerical Optimization for Natural Language

Processing and Machine Learning

Numerical optimization problems appear in many tasks of natural language pro-

cessing (NLP) and machine learning (ML), and have important roles in these ar-

eas. For example, parameter estimation, a fundamental task of ML, is solved as

a numerical optimization problem of finding appropriate parameter values of a

mathematical model that maximize the score function given the training data. An-

other example is translating an input document from one language into another

language using a statistical method, which can be solved as a combinatorial opti-

mization problem.

We have to note that such tasks are not numerical optimizations on their own;

we accomplish these tasks by first designing a representative mathematical model,

and then solving the optimization problems based on this designed model. Sup-

pose that, for example, we want to design a machine translation system. Gen-

erating a translation of an input document is not itself solving an optimization

problem. We first design a mathematical model for the translation, and using this

1

model, we derive combinatorial optimization problems. By solving these prob-

lems, we can obtain a translation as a result.

The difficulty in solving a numerical optimization problem depends heavily

on the problem itself. Some problems can be solved exactly in an amount of time

linear to the input size, whereas other problems may take an exponential amount

of time compared to the size. Hence, designing a model that can describe a task

well while simplifying the optimization problem is important for the ML and NLP

tasks that we want to accomplish. For example, a parameter estimation of a lin-

ear regression model can be modeled as the problem of estimating the parameters

that minimize prediction errors using training examples. We have some freedom

on how to measure the prediction errors. However, if we use a sum-of-squares

error, the score function becomes continuous and convex, and we can solve the

minimization problem analytically. Another example is a sequence labeling prob-

lem, which is a fundamental NLP problem. A Hidden Markov Model (HMM)

[70] or Conditional Random Field (CRF) [50] can be used to solve this problem.

Using these models, the task of finding a sequence of labels that maximizes the

log-likelihood score, i.e., an optimal solution, can be easily solved using a dy-

namic programming algorithm. As we show through the above examples, making

a model that results in an easy optimization problem is important.

As research in ML and NLP progresses, the methods developed in these fields

have started to be applied to a variety of complex problems, such as the mod-

eling of complex networks [34]. Since the optimization problems appearing in

these complex problems have tended to become difficult, optimization algorithms

that can solve the problems in an efficient manner are in strong demand. An-

other direction of research in ML and NLP is to extend existing mathematical

models by adding new constraints to them. One of the most important extensions

is a parameter estimation using ℓ1 regularization [80, 15], which sets additional

penalties defined as the ℓ1 norm of parameters. This extension can help us obtain

sparse parameters. Extending a model by adding new constraints can also make

2

an optimization problem difficult. As a ℓ1 regularization case, we can optimize

a differentiable convex function using its gradients, but if we add a factor that is

not differentiable, we cannot optimize the new function using the gradient descent

method. We therefore have to take care in designing an extended model.

1.2 Optimization Algorithm based on Discrete-Structure-

based Decomposition

In this thesis, we show new approaches for optimization problems that appear in

ML and NLP tasks. Our approaches have the following two features:

1. exploiting the discrete structure inherent in the problem domain, and

2. decomposing a complex problem into easy-to-solve subproblems.

We have two objectives for using these features. The first objective is effi-

ciency. Many ML and NLP tasks are founded on a discrete structure, even if the

optimization problem related to the task is not a discrete or combinatorial opti-

mization problem. If we can use a discrete structure, we can efficiently solve an

optimization problem. For example, the sequential labeling problem mentioned

above is founded on the sequence structure, and we can therefore apply dynamic

programming. The algorithm exploits the sequential structure of the problem do-

main. Unfortunately, the discrete structure is simply a component in a complex

optimization problem, and we cannot directly exploit the structure. Decomposing

a problem into subproblems enables subproblems to be extracted, allowing a dis-

crete structure to be used more efficiently. The second objective is flexibility in

designing optimization problems. This is especially useful for designing new op-

timization problems by extending existing problems. As we previously showed,

we have to take care when making a new optimization problem for NLP or ML

tasks because an easy problem quickly becomes difficult if we extend it by adding

3

new properties. Our discrete structure-based decomposition method can extend

the existing optimization algorithms that exploit a discrete structure. We decom-

pose an extended complex problem into subproblems, some of which can exploit

a discrete structure, and others can represent extensions. This method enables us

to use a discrete structure efficiently, and the extended problem becomes easy to

solve.

Both features, i.e., using a discrete structure and decomposing a problem into

subproblems, are by themselves very standard approaches taken for solving prob-

lems in computer science. Decomposing a problem into subproblems is a par-

ticular standard approach for optimization, and has recently been used in dual

decomposition [73, 8, 72] and proximal gradient approaches [68, 17, 18]. In these

approaches, a problem is decomposed into simple subproblems, and is solved

by solving its subproblems either iteratively or in parallel. However, such de-

composition techniques require skill in designing an effective decomposition of

a problem because a suitable decomposition depends strongly on the problem.

One of our contributions is to combine discrete structures into these decompos-

ing frameworks that have not been used in previous approaches. Using these

decomposition-based approaches can broaden the range of solvable problems.

1.3 Text Summarization and Relational Learning

In the following chapters, we treat three concrete tasks and propose new optimiza-

tion algorithms for each. The first task, treated in Chapter 2 is text summariza-

tion, which is an NLP task of generating concise summaries of input documents.

The latter two tasks are foundations for relational learning as well as NLP. Rela-

tional learning means the class of ML tasks that deals with complex relationships

between entities. For example, analysis of the structure of large networks, link

prediction, and classification of nodes based on network structure are typical rela-

tional learning tasks near to various applications. The tasks we treat in this thesis

4

are to be foundations of these complex tasks. We treat two fundamental tasks

useful for relational learning.

In Chapter 2, we treat r summarizing multiple documents. Both in Chapter

3 and 4, we deal with relational learning tasks. The task treated in Chapter 3 is

parameter learning for the probabilistic logic programming (PLP) model. PLP is

a kind of statistical relational learning model [34] that is used for analyzing rela-

tionships between entities. Chapter 4 is for accelerating repeated multiplication of

adjacent matrices, which are used in the computation of the Personalized PageR-

ank (PPR) and Non-negative Matrix Factorization (NMF), both of which are used

for unsupervised learning in analyzing network structure or relationships between

entities.

1.4 The Outline of this Thesis

We briefly introduce these concrete algorithms we will propose in the following

chapters.

Text Summarization as a Combinatorial Optimization Problem with Multi-
ple Objectives The first method we describe in Chapter 2 is for text summariza-

tion. Text summarization is an NLP task for automatically generating a summary

from a given set of documents. Text summarization is very useful and has many

practical applications such as generating snippets [57], short fragments of a Web

page that are used in most of commercial search engines. There are two main

methods for text summarization: extractive methods and abstractive methods. Us-

ing extractive methods, a summary is drafted by extracting appropriate textual

components from the given documents. In other words, such methods regard

text summarization as solving the problem of extracting an appropriate subset of

given input documents. The problem is formulated as a combinatorial optimiza-

tion problem since we use discrete textual components such as sentences, phrases,

5

or words as the elemental textual units that compose a document. We solve this

problem with a constraint in which the size (e.g., number of words contained in

a subset) of a feasible solution is smaller than the given capacity. Abstractive

methods generate a summary by generating concise texts that cover information

contained in the original summary. This is much more difficult than an extractive

method, and therefore extractive methods are currently receiving greater attention.

For obtaining a good summary in extractive summarization, we have to design

an appropriate score function that measures the quality of a summary. In design-

ing a score function, we have to consider the trade-off between the difficulty of

the optimization problem and the quality of the summary. If we design a score by

setting the weights for each textual unit and defining the score of a summary as the

sum of weights of the selected textual units, we can then maximize the score by

solving a 0-1 knapsack problem. A 0-1 knapsack problem can be exactly solved in

pseudo polynomial time if we exploit a dynamic programming algorithm. How-

ever, the quality of the obtained summaries may not be high since the score does

not consider the redundancy in a summary. More precisely, if there are two textual

units that have large weights but are very similar, a summary containing both of

them is then given a high score. However, the two units are obviously redundant

as a summary, and a summary containing only one of them may be more concise

and informative. Hence, in previous works, objective functions were designed to

avoid redundancy. For example, Filatova and Hatzivassiloglou [33] designed an

objective function by formulating it as a maximum coverage problem. In this for-

mulation, each textual unit is regarded as a set of conceptual units, and the score

of a summary is defined as the summary of weights of conceptual units contained

in the summary. Since redundant conceptual units are counted only once, this

formulation can avoid a high score for redundant summaries. However, differing

from the 0-1 knapsack problem, the objective function cannot be maximized using

a dynamic programming algorithm. The maximization problem becomes difficult,

and we have to resort to using certain heuristic algorithms such as a greedy search

6

algorithm [33], or formulate the problem as an integer linear programming (ILP)

problem and solve it using an ILP solver [78]. This research shows that the trade-

off between the expressive power of an objective function and the difficulty of

obtaining an optimal solution makes it difficult to design an appropriate objec-

tive function that has sufficient representing power and can make the optimization

problem easy to solve.

We propose a new scheme for designing an objective function for an extractive

summarization. We make an objective function as the sum of objective functions,

each of which represents a different aspect of a desirable summary. Our scheme

is based on an efficient optimization scheme called Lagrangian relaxation [13].

By exploiting a Lagrangian relaxation, we can solve an optimization problem by

repeating two steps: (i) individually solving each sub-problem, and (ii) combining

the solutions of the sub-problems to update the solution to the original problem.

We formulate three different aspects of a text summarization problem into differ-

ent small optimization problems, where each problem can be solved exactly using

a DP algorithm, or approximately using techniques for submodular function maxi-

mization [55, 56]. Our proposed method runs much faster compared with an exact

algorithm that uses a commercial ILP solver, and returns high-quality summaries

compared with previous approximate summarization algorithms.

Learning Parameters of Probabilistic Logic Programs with Knowledge Com-
pilation The second algorithm we propose in Chapter 3 is for parameter learn-

ing in probabilistic logic program (PLP) models. In artificial intelligence research,

mathematical logic has been used for a long time as an important language for de-

scribing knowledge inherent to problem domains, and as a tool for conducting

inferences. Although mathematical logic can describe the knowledge inherent in

the target domain in a precise manner, it cannot handle the inherent uncertainty.

In contrast, statistical models such as probabilistic graphical models [48] can han-

dle uncertainty, and are widely used in many ML and NLP tasks. However, since

7

these models can describe relationships only at the propositional level, they are

unsuitable for describing complex relationships.

PLP models are extensions of first-order logic programs that can handle prob-

abilistic distributions. Because they are also statistical models, they have both the

descriptive power of first-order logic and the ability to perform probabilistic in-

ference. As statistical models, PLP models can be regarded for use in statistical

relational learning [34], and many PLP models have been proposed. Stochastic

Logic Programs (SLP) [62], Independent Choice Logic (ICL) [69], PRISM [75],

and ProbLog [28] are popular PLP models. Many of them owe their theoretical

background to Sato’s distribution semantics, which is the semantics of first-order

logic programs that defines the probabilistic distribution in a possible world [74].

PLP models are used in applications that require the handling of both relation-

ships between elements existing in the target domain and uncertainty, such as in

link prediction problems or temporal component analysis.

As with other statistical models used in ML tasks, designing an efficient learn-

ing algorithm for PLP models is important since we can apply a PLP model to var-

ious applications if efficient learning algorithms are provided for the model. Many

learning algorithms have also been proposed for PLP models [38, 75, 22]. Similar

to general parameter estimation problems for statistical models, a parameter es-

timation problem for PLP models can be formulated as a numerical optimization

problem. These algorithms tend to solve more complex optimization problems

compared with those for ordinal statistical models, since PLP models tend to have

a complex and discrete structure. Such a complex structure is a byproduct of

the high descriptive power of PLP models, and we therefore have to design more

efficient algorithms to make PLP models applicable to complex problems.

Previous approaches for the parameter estimation problem of PLP models take

either of the following two approaches. The first approach is to maximize an ap-

proximate objective function to make the optimization problem much easier. For

example, Domingos and Lowd [30] proposed a parameter estimation algorithm

8

for Markov logic network models. They estimate the parameters by maximizing

a pseudo negative log-likelihood function instead of a log-likelihood function.

The second approach is to use the discrete structure of a logic program. The

computation of the likelihood of a PLP model based on Sato’s distribution seman-

tics requires all possible interpretations of facts consistent with the given training

examples to be found. This process is known to be #P-complete, which makes the

computation of log-likelihood intractable. The parameter learning algorithm for

the ProbLog model proposed by Gutmann et al. [38] tackles this problem by ex-

ploiting the discrete structure of logic programs by representing the set of possible

interpretations using a Binary Decision Diagram (BDD) [9], a data structure that

represents a Boolean function as a directed acyclic graph. To represent an n-ary

Boolean function using a truth table, the number of entries of the table becomes

2n. In contrast, if we use a BDD to represent the same function, we can represent

it as a DAG whose number of nodes is far smaller than 2n. Gutmann et al. use

a BDD to represent the set of all possible interpretations of a ProbLog program,

and use its structure to perform the Expectation-Maximization (EM) algorithm to

estimate the parameters of a ProbLog program. Using a BDD, we can compute

the log-likelihood in an amount of time proportional to the size of the BDD repre-

senting all possible interpretations. Although the size of a BDD strongly depends

on the Boolean function, in a general case, we can speed up the parameter learning

algorithm using a BDD.

Our parameter estimation algorithm for a PLP model takes the later approach,

and uses the decomposable, deterministic negation normal form, (d-DNNF) [25],

which is a kind of compiled knowledge representation similar to a BDD. A com-

piled knowledge representation is a kind of knowledge representation that is more

suitable for processing. For example, the first-order logic is suitable for represent-

ing knowledge inherent to the problem domain; however, when we directly use

knowledge represented by a set of first-order clauses, it may take time to obtain

the required results. We therefore convert the set into another form that is more

9

suitable for the computation. A BDD is one of the most frequently used represen-

tation forms of compiled knowledge since it can represent a Boolean function as

a compact DAG, and can efficiently perform some important Boolean operations

such as AND, OR, and XOR between Boolean functions represented by BDDs.

The d-DNNF is a subclass of a negation normal form (NNF) [25], and is also a

popular compiled knowledge representation. A NNF also takes the form of a DAG

and represents a Boolean function.

The difference between our proposed algorithm and previous parameter learn-

ing methods is that our algorithm can impose sparsity on the solutions. Using a

compiled knowledge representation, we can reduce the computational costs re-

quired for performing inference with a PLP model such as ProbLog. However,

the amount of computational time increases with the number of probabilistic pa-

rameters used in the program. As a worst case, it can become exponential to the

number of parameters. Hence, PLP models with a smaller number of parameters

are preferable. Our algorithm uses both a penalty term and a projected gradient

algorithm [5] to learn a PLP model that has a smaller number of probabilistic

parameters. Compiled knowledge is useful, but is inflexible in the sense that it

is only efficient if we also perform certain predefined operations. The previous

BDD-based approach is useful but only allows the EM algorithm to be performed

with it, and we cannot optimize an objective function that has a penalty term. We

therefore provide a new projection gradient algorithm that can exploit the struc-

ture of a logic program, and can optimize a penalty-added objective function.

A projection gradient algorithm is an iterative algorithm for solving numerical

optimization problems under the constraint in which feasible solutions must be

contained in a given convex set. The algorithm solves this type of optimization

problem by iteratively performing both a gradient descent and projection into the

convex set.

The main contribution of our algorithm is to show a new way of using a com-

piled knowledge representation to perform a projection gradient algorithm. Pre-

10

vious parameter learning algorithms used an EM algorithm or gradient projection

algorithm for optimization. In contrast, our projection gradient formulation en-

ables a flexible optimization problem that can reflect additional requirements for

a PLP model.

Accelerating Repeated Matrix Multiplications using Compressed Sparse Ma-
trix Representation In Chapter 4, we show another algorithm for numerical op-

timization problems appearing in relational learning tasks. Differing from the two

previous algorithms, the new algorithm focuses on solving only an optimization

problem, and is not concerned with designing a model. We deal with optimization

problems that can be solved using repeated matrix multiplications with an adja-

cency matrix. Many important ML algorithms that handle relationships between

objects can be solved in this way. For example, PageRank [67], one of the most

popular algorithms for ranking the nodes of a directed graph, is implemented us-

ing a power iteration method, i.e., iteratively performing matrix multiplications

between the adjacency matrix of the graph and a vector. Non-negative matrix fac-

torization (NMF) [51] is another important example that exploits repeated matrix

multiplications. NMF is an algorithm for factorizing a data matrix into two small

matrices, using the property in which all three matrices have no negative elements.

NMF is widely used for analyzing the relationships inherent in a dataset repre-

sented in a matrix form. If the target matrix is small, these matrix-multiplication

based algorithms are generally not slow because a matrix multiplication can be

efficiently performed. However, these algorithms tend to be applied to large ma-

trices, and as the size of the matrix begins to increase, these matrix-multiplication

based algorithms begin to require additional time.

To accelerate repeated matrix multiplications, we propose a new data struc-

ture, called an adjacency forest, which is used for representing an adjacency ma-

trix. Similar with the two previous approaches, in decomposing the problem, an

adjacency forest also exploits the problem’s inherently discrete structure. An ad-

11

jacency forest is a data structure that represents a matrix as a set of trees. Each

tree represents a component of the adjacency matrix, and can represent the com-

ponent as a compact tree made by sharing equivalent non-zero elements within

the component. Using an adjacency forest, we can perform multiplication be-

tween matrices with a number of scalar operations proportional to the size of the

adjacency forest. If we can reduce the size of an adjacency forest to much smaller

than the number of non-zero elements inherent in the matrix, we can reduce the

number of scalar operations and speed up the optimization problems.

Efficient algorithms specialized for NMF or PageRank have been proposed [44,

43, 52]. These algorithms use the characteristic features of each problem. Our ad-

jacency forest is a general approach because it can be used for applications that re-

quire repeated matrix multiplications. Fast matrix multiplication algorithms have

also been proposed [20, 85]. These algorithms assume that the matrices are dense.

Our adjacency forest may be faster than these matrix multiplication algorithms

when the matrix is sparse.

Since an adjacency forest can be seen as a kind of Zero-suppressed Binary

Decision Diagram (ZDD) [60], we can state that an adjacency forest is also a kind

of compiled knowledge representation. ZDD is a variant of a BDD, and represents

a family of sets as a DAG that is very close to a BDD. The difference between a

ZDD and BDD is that a ZDD can represent a sparse family of sets in a very

concise form, where we consider a family of sets as sparse if the size of every set

contained in the family of sets is small compared with its base. If we represent

an adjacency matrix as a family of sets, and represent the set as a ZDD, then the

ZDD becomes an adjacency forest.

We next describe the above three algorithms for three concrete ML and NLP

tasks. These algorithms were designed for concrete tasks. However, the main

motivation of our work is not focused on showing the concrete algorithms for these

problems. Rather, we propose a new optimization framework that can exploit the

discrete structure inherent to the problem domain. Each of the three methods is

12

flexible in the sense that it can be applied to different optimization problems with

small modifications.

13

Chapter 2

Lagrangian Relaxation for Scalable
Text Summarization while
Maximizing Multiple Objectives

In this chapter, we propose a text summarization algorithm. A text summarization

problem can be seen as a combinatorial optimization problem of selecting the sub-

set of given document. Our optimization algorithm can We use discrete structure

of documents to efficiently solve the optimization problem whose score function

is composed as a combination of multiple objective functions. Most part of the

contents in this chapter comes from [65].

2.1 Text Summarization as a Combinatorial

Optimization Problem

Automatic text summarization is the task of generating a concise summary from

given documents. To make high quality summaries, it is important to define ap-

propriate measures with which we can evaluate summary quality. For example,

14

the contained words and the positions of textual units in the documents are widely

used for measuring summary quality. Upon securing appropriate measures, we

can obtain good summaries merely by solving an optimization problem of select-

ing textual units that maximize these measures under some constraint on summary

length.

Previous work on multi-document summarization can be divided into two cat-

egories: The first category covers methods based on the maximization of rele-

vance and the minimization of redundancy [12, 36, 58, 78]; the other one cov-

ers graph-based methods [31, 79]. The former approach makes a summary by

solving an combinatorial optimization problem of simultaneously maximizing the

relevance and minimizing the redundancy of the summary, where relevance is de-

termined by how much important information the summary contains, and redun-

dancy is determined by how duplicative the contents of the summary are. Graph-

based methods first construct a graph by regarding each textual unit in the given

documents as a vertex and create edges between vertices to construct a graph; they

then treat text summarization as the graph cut problem of maximizing an objective

score.

Maximization of relevance and minimization of redundancy based methods

offer a simple and powerful approach for approximately measuring how well a

summary covers all given documents; however, measuring redundancy accurately

is a subtle problem. In the human-generated summaries of the document un-

derstanding conference 2004 (DUC’04) multi-document summarization dataset,

about 20% of the words contained in each summary are used more than twice.

This implies that human-generated summaries tend to contain redundant contents

to some extent, and severely limiting the redundancy of a summary may degrade

its quality. Though it is clear that we need to control summary redundancy, decid-

ing how strictly it must be limited is a difficult problem.

On the other hand, graph-based methods have the advantage that they can

directly consider the coverage of the summary, i.e. how well a summary covers

15

all topics contained in the original documents, because they directly represent

the covering relationships between textual units. Since the original documents

generally contain multiple topics, it is meaningful to consider summary coverage

when selecting sentences. Though graph-based methods do not explicitly consider

summary redundancy, they eventually yield less-redundant summaries since they

select sentences so as to cover all topics in the documents. In other words, they

provide implicit control of redundancy, which is not provided by the relevance and

redundancy based methods. However, implicit control does not always work well,

especially when the topics of the documents are biased. If multiple sentences on

the dominant topic are selected, the summary will offer high coverage but be quite

redundant.

To improve summary quality by countering the weaknesses of the above meth-

ods, we set up an objective function that combines the relevance and redundancy

based formulation with the graph-based approach. For the relevance and redun-

dancy based approach, our method introduces a graph-based objective to soften

the impact of severely limiting redundancy. For the graph-based approach, our

method provides a way of evaluating summary redundancy.

We can obtain the exact solution by formulating it as an integer linear pro-

gramming (ILP) and solving it. However, this optimization problem is known to

be NP-hard and we cannot solve it in feasible time if the problem size is large. If

we want to use automatic summarization in applications that demand immediate

responses, such as information retrieval, ILP is not suitable. We thus further pro-

pose a fast approximation method for solving the maximization problem of our

objective function. Our solution is a fast and high quality optimization heuristic

based on the use of Lagrangian relaxation (LR). Lagrangian relaxation is widely

used in the combinatorial optimization field. It makes it possible to solve a com-

plex combinatorial optimization problem by dividing it into sub-problems, each

of which is solved individually. Recently, it has been applied to some natural lan-

guage tasks such as parsing [73] and machine translation [13]. Our Lagrangian

16

relaxation based method runs much faster than ILP solvers, while returning high-

quality approximate solutions.

The contributions of this chapter are summarized as follows:

• We formulate multi-document summarization as the optimization problem

of maximizing three objectives, relevance, redundancy, and coverage.

• We introduce heuristics for solving the problem by using Lagrangian re-

laxation; the original problem is divided into sub-problems, solving each

sub-problem independently, and then finding the best match of all solutions.

• We use the DUC’04 summarization dataset to challenge our proposal. Our

LR-based method yields higher ROUGE scores while running in feasible

computation time.

We introduce our objective function and its ILP formulation in Section 2.2.

Our LR-based heuristics are detailed in 2.3. We describe the experiments and

their results in Section 2.4 and related work in Section 2.5. Finally, we give the

summary of this chapter in Section 2.6.

2.2 An Objective Function for Text Summarization

We formalize the text summarization problem as the optimization problem of

maximizing an objective function that measures summary quality. We formal-

ize our objective function by combining McDonald’s formulation [58], a typical

formulation of relevance and redundancy based formulation, with the graph-based

one that measures the coverage of a summary. Hence we use the three objectives

of relevance, redundancy, and coverage.

Relevance We define relevance as the quality of the information contained in the

generated summaries. A summary is relevant if it has a lot of information

relevant to the topics of the original documents.

17

Redundancy Redundancy measures how redundant the topics that a summary

contains are. Since generally a summary cannot contain all relevant infor-

mation in the documents, by minimizing redundancy we can make a sum-

mary to cover many topics and so improve its quality.

Coverage Ideally, a summary should be as informative as the original documents,

hence its information coverage rate is an important measure of summary

quality.

Our method simultaneously maximizes these three objectives.

Before we introduce our formulations, we first describe the notations used in

this chapter. We formalize the text summarization problem as the problem of

extracting sentences from multiple documents. We use D to denote a document

cluster, i.e. a set of multiple documents. We assume that every document con-

tained in D is related to the same topic. A document cluster D is represented as

a set of sentences, i.e. D = {s1, . . . , sN}, where si is the i-th sentence in D, and

N is the number of sentences contained in D. We use D as a set of document

clusters. The input of text summarization problem is a document cluster D, and

the constraint of the maximum total length of summary Lmax; the output is a set

of sentences S, which is a subset of D. In addition to the set notation S ⊆ D, we

also use N -dimensional binary vectors x,y,z ∈ {0,1}N to represent a summary.

If the i-th sentence si is in the summary represented by x, then xi = 1, otherwise

xi = 0.

2.2.1 Relevance Score

We measure the relevance of a summary based on the importance of each sentence

in it, i.e. we define the relevance of a summary as the sum of the relevance scores

of its sentences. We set wi as the relevance score of the i-th sentence si. Then

18

objective function f(x) for summary x becomes

f(x) =
N

∑
i=1

wixi , (2.1)

where xi ∈ {0,1} is a binary variable and xi = 1 if si is in the summary repre-

sented by x, otherwise xi = 0. Following the topic signature [54], a measure used

for extracting relevant sentences, we set the relevance score of a sentence to be

the sum of the logarithm of the χ2 score of the words contained in the sentence,

multiplied by the inverse of the position of the sentence in a document. The χ2

score of word t is defined as follows:

χ2(t) =
O(ODtOD̄t −ODt̄OD̄t̄)

2

OtOt̄ODOD̄

, (2.2)

where ODt is the number of sentences in D that contain t, OD̄t is the number of

sentences in the set D̄ = ∪D′∈D∖DD′ that contain t, ODt̄ is the number of sentences

in D that do not contain t, and OD̄t̄ is the number of sentences in D̄ that do

not contain t. The relationships between these values and Ot, Ot̄, OD, OD̄, O

are described in the contingency table in Tab. 2.1. We set wi as the sum of the

logarithm of the χ2 score of each word in si:

wi =
1

pos(si)
∑
t∈si

log (χ2(t) + 1), (2.3)

where pos(s) is the position of sentence si in a document contained in D; pos(si)

ranges from 1(the first sentence in the document) to the maximum number of sen-

tences in the document. We add 1 to the sum of χ2(t) before taking the logarithm

so as to ensure that wi ≥ 0.

2.2.2 Redundancy Score

We measure the redundancy of a summary by the number of different bigrams

contained in the summary; if there are two summaries of the same length and one

19

D D̄

t ODt OD̄t Ot

t̄ ODt̄ OD̄t̄ Ot̄

OD OD̄ O

Table 2.1: 2 × 2 contingency table

contains fewer different bigrams than the other, it contains redundant bigrams and

thus is the more redundant summary. We set the objective function as

g(y) = ∑
ui∈Γ(y)

biui , (2.4)

where ui ∈ {0,1} is a binary variable and ui = 1 if the i-th bigram is contained in

the summary, otherwise ui = 0. Γ(y) is the set of all unique bigrams contained in

the summary represented by N -dimensional binary vector y. bi is the weight of

the i-th bigram. We set bi as the number of documents containing the i-th bigram,

which is normalized so as the maximum value of the sum of the weight of the

bigrams contained in a sentence is 1.

2.2.3 Coverage Score

For measuring the coverage of a summary, we use the formulation in [79]; they

introduced the asymmetric similarity between every pair of sentences contained

in a document set, and then evaluated a summary by how well the sentences con-

tained in the summary cover the sentences in the document set. This objective is

defined as follows

h(z) =
N

∑
i=1

N

∑
j=1

eijvij , (2.5)

where vij is a binary variable and vij = 1 if the i-th sentence is contained in a

summary z and the j-th sentence is regarded to be “covered” by the i-th sentence.

20

eij is the score for the j-th sentence covered by the i-th sentence. We assume

the following three constraints; (i) a sentence can cover other sentences if it is

contained in the summary, i.e. ∑j vij ≥ 0 if zi = 1, otherwise ∑j vij = 0, (ii) every

sentence must be covered by exactly one sentence, i.e. ∑i vij = 1 for all j, unless

z is an empty set, and (iii) a sentence contained in the summary must be covered

by itself, i.e. vii = zi. With these three constraints, the problem can be regarded as

finding the set of sentences that maximizes the sum of score of covered sentences.

We define score eij as:

eij =
∣S(si) ∩ S(sj)∣

∣S(sj)∣
nj , (2.6)

where S(si) is the set of words contained in si. nj is the weight of sentence si as

defined by

nj =
pos(sj)−1 + cos (sj,∑k sk)

2
, (2.7)

where cos (sj,∑k sk) indicates the cosine similarity between sj and the sum of all

sentences in the documents.

21

2.2.4 ILP Formulation

Combining the above three objectives, we formulate text summarization as a com-

binatorial optimization problem that can be formulated in ILP terms as follows.

maximize f(x) + g(x) + h(x)

=
N

∑
i=1

wixi +
M

∑
i=1

biui +
N

∑
i=1

N

∑
j=1

eijvij (2.8)

subject to
N

∑
i=1

cixi ≤ Lmax (2.9)

∀j ∶
N

∑
i

aijxi ≥ uj (2.10)

∀j ∶
N

∑
i

vij = 1 (2.11)

∀i, j ∶ xi ≥ vij (2.12)

∀i ∶ vii = xi (2.13)

∀i ∶ xi ∈ {0,1}, ∀i ∶ ui ∈ {0,1},∀i, j ∶ vij ∈ {0,1}, (2.14)

where ci is the length of the i-th sentence, M is the number of different bigrams

in D; aij is a binary constant that equals 1 if the i-th sentence contains the j-th

bigram, otherwise aij = 0. Constraint (2.9) ensures that the length of a generated

summary is less than the length limit Lmax. Constraint (2.10) addresses bigram

occurrence and states that ui can take value 1 only if at least one sentence that con-

tains the corresponding bigram is in the summary. This constraint corresponds to

the use of Γ(y) in (2.4). Constraints (2.11) to (2.13) address the covering relation

between sentences. Constraint (2.11) ensures that every sentence should be cov-

ered by one sentence in the summary, and (2.12) states that vij can take value 1

only if the i-th sentence is contained in the summary. Constraint (2.13) ensures

that a sentence is covered by itself if it is contained in the summary. Constraint

(2.14) ensures that xi, ui, vij are binary variables.

With the above ILP formulation and the use of an ILP solver, we can obtain

22

a summary that maximizes the three objectives. Though the above optimization

problem is NP-hard, existing ILP solvers can find the optimal solution in feasible

running time if the size of the problem is small. The running time, unfortunately,

increases exponentially with problem scale, and is impractical if immediate re-

sponses are needed. We therefore introduce in the next section a heuristic that

exploits Lagrangian relaxation to find near optimal solutions in reasonable time.

2.3 Lagrangian Relaxation

Our solution is to use the Lagrangian relaxation technique. Lagrangian relax-

ation (LR) is a popular technique for solving combinatorial optimization prob-

lems. Recently, Lagrangian relaxation has been applied to some NLP tasks, e.g.

dependency parsing [73] and phrase-based models for statistical machine transla-

tion [13].

If we can maximize the previously noted three objectives independently, i.e.

we maximize f(x), g(y), h(z) for independent variables x,y,z, the problem be-

comes easier. Unfortunately, the exact solutions for each problem are usually

different, making the required solution impossible to find. To find agreement for

these three sub-problems we consider the maximization problem

maximize f(x) + g(y) + h(z) (2.15)

subject to x = y = z,x ∈ X ,y ∈ Y,z ∈ Z, (2.16)

where x,y,z are N -dimensional binary vectors and represent summaries. If the

i-th sentence is contained in a summary, corresponding elements of these vectors

take value 1. X ,Y ,Z are sets of all possible summaries that satisfy the corre-

sponding constraints in (2.9) to (2.13), i.e. they are the sets of candidate sum-

maries whose length is less than Lmax. This optimization problem is the same

as the one in Section 2.2.4, and it is still difficult to solve due to the constraints

x = y = z. Lagrangian relaxation solves this problem by relaxing it through the

23

easing of the constraint on the equality of variables by setting the objective as

defining the Lagrangian:

L(λ,µ,x,y,z) = f(x) + g(y) + h(z)

+
N

∑
i=1

(λi(xi − yi) + µi(xi − zi)) , (2.17)

where λi, µi (1 ≤ i ≤ N) are Lagrange multipliers. Lagrangian relaxation involves

minimizing the Lagrangian dual

L(λ,µ) = max
x∈X ,y∈Y,z∈Z

L(λ,µ,x,y,z) (2.18)

= max
x∈X
{f(x) +

N

∑
i=1

(λi + µi)xi}

+ max
y∈Y
{g(y) −

N

∑
i=1

λiyi}

+ max
z∈Z
{h(z) −

N

∑
i=1

µizi}. (2.19)

It is known that Lagrangian dual L(λ,µ) is always larger than the value of the

exact solution of the original problem, and the dual problem is to find

min
λ,µ

L(λ,µ). (2.20)

By solving the dual problem, we can get the tightest upper bound of the exact

solution of the original problem. To solve the dual problem, we can minimize it

by using the subgradient method since L(λ,µ) is a convex function. Since xi−yi,

and xi−zi are subgradients for λi and µi, we can update λ,µ by using subgradient

as

λ
(k)
i = λ

(k−1)
i − δk(x

(k)
i − y

(k)
i), (2.21)

µ
(k)
i = µ

(k−1)
i − δk(x

(k)
i − z

(k)
i), (2.22)

where δk is the step size at the k-th iteration. It is known that for any sequence of

step size δ1, δ2, δ3, . . . such that δk > 0 for k > 1, the above iteration will converge

to the minimum of L(λ,µ) if limk→∞ δk = 0 and ∑∞k=1 δk = ∞ [49].

24

The flow of our summarization method is shown in Algorithm 2.1. Constant K

is the maximum number of iterations. We first initialize the Lagrange multipliers

λ(0) and µ(0) to 0, then repeatedly update them until the k-th round or the process

converges. Lines 3 to 5 are the maximization steps of each objective. Three

objectives with corresponding Lagrange multipliers are maximized independently.

We will show how each maximization works in the following sections. Line 6

checks the agreement between the solutions. If all three solutions are the same, we

have reached an agreement solution and thus we return it and finish the procedure.

If the condition is not satisfied, we update λ(k) and µ(k) using the subgradient

method and then repeat the maximization steps of lines 3 to 5 with updated λ and

µ. If we cannot reach agreement after the K-th iteration, we finally return one of

the three candidate solutions x(K) as the final solution. Since all of these solutions

satisfy the constraint on the length, they are valid summaries given length limit

Lmax. As we will experimentally show in Fig. 2.1, the score of the objective

function tend to increase as the iteration proceeds. We thus can obtain a solution

with a high objective score even if we cannot reach full agreement.

2.3.1 Maximizing the Relevance Score

In the following three subsections, we describe the process of maximizing the

objectives in Algorithm 2.1, lines 3 to 5. We first show how to maximize the

relevance score. Since we define relevance score f(x) as a linear function of

x, f(x) + ∑N
i=1 (λ

(k−1)
i + µ

(k−1)
i)xi is also a linear function of x. We use w′i to

represent wi + (λ
(k−1)
i + µ

(k−1)
i). Thus we can formulate it as an 0-1 knapsack

problem that can be solved efficiently by a dynamic programming algorithm. We

show the process in Algorithm 2.2. A and G are two dimensional arrays, each with

(N + 1) × (Lmax + 1) entries. A is used for storing the maximum scores, while

G stores the information needed for extracting the best solution after obtaining

the maximum score. We can find the exact solution by sequentially updating

25

Algorithm 2.1. The text summarization algorithm

1: λ
(0)
i ← 0, µ

(0)
i ← 0 for i = 1 to N

2: for k = 1 to K do
3: x(k) ← arg max

x∈X
{f(x) +∑N

i=1 (λ
(k−1)
i + µ(k−1)i)xi}

4: y(k) ← arg max
y∈Y

{g(y) −∑N
i=1 λ

(k−1)
i yi}

5: z(k) ← arg max
z∈Z

{h(z) −∑N
i=1 µ

(k−1)
i zi}

6: if x(k)i = y(k)i = z(k)i for all i ∈ {1, . . . ,N} then
7: return x(k)

8: else
9: for i = 1 to N do

10: λ
(k)
i ← λ

(k−1)
i − δk(x(k)i − y(k)i)

11: µ
(k)
i ← µ

(k−1)
i − δk(x(k)i − z(k)i)

12: return x(K)

every entry in A and G in order, and then backtracking G. We can solve it in

O(NLmax +N) computational time.

2.3.2 Maximizing the Redundancy Score

Maximization of the redundancy score defined in Section 2.2.2 is a maximum

coverage problem with knapsack constraint (MCKP) and it is known to be NP-

hard, see [78]. Unlike the relevance score, we cannot find the exact solution

efficiently and so resort to an efficient approximation method.

We use the fact that g(y) is a monotone submodular function of y; a set func-

tion g ∶ 2V → R, which maps subset S of finite set V to a real number, is said to

be a submodular function if the following condition holds for any subset S,T ⊆ V

g(S ∪ T) + g(S ∩ T) ≤ g(S) + g(T) , (2.23)

26

Algorithm 2.2. Summarization as the Knapsack problem.
1: A[i][0] ← 0, G[i][0] ← 0 for i = 0 to N

2: A[0][l] ← 0 for l = 0 to Lmax

3: for i = 1 to N do
4: for l = 1 to Lmax do
5: if ci ≤ l and A[i − 1][l − ci] +w′i > A[i − 1][l] then
6: A[i][l] ← A[i − 1][l − ci] +w′i, G[i][l] ← 1

7: else
8: A[i][l] ← A[i − 1][l], G[i][l] ← 0

9: l ← Lmax, x← 0

10: for i = N to 1 do
11: if G[i][l] = 1 then
12: xi ← 1, l ← l − ci
13: return x

There is an equivalent condition

g(S + v) − g(S) ≥ g(T + v) − g(T) , (2.24)

where S ⊆ T ⊆ V ∖ v. Set function g(⋅) is called monotone non-decreasing if

g(S) ≤ g(T) for any S ⊆ T . It is known that the maximization problem of a

monotone submodular function under knapsack constraints has a constant-factor

approximation if we solve the problem by greedy search [55]. g(y) is monotone

non-decreasing and satisfies the definition of a submodular function. We thus use

the greedy procedure to obtain the approximate solution.

We introduce a greedy procedure; it successively chooses sentences that raise

the gain of unique bigrams. Algorithm 2.3 is the pseudo-code of this greedy search

problem. We use g′(y) to represent the redundancy objective with the terms of

Lagrangian multipliers, i.e. g′(y) = g(y) − ∑
N
i=1 λiyi. From lines 3 to 6, we

successively find sentence l that maximizes (g(s∪{l})′ −g(s)′)/cl and add it to s

if the total length is smaller than Lmax. We finally compare the obtained summary

27

Algorithm 2.3. A greedy algorithm for maximizing the redundancy objective
1: s← 0,C ← {1, . . . ,N}
2: while C ≠ ∅ do
3: k ← arg max

l∈C

g′(s∪{l})−g′(s)
cl

4: if ∑i∈G ci + ck ≤ Lmax and g′(s ∪ {k}) − g′(s) ≥ 0 then
5: s← s ∪ {k}
6: C ← C ∖ {k}
7: i∗ ← arg max

i∈{1,...,N},ci≤Lmax

g′({i})

8: return y = arg max
y′∈{{i∗},s}

g′(y′)

with the summaries consisting of only one sentence (lines 7, 8). We then return

the summary that gives the highest score.

2.3.3 Maximizing the Coverage Score

Maximizing the coverage score objective is also an NP-hard problem and it is

difficult to obtain the exact solutions. We thus resort to approximation as in the

case of the redundancy objective. We can easily see h(z) is also a monotone

submodular function, and we can obtain reliable approximate solution by applying

the greedy approach similar to Algorithm 2.3.

2.4 Evaluation

2.4.1 Settings

We conduct experiments using the document understanding conference 2004 (DUC’04)

dataset for evaluating the quality of summaries generated by proposed methods.

All of the experiments are executed on a Xeon 7400 2.66GHz CPU with 256GB

RAM running CentOS 5.4 Linux. The Lagrangian relaxation method was im-

28

plemented in C++ and we set the number of max rounds to K = 500, and set

subgradient step δ(k) to 0.5/k, where k is the number of iterations. For solving

integer linear programming, we used ILOG CPLEX version 12.1.0.

DUC’04 dataset is a dataset distributed at the document understanding con-

ference of 2004 and is used for evaluating multi-document summarization algo-

rithms. We use the setting of task 2, which is a multi-document summarization

task on English news articles. The dataset consists of 50 document clusters, each

of which contains about 10 documents. The task is to make a summary for each

cluster. We set the summary length limit to 665 bytes, the settings are used in

[56].

We evaluated the summary of DUC’04 dataset using ROUGE version 1.5.51 .

ROUGE [53] is widely used in studies of summarization for evaluating the quality

of system-generated summaries. We used both the recall(R) and F-measure(F)

score of ROUGE-1, 2 to evaluate our approach.

We created two variants of the proposed method for both datasets. The first

uses the combination of all objectives, i.e. relevance, redundancy, and cover-

age, by applying ILP solver (denoted as Proposed (ILP)). The second maximizes

the same objective with the Lagrangian relaxation base method (denoted as Pro-

posed (LR)). We also evaluated the result of maximizing the pair of relevance and

redundancy using Lagrangian Relation (Rel+Red(LR)), and the result of maxi-

mizing the coverage score with a greedy algorithm (Cov(Greedy)). These two

settings can be seen as variants of previous summarization techniques, like the rel-

evance and redundancy based method, and the graph-based method, respectively.

(Rel+Red(LR)) also can be solved by Lagrangian relaxation, and Cov(Greedy)

can be obtained with a greedy algorithm.

We compared the results from the DUC’04 dataset with three state-of-the-art

methods that do not resort to an ILP solver; submodular function maximization

(Lin) [56], McDonald’s dynamic-programming-like method (McDonald) [58],

1 Options used: -n 2 -f A -p 0.5 -b 665 -m -t 0 .

29

Table 2.2: ROUGE scores of the DUC 2004 dataset. We use bold font when the

ROUGE score is significantly different from CLASSY .

ROUGE-1 ROUGE-2

Method F R F R

Proposed (LR) 0.390 0.397 0.098 0.096

Rel+Red (LR) 0.374 0.381 0.095 0.094

Cov (Greedy) 0.382 0.385 0.088 0.088

Lin 0.389 0.394 - -

CLASSY 0.377 0.382 0.092 0.091

McDonald 0.362 0.338 0.081 0.086

Proposed (ILP) 0.396 0.401 0.099 0.101

Table 2.3: Comparison of ILP and LR: objective function value and computation

time. The numbers in parenthesis are standard deviations.

Method Objective Time(sec.)

Proposed(ILP) 14.8 109 (140)

Proposed(LR) 14.0 3.46 (2.56)

and CLASSY [19]. CLASSY is the method that showed the best ROUGE-1 score

in the DUC’04 conference. We performed Wilcoxon signed rank tests for paired

samples with significance level of 0.05.

2.4.2 Results and Discussions

We show the ROUGE scores for the DUC’04 dataset in Tab. 2.2 2 . Though

they are approximate results, Proposed (LR) shows higher scores than the state-

of-the-art methods. We can see Proposed (ILP) offers the highest ROUGE scores.

2 Due to differences in the preprocessing of the reference summaries, the scores of CLASSY is

slightly differ from those reported in [56].

30

Rounds

Av
er

ag
e

ob
jv

ec
tiv

e
va

lu
e

Figure 2.1: The relation between the number of iterations and objective values for

the DUC’04 dataset.

This result suggests the effectiveness of our combined objective. By comparing

the results of Proposed (LR) to Rel+Red (LR) and Cov(Greedy), we can see that

Proposed (LR) achieved the highest ROUGE (F/R) scores in these three settings.

This result also confirms that the proposed combination of objective functions can

improve summary quality.

Figure 2.1 shows the relation between the number of rounds and the average

value of the objective for Proposed (LR). We can see the average objective value

increased with round number.

We show the values of objective function and computation times of ILP and

LR of DUC’04 dataset in Tab. 2.3. We can see that LR offers high objective value,

about 94% of the exact solution obtained by ILP. To see the cause of approxima-

tion errors, we further compared the average objective values of converged and not

converged cases of Proposed (LR). Proposed (LR) converged on 18 tasks over 50

tasks after 500 iterations, and the average value of them was 93.3% of Proposed

(ILP), while that of the not converged settings was 94.6%. This counterintuitive

result suggests the convergence of Algorithm 1 did not contribute to increase the

objective values. This implies the approximation errors of Proposed (LR) were

31

mainly caused by the use of greedy search, since it is the only approximation

factor of Proposed (LR) other than the use of Lagrangian relaxation.

The average computation time of Lagrangian relaxation is much shorter than

that of ILP. The computation time of ILP strongly depends on the size of the

problem; in the best case, the computation finished in a second, in the worst case,

however, it took about 10 minutes. The LR based method finished, at worst, in 10

seconds, and its variance is much smaller.

2.5 Related Work

Many proposed multi-document summarization methods measure the relevance

and redundancy of the summary. MMR (Maximal Marginal Relevance) [12, 36]

is the first one. MMR is a greedy algorithm that forms the summary by sequen-

tially selecting the most relevant sentences that are not similar to already selected

sentences. MMR is simple and efficient but the algorithm can not target the global

optimal solution. [58] extended MMR and proposed an ILP (Integer Linear Pro-

gramming) based approach to obtain globally optimal solutions. ILP solvers can

find the exact solution but take too long for large scale data. As an approximation

of the model, he also proposed a method for solving Knapsack-like problems by

using dynamic programming. If we can ignore redundancy, the method is identi-

cal to the Knapsack problem and it will obtain the global optimum. Otherwise, it

is not the Knapsack problem, and cannot obtain the exact solution.

Formulating the multi-document summarization problem as a maximum cov-

erage problem can be regarded as a kind of relevance and redundancy based

summarization. [33] first regarded text summarization as the maximum cover-

age problem, and solved it by using a greedy algorithm [46]. [88] employed a

stack decoder [42] for solving the problem. [78] and [35] formulated the max-

imum coverage problem as ILP and employed the branch-and-bound algorithm.

The method can achieve globally optimal solutions. As we noted in Section 2.1,

32

how to measure summary redundancy is a subtle problem that must be addressed.

The first graph-based summarization method was proposed by [31]. Their

method, LexRank, calculates the centrality of each sentence contained in the

given documents according to the similarity between each pair of sentences; sen-

tences with high centrality scores are then extracted to make a summary. [79] pro-

posed an extractive summarization method based on the budgeted median prob-

lem. Their method can also be viewed as a kind of graph-based method. Graph-

based methods cannot explicitly measure summary redundancy, so adding a func-

tion for controlling redundancy might improve summary quality.

Other than the settings of the objective function, previous methods also can

be classified by how they maximize the objective functions. [58], [78], and [79]

show how to solve the problem exactly using an ILP solver. However, exact so-

lutions take too long if the problem is large. Other works describe methods for

maximizing an objective function approximately, but they cannot guarantee the

quality of the solutions. [55, 56] showed that the text summarization task can

be solved as a maximization problem of a submodular function and showed an

efficient greedy algorithm. Their algorithm can find a solution whose score is

guaranteed to be, at worst, 1 − e−1/2 of the exact solution. Since our proposed

method constructs the objective function by combining submodular functions, it

achieved higher performance in the evaluation described above.

Recently, [86] proposed a multi-document summarization method based on

ILP settings. They made an objective function by combining multiple aspects

containing sentence compression. Though our focus in this chapter is on design-

ing a good objective function, based on relevance and redundancy, our LR-based

method can be easily extended by the addition of other aspects.

33

2.6 Chapter Summary

We proposed an automatic text summarization method that generates summaries

by solving an optimization problem that consists of three sub-problems; maxi-

mization of the information contained in the summary, minimization of redundant

information, and maximization of coverage. We formulated the problem in inte-

ger linear programming terms, and introduced a Lagrangian relaxation method to

solve the problem in feasible computation time. We used the DUC’04 multi-

document summarization dataset to evaluate the performance of the proposed

method, and found that it can attain the highest ROUGE score by maximizing our

objective with ILP. Moreover, our LR based heuristics also show higher ROUGE

scores than existing text summarization schemes in much shorter running time.

34

Chapter 3

A Sparse Parameter Learning
Method for Probabilistic Logic
Programs

In this chapter, we show a parameter estimation algorithm for Probabilistic Logic

Programs. Probabilistic Logic Program is a statistical model and it is an extension

of first-order logic. PLP models can represent complex relationships inherent in

the problem domain. Our algorithm can estimate sparse PLP model. Since the

complexity of a PLP model depends on the number of parameters contained in

the model, PLP models with less number of parameters are preferable since it

takes much time to perform inference with a complex PLP model. Our algorithm

exploits discrete structure inherent in the PLP model by using knowledge compi-

lation, and it can be used in combination with penalization technique. Most part

of the contents in this chapter comes from [64].

35

3.1 Parameter Estimation for Probabilistic

Logic Program

Probabilistic logic program (PLP) is an extension of a logic program that can per-

form probabilistic inferences. A PLP is a kind of statistical relational model [34],

and was developed for modeling complex and uncertain relationships. Many PLP

models have been proposed (e.g., [62, 75, 28]), and most of existing PLP models

are based on Sato’s distribution semantics [74], which defines a probability distri-

bution over possible worlds by introducing probabilistic ground facts into a logic

program.

A problem with these PLP models is the difficulty related to inferences. In

the worst case, a PLP model that is based on the distribution semantics may re-

quire computational time exponential to the number of probabilistic parameters

contained in the model. It prevents PLP models from being applied to large prob-

lems. Although some efficient exact and approximate inference algorithms have

been proposed for these models [28], inference is still difficult and hence PLP

models with fewer probabilistic parameters are preferable.

In this chapter, we propose a parameter learning algorithm for probabilistic

logic programs. The proposed algorithm can reduce the number of probabilis-

tic factors contained in the estimated model. Parameter estimation algorithms

for PLP models proposed in previous research (e.g, [38, 75]) are not intended

for estimating compact models, i.e., a model with fewer probabilistic parame-

ters. In order to estimate a compact model, we add penalty terms to the negative

log-likelihood function and then minimize it to estimate probabilistic parameters.

Penalty terms are often introduced into machine learning algorithms to impose

some restrictions on the estimated parameters. A well-known penalty term is ℓ1

norm, which is applied for obtaining sparse solutions [1], but the ℓ1 or other spar-

sity inducing norms cannot be directly applied to the parameter learning problem

of PLP models. The new penalty term we propose in this chapter induces the

36

learned parameters to take either 0 or 1. When a probabilistic parameter is 0 or

1, we can remove it or treat it as deterministic to obtain a PLP model with fewer

number of probabilistic parameters. We also give an efficient optimization algo-

rithm that can run on a compiled knowledge representation. Given an objective

function with penalty terms, we minimize it by applying a projected gradient al-

gorithm [5]. A projected gradient algorithm is an efficient method for solving

an optimization problem with constraints that a solution must be contained in a

convex set, and we present a method to run it with a compiled knowledge repre-

sentation, which is obtained by transforming a logical model into another form,

and reduces the computational time. As the transformation, we use a determin-

istic and decomposable negation normal form (d-DNNF) [25] so that we make

optimization problems tractable.

In the following, we use ProbLog [28] as a concrete example of PLP model

and we propose a parameter learning algorithm on it. However, with slight modi-

fication our method may also be applicable to other PLP models. We give a class

of PLP models to which our parameter learning algorithm can be applied.

3.2 Preliminaries

We first briefly introduce some basic notations used in this chapter. A term is a

variable, a constant, or a function applied to terms. Let q(t1, . . . ,tk) be an atom,

where t1, . . . ,tk are terms and q is a predicate of arity k. Definite clauses are uni-

versally quantified expressions of the form h :- b1, . . ., bn, where h,b1, . . . ,bn
are all atoms, and h is the head of a clause and b1, . . . ,bn are the body. A

clause without a body is a fact. A substitution θ is an expression of the form

{V1/t1, . . . , Vm/tm} where Vi are different variables and ti are terms. If a substi-

tution θ is applied to an expression e, then the instantiated expression eθ is made

by simultaneously replacing the variables Vi in e with ti. An expression is called

ground if it has no variables. The semantics of a set of definite clauses is given by

37

its least Herbrand model, i.e., the set of all ground facts entailed by the theory.

A ProbLog theory T consists of both a set of labeled facts F and a set of

definite clauses KB. Let fi be a fact contained in F and wi ∈ [0,1] be the label

of fi. wi represents the probability that each ground substitution fiθ is true in the

theory. We refer to an annotated fact wi ∶∶ fi as a probabilistic fact.

Example 3.1. The following is an example of ProbLog program.

0.1::burglary. 0.2::earthquake.

0.7::hears_alarm(X) :- person(X).

person(mary). person(john).

alarm :- burglary. alarm :- earthquake.

calls(X) :- alarm, hears_alarm(X).

In this program, burglary. and earthquake. are facts and their probabilities

are 0.1 and 0.2, respectively. 0.7 :: hears_alarm(X) :- person(X). is a

notation that represents two probabilistic facts, 0.7::hears_alarm(mary) and

0.7::hears_alarm(john).

Given a finite number of possible ground substitutions {θi,1,. . .,θi,Ki
} for each

probabilistic fact wi ∶∶ fi, a ProbLog program T defines probability distribution

over total choices L, where L is a subset of the set of all ground facts LT =

{f1θ1,1, . . . , f1θ1,K1 , . . . , fNθN,1, . . . , fNθN,KN
}.

P (L∣T) = ∏
fiθi,k∈L

wi ∏
fiθi,k∈LT ∖L

(1 −wi) . (3.1)

Using the above definition of probability P (L∣T), we define the success proba-

bility of a query literal q as

P (q∣T) = ∑
L⊆LT ,L∪KB⊧q

P (L∣T)

∑
L⊆LT

δ(q,KB ∪L) ⋅ P (L∣T)

where δ(q,KB ∪ L) = 1 if there exists a substitution θ such that KB ∪ L ⊧ qθ,

and 0 otherwise.

38

Example 3.2. For the program in Example 3.1, LT contains four probabilistic

facts, and hence there are 24 = 16 possible L ⊆ LT . If q = alarm, δ(q,KB ∪L) =

1 if either burglary or earthquake is contained in L, and its probability is

P (alarm∣T) = 1 − P (¬burglary ∧ ¬earthquake∣T) = 1 − 0.9 × 0.8 = 0.28.

3.3 Parameter Learning

3.3.1 Motivating Examples

Before presenting our parameter learning algorithm, we first show what it aims

to do. What we want is a compact ProbLog program, but a compact program is

not just a program with fewer clauses. At this point, our algorithm differs slightly

from sparse learning algorithms [1]; sparse learning algorithms try to obtain sparse

models by letting many parameters take zero. By contrast, our learning algorithm

induces many parameters to take either 0 or 1. This setting is motivated by the

following two examples.

w1:: q. w2:: r. p :- q. p :- r.

Suppose that we are given training examples D that only contains literal p, and

we want to set parameters w1,w2 so as to maximize the log-likelihood of D. If

training examples follow probabilistic distribution P (p) = 0.5, then any combi-

nation of parameters w1 and w2 that satisfies 1.0 − (1 − w1)(1 − w2) = 0.5 will

maximize log-likelihood. However, if we set w1 = 0.0 and w2 = 0.5 (or equiva-

lently, set w1 = 0.5 and w2 = 0.0), then we can remove one probabilistic fact from

the program. This clearly reduces the size of the obtained program. The above

approach is equivalent to theory compression [27], which allows some parameters

of a ProbLog program to be zero to obtain a more concise logic program.

We give another example.

w1:: q. w2:: r. p :- q, r.

39

With this program, the probability P (p) is represented as P (p) = w1w2. As same

as the previous example, suppose that we are given training examples D that only

contains literal p, and we want to set parameters w1,w2 so as to maximize log-

likelihood of D. If training examples follow probabilistic distribution P (p) = 0.5,

many combinations of parameters are possible. However, if we set w1 = 1.0 and

w2 = 0.5 (or w1 = 0.5 and w2 = 1.0), it means we treat the probabilistic fact q as

a deterministic (i.e., non probabilistic) fact. Since the complexity of probabilistic

inference with a ProbLog program depends on the number of probabilistic facts,

treating some probabilistic facts as deterministic facts also helps to reduce the cost

of probabilistic inference.

Our algorithm uses a penalty function to obtain these two types of reduction

of probabilistic parameters, namely, (i) removing probabilistic facts and (ii) sub-

stituting probabilistic facts with deterministic ones.

3.3.2 Learning Algorithm

Our parameter learning algorithm follows the learning from interpretation setting

that has been proposed in [38] since it is more general than the learning from

entailment settings as used in other learning algorithms [37, 75, 22]. Let I be a

partial interpretation of ground atoms in LT , which determines the truth values

of some atoms in LT . We represent a partial interpretation as I = (I+, I−) where

I+ contains all true atoms and I− all false atoms. We define the probability of a

partial interpretation I in a way that is similar to that for an atom q:

P (I ∣T) = ∑
L⊆LT

δ(I+,KB ∪L)δ̄(I−,KB ∪L)P (L∣T),

where δ(I+,KB∪L) = 1 if KB∪L ⊧ q for all atoms q ∈ I+ , and δ̄(I−,KB∪L) = 1

if KB ∪L /⊧ q for all atoms q ∈ I− .

Parameter learning is formalized as the task of finding a set of parameters

ŵ = {ŵ1, . . . , ŵN} that minimizes the objective function given training examples.

40

Let a set of interpretation D = I1, . . . , IM be training examples. We make the

objective function as a combination of the negative log-likelihood and a penalty

function that encourages parameters to take either 0 or 1. We therefore define the

objective function g(T (w),D) as

g(T (w),D) = ℓ(T (w),D) + λh(w) ,

where T (w) represents a ProbLog program whose parameters are w, and ℓ(T (w),D)

represents a negative log-likelihood function and h(w) is a penalty function. A

parameter λ controls the effect of the penalty term. We minimize the above ob-

jective function by considering that 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ N . We define the

negative log-likelihood function ℓ(T (w),D) as

ℓ(T (w),D) = −
M

∑
j=1

logP (Ij ∣T (w)) .

It is simply defined as the logarithm of the product of the probabilities P (Ij ∣T (w))

for j = 1, . . . ,M . We define the penalty function h(w) as

h(w) =
N

∑
i=1

{log (wi + ε) + log (1 −wi + ε)} , (3.2)

where ε is a small positive value that is added to avoid the function becoming −∞

at wi = 0 or wi = 1. The penalty term takes smaller values when wi is near 0

or 1, hence we can encourage wi to take 0 or 1 by adding h(w) to the negative

log-likelihood g(T (w),D). Hence this penalty term can contribute to reduce the

number of parameters. We show an example of h(w) when N = 1 in Fig. 3.1.

The minimization problem of only negative log-likelihood function ℓ(T (w))

is the same as the problem solved in the LFI-ProbLog algorithm shown in [38],

and it can be solved efficiently by using the Expectation Maximization (EM) al-

gorithm. The difference between the LFI-ProbLog algorithm and ours is the use

of the penalty term h(w). This addition makes EM algorithm inapplicable for our

problem. We therefore introduce a new optimization method that is based on the

projected gradient algorithm.

41

Figure 3.1: Shape of the penalty term h(w), where N = 1 and ε = 0.001.

3.3.3 Projected Gradient Algorithm

The minimization problem we introduced in the previous section cannot be solved

with the EM algorithm, we therefore propose a new method that is based on the

projected gradient algorithm. The projected gradient algorithm [5] is used for

minimization problems with the constraint that the variables must be contained

in a convex set. In the present case, wi must satisfy 0 ≤ wi ≤ 1, and hence the

region in which w is contained is convex. We can therefore employ the projected

gradient method for our problem.

The projected gradient algorithm is an extension of a gradient descent algo-

rithm, and it solves optimization problems by repeating gradient computation and

projection onto a convex set. Algorithm 3.1 shows the projected gradient algo-

rithm. After initializing w0 (line 1), it repeatedly updates wk until it converges

(lines 2 to 7). First we compute xk from the current wk and the gradient ∇g(wk)

(line 3). This step is the same as an ordinary gradient descent algorithm, then we

project xk into the domain that satisfies 0 ≤ wi ≤ 1 (1 ≤ i ≤ N) to obtain wk+1.

Here, function proj(x) is a projection function that maps x to w such that satis-

fies 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ N and minimizes ∣∣x −w∣∣2. In this case, the i-th

42

Algorithm 3.1. A projected gradient parameter learning algorithm

1: Initialize w0, set k ← 0.

2: while k is less than the iteration limit do
3: xk ←wk − αk∇g(wk)

4: wk+1 ← proj(xk)

5: if converged(wk, wk+1) then
6: return wk

7: k ← k + 1

8: return wk

element [proj(x)]i is defined as

[proj(x)]i =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if xi ≤ 0

xi if 0 < xi < 1

1 if xi ≥ 1

, (3.3)

i.e., we simply map xi to 0 or 1 if it is not in the 0 ≤ xi ≤ 1 range.

αk is the step size used for the k-th iteration. Setting an appropriate αk is

important since it determines the convergence of the projected gradient algorithm.

We set αk by using a simple line search based procedure called the Armijo rule

along the projection arc, as described in [5, 4]. It defines αk as αk = βtk , where

β ∈ (0,1), and tk is the first non-negative integer t that satisfies

g(wk) − g(wk(βtk)) ≤ σ∇g(wk)T (wk −wk(βtk)) , (3.4)

where wk(βtk) is proj(wk − βtk∇g(wk)), and σ is a parameter that satisfies

σ ∈ (0,1). In the experiments, we use parameters σ = 0.2 and β = 0.5, as these

values are suggested in the textbook [5]. By using αk selected with this rule, it is

proved that the projected gradient algorithm converges to a stationary point after

several iterations[5, 11] even if the objective function is nonconvex. Hence Alg.

3.1 converges after finite numbers of iterations.

43

3.3.4 Computation of gradient

To compute gradient∇g(T (w),D), we must compute∇ℓ(T (w),D) and∇h(w).

Let [∇ℓ(T (w),D)]i be the i-th element of the gradient ∇ℓ(T (w),D), then it

becomes

[∇ℓ(T (w),D)]i = −
N

∑
j=1

∑L∈Lj
[∇P (L∣T (w))]i

P (Ij ∣T (w))
. (3.5)

Here we use Lj as the set that contains all possible assignments L ⊆ LT that are

consistent with Ij . We define ∇P (L∣T (w)) as

[∇P (L∣T (w))]i =
Ki

∑
k=1

(2δ(fiθi,k ∈ L) − 1)

∏
fnθn,k∈L−i,k

wn ∏

fnθn,k∈L
−i,k
T ∖L

(1 −wn),

where δ(fiθi,k ∈ L) = 1 if the condition is satisfied, otherwise 0, and L−i,k is

L ∖ {fiθi,k}. ∇h(w) is easy to compute and [∇h(w)]i becomes

[∇h(w)]i =
1

wi + ε
−

1

1 −wi + ε
.

The computation of gradient ∇ℓ(T (w),D) involves summation over L ∈ Lj .

Since Lj consists of all the possible combinations of ground probabilistic facts

LT , its size becomes 2LT in the worst case and the naive computation of gradients

is intractable with a large LT . Hence we use the knowledge compilation technique

to compute them.

Knowledge compilation [25] is an approach that can be used for efficient com-

putation involving propositional models. It first compiles a propositional model

so as to represent it in a form that is suitable for specific operations such as prob-

abilistic inference. Although knowledge compilation incurs the additional cost of

compiling a model, once a compiled model is obtained, we can efficiently perform

several operations by using it. In previous work, a ProbLog program was com-

piled into binary decision diagrams (BDD) [9], and a deterministic, decomposable

negation normal form (d-DNNF) [25, 24]. With a ProbLog program compiled into

44

a BDD or a d-DNNF, we can compute the probability P (I ∣T (w)) in time propor-

tional to the size of the compiled representation. This computation is also used

when employing EM style algorithms [32, 38].

We use compiled knowledge representations for computing the gradients of

the negative log-likelihood function ∇ℓ(T (w),D). Although both BDD and d-

DNNF can be used for computing gradients, we chose d-DNNF as a compiled

knowledge representation since it performed well in the previously reported pa-

rameter learning algorithms [32].

We briefly introduce d-DNNF. d-DNNF is a kind of negation normal form

(NNF) that satisfies decomposability and determinism. An NNF is a rooted di-

rected acyclic graph in which each leaf node is labeled with a literal, true or false,

and each internal node is labeled with a conjunction or disjunction. For any node

n in an NNF graph, vars(n) denotes all propositional variables that appear in the

subgraph rooted at n, and ∆(n) denotes the formula represented by n and its de-

scendants. We say an NNF satisfies decomposability if vars(ni) ∩ vars(nj) = ∅

holds for any two children ni and nj (i ≠ j) of an and-node n, and NNF satisfies

determinism when ∆(ni) ∧∆(nj) is logically inconsistent for any two children

ni and nj (i ≠ j) for an or-node n.

Given the set of interpretations D, the process of compiling a ProbLog pro-

gram into d-DNNFs is the same as for the parameter learning method proposed in

[32]: We first make a ground ProbLog program and convert it into a conjunctive

normal form (CNF), and then convert it into d-DNNF with a d-DNNF compiler

that converts a CNF into the corresponding d-DNNF. After obtaining N different

d-DNNFs that correspond to each interpretation I1, . . . , IN , we use them to com-

pute the probability P (Ij ∣T (w)) and ∇P (L,T (w)), which is the numerator of

(3.5). We use the inference algorithm shown in [24], which was originally used for

computing conditional probabilities and gradients for graphical models. These al-

gorithms can compute P (Ij ∣T (w)) by traversing all the nodes of a d-DNNF once,

and can compute ∇P (L∣T (w)) by traversing all the nodes twice. As a result, we

45

can efficiently compute ∇g(T (w),D).

3.4 Discussion

Our sparse parameter learning algorithm can be applied to other PLP models

whose probabilistic parameters take values in [0,1]. For example, PRISM, SLP,

and ICL are in this class of PLP models. A major difference between ProbLog

and these models is that these models employ the multinomial distribution, while

ProbLog programs give probabilistic distribution based on the Bernoulli distribu-

tion defined on probabilistic facts.

With these multinomial distribution PLP models, the set of probabilistic pa-

rameters can be represented as w = {w1, . . . ,wN}, where wi (i = 1, . . . ,N) is

a Ki dimensional vector wi = (wi1, . . . ,wiKi
) and it satisfies ∑Ki

j=1wij = 1 and

wij ≥ 0 for j = 1, . . . ,Ki. Here we make an assumption that we can compute

the gradient of the negative log-likelihood function ℓ(w,D), given a set of train-

ing examples D. Then we apply our algorithm by only modifying the penalty

function h(w) defined in (3.2) as

h(w) =
N

∑
i=1

Ki

∑
j=1

log (wij + ε) .

If Ki = 2 for all i = 1, . . . ,N , the above definition of h(w) is equivalent to that in

(3.2). It is also easy to compute ∇h(w).

We also need to modify the projection function proj(x) to perform our pro-

jected gradient algorithm. We have to project a Ki dimensional real value vector

xi onto a probability simplex, i.e., project onto a Ki dimensional vector wi that

satisfies∑Ki
j=1wij = 1 and wij ≥ 0 for all j = 1, . . . ,Ki. This type of projection also

can be efficiently performed [68].

46

3.5 Evaluation

3.5.1 Settings

We conducted experiments to evaluate our proposed learning algorithm. Our aim

was to answer the following questions:

1. (Q1) Can we learn a compressed ProbLog program with our proposed al-

gorithm?

2. (Q2) How do the estimated model changes when we change the parameter

λ ?

3. (Q3) Can the proposed algorithm recover true distributions with a sufficient

number of training examples?

We compare our proposed method with the LFI-ProbLog algorithm, which is

an EM-style algorithm for estimating parameters from interpretations [38]. We

also compared our algorithm with a projected gradient algorithm, which simply

minimizes the negative log-likelihood function.

Since our algorithm has much in common with the LFI-ProbLog algorithm,

we implemented our algorithm on ProbLog2 [71], a ProbLog implementation that

supports several inference methods and parameter learning algorithms. We use

grounding, CNF conversion, and a d-DNNF compilation algorithm implemented

in ProbLog2, and run our projected gradient algorithm on a compiled d-DNNF to

estimate the parameters. We also use the LFI-ProbLog algorithm implemented in

ProbLog2.

We use two datasets, WebKB and Smokers for evaluating our parameter learn-

ing algorithm. The WebKB dataset1 [21] is a real dataset that consists of labeled

Web pages from the computer science departments of four universities. Every

web page is marked with one of the following categories, student, faculty, project,

1 http://www.cs.cmu.edu/~webkb/

47

http://www.cs.cmu.edu/~webkb/

course, staff, and other. The task is to predict the classes of pages given the words

contained in each page and the link structure between pages. Following the setting

used in [32], we use the following ProbLog program.

p::link_class(P,P2,c1,c2) :- links_to(P,P2).

p::word_class(P,w1,c1) :- has_word(P,w1).

p::learnable_prior(P,c1) :- page(P).

0.001::fixed_prior(P,c1):-page(P),class(c1).

has_class(P,C) :- word_class(P,W,C).

has_class(P,C) :- has_class(P2,C2),

link_class(P,P2,C,C2).

has_class(P,C) :- fixed_prior(P,C).

has_class(P,C) :- learnable_prior(P,C).

Where the probabilistic fact link_class/4 represents the effect of the link

structure, and word_class/3 represents the effect of words contained in a page.

We also added probabilistic facts learnable_prior/2 to represent the proba-

bilistic distribution on labels that are independent with the link structure and

words. Finally we add fixed_prior/2 for avoiding log-likelihood to become

infinity in the test data. For computational reasons, we selected 20 words that

show the highest information gain with the class labels. We therefore have in total

6× 20+ 6× 6+ 6 = 162 probabilistic parameters to be estimated from the data. We

conduct four-fold cross validation by using the dataset for three universities as a

training set and use the other university as the test set.

The Smokers dataset [30] represents the relationships between people, and

contains the following probabilistic facts and rules.

0.2::stress(P) :- person(P).

0.3::influences(P1,P2) :- friend(P1,P2).

0.1::cancer_spont(P) :- person(P).

0.3::cancer_smoke(P) :- person(P).

48

Table 3.1: Negative Log-Likelihood (lower is better) and the number of proba-

bilistic parameters contained on the WebKB learning experiment.

Method NLL Num. params

LFI 1387.28 39.0

PG 1299.30 38.0

PG+P (λ = 0.001) 1318.96 25.0

PG+P (λ = 0.01) 1445.37 18.0

smokes(P) :- stress(P).

smokes(P) :- smokes(P2), influences(P2, P).

cancer(P) :- cancer_spont(P).

cancer(P) :- smokes(P), cancer_smoke(P).

In addition to the above program, we add some ground facts person/1 and

friend/2 into the program. We add them by first deciding the number of people in

the domain, and then randomly deciding friend relationships between people. We

set the number of people to 4.

3.5.2 Results

Table 3.1 shows the average negative log-likelihood and the number of parame-

ters for WebKB dataset. Here we use LFI, PG, PG+P to represent the results of

LFI-ProbLog, projected gradient algorithm, and projected gradient algorithm with

penalty term (the proposed method), respectively. We can see that PG+P shows

comparable performance comparing with the state-of-the-art method LFI when

λ = 0.001, while it can reduce the average number of parameters contained in the

learned model from 39 to 25. Following these results, we can answer Q1 that the

proposed method shows the inference performance that is comparable with the

state-of-the-art algorithm, while it can reduce the number of parameters.

49

Figure 3.2: Negative log-likelihood for different λ.

Figure 3.3: The number of estimated probabilistic parameters for different λ.

For answering Q2, we show the results of the proposed algorithm while chang-

ing the parameter λ in Fig. 3.2 and Fig. 3.3. From the result of Fig. 3.3, we can

see that the number of parameters contained in the learned program monotonically

decreases when we use a large λ. This result reflects that the parameters tend to

take 0 or 1 if we add more weight to the penalty term. Figure 3.2 shows that the

performance decreases as we use a large λ. This result suggests the performance

may decrease if we penalize too much.

To answer the Q3, we measured the KL divergence between the true prob-

50

Figure 3.4: KL divergence on Smokers dataset with different numbers of evi-

dences.

abilistic distribution and the distribution estimated by the proposed algorithm.

We first make 10, 20, 50, 100, 200 different interpretations on smokes/1 and

cancer/1 atoms of Smokers dataset, and then sample 20%,50%, and 100% of

them to make training data. We evaluated the KL divergence between the true

probabilistic distribution on smokes/1 and cancer/1 atoms and the distribution

estimated from the data. Figure 3.4 shows the results. We can see that KL diver-

gence decreases as the number of interpretations increases. We therefore can say

that the proposed algorithm can estimate the true probabilistic distribution with a

sufficient amount of training data (Q3).

3.6 Related Work

Many PLP models, such as ProbLog [28], PRISM [75], SLP [62], ICL [69], and

parameter learning algorithms for these models have been proposed. Cussens

51

proposed a parameter learning algorithm for SLP [22], Sato [75] proposed an

EM learning algorithm for PRISM, and Gutmann et al. proposed two parameter

learning algorithms for ProbLog [38, 37]. These algorithms exploit EM-learning

or gradient descent methods to optimize an objective function for estimating pa-

rameters. Our proposed method differs in that we add penalty terms to induce

parameters to take a zero or one probability. This feature resembles the sparse

learning algorithms [1] used in many machine learning problems, but we believe

that our work is the first to apply a sparse learning method to a parameter learn-

ing problem for PLP models. ℓ1-regularization is used in structure learning for

Markov Logic Networks [40], however, the algorithm cannot be directly applied

to PLP models like ProbLog.

Our work is also similar to probabilistic theory compression [27] and the theo-

rem revision methods [91] in that it tries to compress a theory into a more concise

form. Our algorithm differs in that it simultaneously removes probabilistic facts

and infers parameters in one operation.

Our algorithm can be seen as a kind of structure learning algorithm for PLP

models, since it outputs a new PLP model given a prototype program and training

examples. A previously reported structure learning algorithm for a PLP program

is a beam search based algorithm, and it makes it necessary to solve the EM style

parameter learning algorithm many times [3]. Obviously we must conduct em-

pirical comparisons, but we believe our algorithm can be more efficient than the

previous structure leaning approach since it can find a program by just performing

projected gradient based optimization.

3.7 Chapter Summary

We proposed a novel parameter learning algorithm for PLP models that attempts

to set the learned parameters so that they take either 0 or 1 by adding a penalty

term to an optimization problem. With our algorithm, the learned ProbLog pro-

52

gram will have fewer probabilistic components, and inference tasks performed

with it become easier. We solved the optimization algorithm by combining the

projected gradient algorithm and the computation of gradients in a d-DNNF based

knowledge representation.

53

Chapter 4

Accelerating Graph Adjacency
Matrix Multiplications with
Adjacency Forest

In this chapter, we propose a data structure for accelerating repeated matrix mul-

tiplications performed with a graph adjacency matrix. This procedure appears in

many ML applications, and fast algorithm is in strong demand. Our new data

structure, the adjacency forest, use inherent discrete structure of an graph adja-

cency matrix, and represent an adjacency matrix as a set of rooted trees. This is

also a kind of decomposition technique for exploiting discrete structure. Most part

of the contents in this chapter comes from [66].

4.1 Adjacency Matrix Multiplications in

Data Analysis

Many data analysis and data mining algorithms need to cope with matrices, and

matrix multiplications with an adjacency matrix appear in many popular methods.

54

Here we define an adjacency matrix as a sparse matrix that represents a graph

or relational data (e.g., term document matrix). For example, the computation

of PageRank [67] and Personalized PageRank [39, 41] requires multiplications

to be performed iteratively with an adjacency matrix, and non-negative matrix

factorization algorithms [47, 51, 52] also require repeated multiplications with an

adjacency matrix. Since a matrix multiplication needs time proportional to its size,

or the number of nonzero elements if it is sparse, iterative matrix multiplications

may occupy a large part of the entire computation of these algorithms when the

matrix is large.

In this chapter, we propose a specialized method for accelerating repeated ma-

trix multiplications with an adjacency matrix. Here we make two assumptions,

namely that an adjacency matrix is sparse and has the column-scaled nonzeros

property. We say a matrix has the column-scaled nonzeros property if the el-

ements in a column are either zero or have some constant value unique to that

column. Many important matrices such as binary matrices and graph random

walk matrices, are included in this class of matrix. Our method uses a new data

structure, adjacency forest, to represent an adjacency matrix. Adjacency forest

is an extension of the adjacency list based sparse matrix representation that is

made by converting an adjacency list so that it can share equivalent nodes. By

sharing nodes, it can reduce the number of scalar operations needed for matrix

multiplications. Our method is very simple and easy to implement, but its effect

is promising. The following is the main virtues of our method.

Fast and exact computation Our method can reduce the number of scalar op-

erations needed for matrix multiplications since it can share their equivalent in-

termediate results. Note that our method is not an approximation, i.e., using our

method does not change the computational results. We show experimentally that

our method can compute a matrix multiplication up to 300% faster than with a

standard sparse matrix representation.

55

Guarantees the worst case The proposed method achieves the fast computation

of matrix multiplications by compressing a matrix. How well the compression

works depends on the target matrix, however, it is guaranteed that in the worst

case the number of scalar additions and multiplications needed for the proposed

method is no more than that when using the adjacency list based sparse matrix

representation.

Negligible overhead Our method first needs to convert a matrix into an ad-

jacency forest. We show that the time needed for this process is negligible in

typical knowledge discovery situations where several matrix multiplications are

performed. We also propose a prepossessing method for further reducing the size

of an adjacency forest. The time needed for this prepossessing method is also

negligible.

In Section 4.2, we first briefly introduce PPR and NMF as examples of widely

used algorithms that demand iterative matrix multiplications. We then show the

main idea of the adjacency forest along with the multiplication algorithm in Sec-

tion 4.3. We show a prepossessing stage designed to reduce the size of an adja-

cency forest in Section 4.4. We describe the experiment and its results in Section

4.5.2 and related work in Section 4.6. Finally, we present our conclusions in Sec-

tion 4.7.

4.2 Motivating Use Cases

We first show the motivating use cases where iterative multiplications are per-

formed with an adjacency matrix.

56

4.2.1 Personalized PageRank

The first motivating example of repeated matrix multiplication is personalized

PageRank (PPR) [39, 41]. PPR is a popular algorithm that is widely used in

several information retrieval and recommendation tasks. Let A be the adjacency

matrix of a directed graph. Aij ≠ 0 if there is a link from the i-th node to the j-th

node, otherwise Aij = 0. We assume Aij has the row-scaled nonzeros property,

i.e., it can be represented as A = BC, where B is a diagonal matrix and C is a

binary matrix. If A has the row-scaled nonzeros property, then transposed matrix

AT has the column-scaled non-zeros property. Personalized PageRank is a prob-

abilistic distribution vector x that is defined on nodes of a graph that satisfies the

following equation:

x = (1 − θ)ATx + θu ,

where θ ∈ (0,1) is the teleportation constant. u is called a preference vector

and is an N -dimensional vector that defines the preference (i.e., initial weights

set on nodes) on each node. We can obtain x by repeatedly updating x as x ←

(1 − θ)ATx + θu. This means we need to repeat the multiplication between AT

and x.

If we want to obtain R different PPR vectors, the personalized PageRank equa-

tion for R different personalized vectors, and the power iteration with these R

personalized vectors can be written as

X← (1 − θ)ATX + θU ,

where X and U are the N × R matrices that represent sets of R PPR vectors

and preference vectors, respectively. To update X, we need to perform a matrix

multiplication between AT and current X. Let nnz(A) is the number of nonzero

elements of A. If we use a standard method of matrix multiplication with a sparse

and a dense matrix, we need nnz(A) × R scalar additions and multiplications.

Therefore matrix multiplications occupy a large part of the total time needed for

computing PPR.

57

4.2.2 Non-negative Matrix Factorization

Non-negative matrix factorization is a group of algorithms whose purpose is to

factorize a non-negative data matrix into two non-negative matrices. NMF is fre-

quently applied to binary matrices such as term-document matrices. Given a non-

negative N ×M data matrix A, NMF finds W and H such that A ≈WH, where

W is an N × R non-negative matrix, and H is an R ×M non-negative matrix,

and ≈ indicates an approximation. Under an appropriate metric, the problem is

solved as an optimization problem that involves finding W and H with which the

distance between A and WH is minimized. Seung and Lee [51] proposed one of

the most famous and simple algorithms under the Euclid distance. It iteratively

updates W and H as

Wij ←Wij

(ATH)ij

(WHHT
)ij

, Hij ←Hij

(WTA)ij
(WTWH)ij

,

to find a solution. Since NMF is used for approximating A with low-rank matrices

W and H, it is usually used with a small R compared with N and M . With

this setting, the computational time needed for multiplications WTA and ATH

occupies a large portion of an iteration. Several efficient algorithms have been

proposed for NMF in addition to the above iterative algorithm [47, 52], however,

these algorithms also require repeated matrix multiplication with A. For example,

Kim and Park [52] proposed the projected gradient method that computes the

gradient of W and H for each iteration. Their method also requires the matrix

multiplications of WTA for computing gradients.

4.3 Adjacency Forest

We introduce our new data structure, adjacency forest. For ease of presentation,

we first describe a single tree adjacency forest (STAF), a very simple and limited

version of adjacency forest. After that we introduce a general adjacency forest.

58

Here we introduce a few notations used in this section. Let ri(A) be the i-th row

vector of A, and cj(A) be the j-th column vector of A. We also use ri and cj

instead of ri(A) and cj(A) if it is apparent from the context.

4.3.1 Single Tree Adjacency Forest

The STAF is an extension of the adjacency list based representation of a matrix.

An adjacency list based representation of a matrix represents a matrix as a set of

row vectors, and each row vector is represented as a list that stores nonzero ele-

ments contained in that row. Each element of the list consists of a pair consisting

of the column number and its value. Hence an N ×M matrix A is represented

by N lists, and the sum of the size of all lists is nnz(A). While an adjacency list

represents a matrix as a set of lists, a STAF represents a matrix as a tree, which

is made by sharing the equivalent suffixes of the row vectors. For example, the

matrix in Fig. 4.1 (a) is represented by the STAF in Fig. 4.1 (b). The right-

most rectangle node of this STAF is a root node, and circle nodes are intermediate

nodes, whose label represents the corresponding column number of the adjacency

matrix, e.g., a node with label 1 corresponds to the first column of the matrix. The

leftmost nodes with ri labels are leaf nodes, and they represent the corresponding

rows. From the definition of the STAF, a path from a leaf node to the root node

corresponds to a row vector. For example, the path from leaf node r1 to the root

node is r1 − 3 − 4 − root and it corresponds to the first row vector of the matrix in

Fig. 4.1 (a)

In adjacency list based representation, the matrix in Fig. 4.1 (b) is represented

by the following four lists: r1 = ⟨3,4⟩, r2 = ⟨1,2,3,4⟩, r3 = ⟨1,2,3⟩, and r4 = ⟨2⟩.

In contrast, with the STAF in Fig. 4.1 (b), since r1 and r2, have a common suffix

⟨3,4⟩, they are shared. Node sharing means that the number of intermediate nodes

of a STAF in Fig. 4.1 becomes 8 and is less than nnz(A) = 10.

Algorithm 4.1 shows the process for constructing a STAF. Since we can see it

59

(a) (b)

Figure 4.1: (a) Example matrix, and (b) a STAF that represents the matrix.

Algorithm 4.1. Constructing a STAF.
Input: A N ×M adjacency matrix A

Output: STAF representing A

1: Make an empty trie.

2: Insert every row sequence of A into the trie.

as a trie that stores all of the reversed row vectors, trie construction algorithms can

be used to construct a STAF. It takes O(nnz(A) +N) time, which is proportional

to the sum of the lengths of the all sequences inserted into a trie.

A STAF has the following important property:

property 4.1. If a matrix A, which has column-scaled nonzeros property, is rep-

resented with a STAF, the number of intermediate nodes is always equal to or less

than nnz(A).

This property is obvious from the definition of a STAF. If row vectors have no

equivalent suffixes, the number of intermediate nodes of the STAF is nnz(A) 1 .

1 Even if a matrix does not have the column-scaled nonzeros property, we can represent a

matrix as a STAF whose number of nodes is equal to or less than nnz(A), and use it for matrix

multiplications. However, its compression effect would be limited since STAF can share fewer

substructures.

60

Algorithm 4.2. Matrix multiplication with a STAF.
Input: A STAF of an N ×M matrix A, an M ×R real value matrix X

Output: The N ×R matrix Y such that Y =AX

1: Prepare length R vectors li for each intermediate node.

2: Traverse every intermediate node in a root-to-leaf order and compute li as

li = lpa(i) + vcol(i)rcol(i)(X)

3: For every leaf node, set rj(Y) as the vector of its parent node (1 ≤ j ≤ N).

Returns Y.

4.3.2 Matrix Multiplication with a STAF

With a STAF, we can perform a matrix multiplication with a number of scalar

operations that is proportional to the number of nodes. We show the procedure in

Algorithm 4.2. To perform a matrix multiplication between an N ×M adjacency

matrix A and an M ×R real value matrix X, we prepare additional memory space

for storing an R dimensional real value vector for each intermediate node. Let li
be such a vector attached to the i-th intermediate node. After preparing the vectors

(line 1), the algorithm updates each li in a root-to-leaf order following the update

equation of line 2. Here pa(i) is the order of the i-th node’s parent node, and

col(i) is the column number corresponding to the i-th intermediate node, and vj

is the constant value of the j-th column. For example, the constant values of the

matrix in Fig. 4.1 (a) are v1 = 0.5, v2 = 0.333, v3 = 0.333, and v4 = 0.5.

Example 4.2. Consider a matrix multiplication with the STAF of the matrix in

61

Fig. 4.1 (a), and a 4 × 2 matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1 0.5

0.2 0.15

0.3 0.15

0.4 0.2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We use the order of nodes written at the upper left of the intermediate nodes in

Fig. 4.1. This order satisfies the condition that an intermediate node always comes

after its parent node. We therefore traverse intermediate nodes in this order to

perform the update of li in a root-to-leaf order. For example, the computation for

the leaf node r1 using this order requires the following computations:

l1 = 0.5 × (0.4,0.2)
T = (0.2,0.1)T

l2 = l1 + 0.3333 × (0.3,0.15)T = (0.3,0.15)T

r1(Y) = l2 = (0.3,0.15)
T .

Similarly, to compute r2(Y), we need to compute l1, l2, l4, and l7 on this order.

But l1 and l2 have already been computed by the computation for r1(Y) and we

can re-use them to avoid computing l1 and l2.

To understand why Algorithm 4.1 works, it might be helpful to consider the

matrix multiplication of a 1 ×M matrix A′ and an M ×R matrix X. The STAF

of A′ is a tree that has only one path, and is equivalent to the adjacency list rep-

resentation. The multiplication is performed in the following way: (i) select row

vectors of X whose row numbers are equal the column numbers of A′ whose el-

ements are nonzero, (ii) multiply each row vector with the element of A′ whose

column number equals to the row number of the vector, and (iii) take the summa-

tion of the vectors. Algorithm 4.2 corresponds to perform this procedure for each

row vector.

We analyze the number of scalar additions and multiplications of Algorithm

4.2.

62

Lemma 4.3. To perform a matrix multiplication with an N ×M adjacency matrix

A and M ×R matrix X, Algorithm 4.2 requires to perform KR scalar additions

and MR scalar multiplications, where K is the number of intermediate nodes

whose parent node is not the root.

Proof. Because vjrj(X) (1 ≤ j ≤ M) is used multiple times, we can save a

maximum of MR multiplications by storing them. As for the number of vector

additions, since one addition of two R dimensional vectors is performed for every

intermediate node except the nodes whose parent is the root node. In total KR

scalar additions are performed.

This approach should be contrasted with an adjacency list based representa-

tion, or other standard sparse matrix representations such as compressed raw stor-

age (CRS) [2], which have to perform nnz(A)×R scalar additions and MR scalar

multiplications. From property 4.1, the number of intermediate nodes of a STAF

does net exceed nnz(A), and so we can reduce the number of scalar additions by

using STAF.

4.3.3 Properties of the Matrix Multiplication Algorithm

Memory Usage To perform a matrix multiplication with a STAF, we need to

prepare memory for storing a STAF, vectors li and vj . A STAF can be represented

as a set of nodes, and a intermediate node can be represented as a pair of the

corresponding column number and a pointer that indicates the parent of the node.

The set of leaf nodes can be represented as an N -dimensional array that each

element stores a pointer that indicates the corresponding intermediate node. CRS

can represent a matrix with column-scaled nonzeros property as a combination of

an array that stores column numbers of each nonzero element, and an array that

stores pointers for each row. Comparing with CRS, a STAF requires more than

twice memory to represent one nonzero element.

63

The amount of memory required for storing li corresponds to (the number

of intermediate nodes) ×R real numbers if we naively implement Algorithm 4.2.

This can be improved by releasing memory used for li that will not be used in

future computations. Since li is not used again after the values of its child nodes

have been computed, we release it to save the maximum amount of memory. With

this strategy, we can perform a matrix multiplication while storing a maximum of

NR real numbers.

CPU cache hit ratio The CPU cache hit ratio is also important in terms of the

performance since a cache miss may result in the delay of hundreds of CPU clocks

for modern computers. Compared with standard sparse matrix representation such

as CRS, a STAF consists of many pointers and the CPU cache hit ratio may be

lower. We examine the adjacency forest performance empirically in experiments.

4.3.4 General Adjacency Forest

We can reduce the number of additions by using a STAF to re-use intermediate

computation results. However, the effect may be limited because we can share

intermediate results only when the suffixes of row vectors are the same. We there-

fore extend the STAF to induce more sharing.

As a STAF represents a matrix as a tree, we extend it to represent a matrix as

a set of trees. We first divide an N ×M adjacency matrix A into sub-matrices

A(1), A(2), . . ., A(m), where each A(i) (1 ≤ i ≤ m) is an N ×M matrix that

has the column-scaled nonzero property. We form sub-matrices that satisfy A =

∑
m
k=1A

(k) and if Aij ≠ 0, then for some k′, A(k
′)

ij = Aij and A
(k)
ij = 0 for other

k ≠ k′. Then we represent each matrix A(k) as a STAF, and we concatenate all of

the STAFs to make a forest. We call this structure adjacency forest. While a STAF

can only share the equivalent suffixes of row vectors, an adjacency forest can

share equivalent suffixes for each sub-matrix and can represent a matrix in an even

smaller form. Figure 4.2 shows an example of an adjacency forest representing

64

the adjacency matrix in Fig. 4.1 (a), where we divide the matrix into two matrices

A(1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0.5 0.33 0 0

0.5 0.33 0 0

0 0.33 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.1)

A(2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.33 0.5

0 0 0.33 0.5

0 0 0.33 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.2)

Here A(1) consists of the first two columns of A and A(2) consists of its last two

columns. Dashed edges in Fig. 4.2 are jumping links. They connect STAFs and

make an adjacency forest.

The process for conversion from a set of STAFs into an adjacency forest has

the following three steps. First, set order on the STAFs that correspond to each

sub-matrix. Then, we substitute each leaf node of all of the STAFs except the first

one with a jumping link that comes from the previous intermediate node that is

indicated by the same leaf node. Finally, we duplicate any node that has a jumping

link. Figure 4.3 shows two STAFs that represent two sub-matrices. When we

compare Fig. 4.3 and Fig. 4.2, we can see that the node with label 1 is duplicated

since it has jumping links.

The matrix multiplication algorithm for adjacency forest is also a straightfor-

ward extension of that of the STAF (Algorithm 4.2). Algorithm 4.3 is the proce-

dure for matrix multiplication with an adjacency forest. The difference from the

previous algorithm is that it copes with jumping links. The number of scalar addi-

tions and multiplications is proportional to the number of intermediate nodes plus

the number of jumping links. The validity of the algorithm is verified as follow-

ing. If we select a leaf node ri and enumerate all the nodes that are reachable from

the leaf node by traversing links backward, we can reach all of the intermediate

65

nodes whose labels are columns of nonzero elements contained in that row. Since

ri(Y) is the sum of vjrj(X) of the all of column number j that Aij has a nonzero

value, it is computed by the algorithm.

Lemma 4.4. Algorithm 4.3 must perform NR scalar multiplications and

(K + the number of jumping links) ×R

scalar additions, where K is the number of intermediate nodes whose parent is

not a root node.

Figure 4.2: Example of adjacency forest representing the matrix in Fig. 4.1 (a).

Figure 4.3: Two STAFs that represent sub-matrices (4.1) and (4.2).

Introduction of matrix division, however, not always reduce the number of

computations needed for a matrix multiplication. For example, if we divide a ma-

trix into two matrices, the number of intermediate nodes may decrease but we also

need to add jumping links. If we add more jumping links than removed interme-

diate nodes, the number of needed operations will increase. We therefore need to

look for appropriate sub-matrices that minimize the total number of operations.

We present an algorithm for dividing an adjacency matrix into sub-matrices in the

next section.

66

Algorithm 4.3. Algorithm of multiplications between matrices with adjacency

forest.
Input: An adjacency forest of N ×M matrix A, M ×R real value matrix X

Output: N ×R matrix Y such that Y =AX

1: Prepare length R vectors li for each intermediate node.

2: Select every tree in right-to-left order.

3: Traverse every intermediate node of the tree in root-to-leaf order and compute

li as

li = lpa(i) + vcol(i)rcol(i)(X)

4: If the current node is indicated by a jumping link, then add the value of the

source node of the link to li.

5: For every leaf node, set rj(Y) the value of its parent node. Returns Y.

Memory Usage As with a STAF, we can reduce the memory required for com-

putation.

Lemma 4.5. The additional memory needed for performing a matrix multiplica-

tion with an adjacency forest is less than 2NR.

Proof. We run algorithms on each trees in a row. To execute an algorithm on a

tree, we need NR memory space, which is same as for a STAF. As with a STAF,

we need to keep the values of the nodes that are indicated by jumping links. Since

the number of nodes indicated by jumping links is at most N for a tree, the total

number of nodes is 2NR.

The amount of memory required for representing an adjacency forest is larger

than that of a STAF that has the same number of intermediate nodes since we have

to store jumping links. However, since the number of jumping links is always

equal or less than that of the intermediate nodes, the amount of memory needed

for storing an intermediate node is less than thrice of that is required for CRS.

67

4.4 Reduce Size of Adjacency Forest

How much we can reduce the number of calculation relies on the number of inter-

mediate nodes and jumping links of the adjacency forest. These metrics depend

on how a matrix is divided into sub-matrices. However, it is difficult to find the

matrix division that minimizes the number of operations. We therefore introduce

a heuristic that divides a matrix into sub-matrices to realize a small adjacency

forest.

Our matrix division algorithm first construct lists of column vectors so that the

sub-matrices made from these lists have many similar row vectors while having

fewer rows with nonzero elements. The aims of these two conditions are to reduce

the numbers of intermediate nodes and the number of jumping links, respectively.

We show our algorithm in Algorithm 4.4. We prepare m lists L1, . . . , Lm (line

1), and then push each column vector ci(A) into an appropriate list (line 2) that

minimizes the score. Finally we convert each list Lj to a sub-matrix A(j) (line 3)

if Lj is not empty.

The most important point in the algorithm is the score function score(Lj, ci(A)),

which returns the score for appending ci(A) to list Lj . We define the score func-

tion by considering two points (i) how many intermediate nodes will be formed

if we add ci, and (ii) how many new jumping links will be made. With these two

elements, we define the score function as

score(Lj,Ai) = λ(NewIMNodes) +NewRows . (4.3)

NewIMNodes is the number of intermediate nodes that will be made if we add ci

to Lj , and NewRows is the number of rows that have nonzero elements in ci and

do not have in any column vectors in Lj . λ is the parameter that adjusts the effect

of the two elements. We compute NewIMNodes by creating a STAF for a matrix

that is made with the current elements of Lj and ci. Actually, this can be easily

computed by storing the groups of row numbers that have the same row vector

in Lj . We compute NewRows by first storing rows with nonzero elements in Lj

68

Algorithm 4.4. Matrix division algorithm.
Input: An N ×M adjacency matrix A, maximum number of sub-matrices m.

Output: Sub matrices A(1), . . . ,A(m)

1: Initialize empty lists L1, . . . , Lm.

2: Traverse every column vector in order, and add ci(A) to Lj (1 ≤ j ≤ m) that

maximizes the score score(Lj, ci(A)).

3: Convert each Lj into A(j) (1 ≤ j ≤m) if Lj is not empty.

and comparing it with the nonzero elements of ci for computation. On converting

Lj to A(j), we simply place the column vectors in an order whereby that the first

element becomes the rightmost column of A(j).

Lemma 4.6. The running time of Algorithm 4.4 is O(nnz(A) ×m).

Proof. Line 1 of the algorithm takes O(m) time. Line 2 needs to compute score(Lj, ci)

m times, and to compute score(Lj, ci) requires the computation of (i) how many

new intermediate nodes will be made, and (ii) how many new rows have nonzero

values. Suppose that column vector ci is a sparse vector, these computations take

time proportional to the number of nonzero elements in ci. Hence the loop of line

2 to 4 takes O(nnz(A) ×m) time. Finally, line 4 simply converts lists of col-

umn vectors into matrices, which takes O(nnz(A)) time. Hence Algorithm 4.4 is

O(nnz(A) ×m).

4.5 Evaluation

4.5.1 Settings

We conducted experiments to evaluate the proposed algorithm taking account of

two typical situations where iterative matrix multiplications are performed. The

first situation is the computation of PPR with a square adjacency matrix, and the

69

other is the computation of NMF with a sparse rectangular matrix that corresponds

to a word-document association matrix. This class of matrices is used in docu-

ment clustering, or for the user-item association used in recommender systems.

We used two datasets, Amazon2 and Web3 , for PPR, and one dataset, news4 , for

NMF. Amazon is a directed graph extracted from Amazon’s co-purchased items.

Each node represents an item and each direct edge represents a co-purchased rela-

tionship. It contains 403,394 nodes and 3,387,388 edges. Web is a directed graph

consisting of the web pages of the University of Notre Dame. Each node repre-

sents a page and the direct edges represent hyperlinks between them. It contains

325,729 nodes and 1,497,135 edges. news is a dataset consisting of news group

data, which forms a rectangular binary matrix of 100×16,242 with 65,451 nonzero

elements. Since the matrices we used for the PPR computations are graph random

walk matrices, and the matrix used for MMF is a binary matrix, our adjacency

forest based representation is applicable.

For both settings, we conducted iterative matrix multiplications with an ad-

jacency matrix. All of the experiments were implemented in C++ and compiled

with gcc 4.7.2 (-O3), and executed on a Linux server with a 3.33GHz Intel Xeon

CPU and 48GB RAM. We evaluate the proposed method of using an adjacency

forest. As a baseline method, we employed a power iteration method that uses the

compressed row storage (CRS) format matrix representation [2], which is a popu-

lar sparse matrix format used in many linear algebra libraries. We tried two C++

matrix algebra packages that support sparse matrix representation, Eigen version

3.1.2 and Armadillo version 3.800.2, and we selected Eigen as the baseline since

it performs better in our settings. We use the SparseMatrix class of Eigen to repre-

sent an adjacency matrix, and then used the multiplication method of the class to

compute PPR and NMF. Since both the baseline method and the proposed method

2 http://snap.stanford.edu/data/amazon0601.html
3 http://snap.stanford.edu/data/web-NotreDame.html
4 http://www.cs.nyu.edu/~roweis/data/20news_w100.mat

70

http://snap.stanford.edu/data/amazon0601.html
http://snap.stanford.edu/data/web-NotreDame.html
http://www.cs.nyu.edu/~roweis/data/20news_w100.mat

Table 4.1: Preprocessing time with different m.

Matrix Division (Sec.) Construct(Sec.)

m 1 10 100 1 10 100

Amazon 0.94 2.60 14.95 0.96 0.74 0.65

Web 0.18 0.81 3.13 0.39 0.15 0.20

News 0.03 0.04 0.16 0.04 0.02 0.02

News (Tr) 0.02 0.05 0.38 0.03 0.03 0.03

returned the same result for these experiments, we fixed the number of iterations

at 100 for both implementations. The proposed method used reference counters to

minimize the memory consumption. We applied preprocessing algorithm (Algo-

rithm 4.4) to an adjacency forest, and set the number of lists of the matrix division

algorithm at m = 10 and parameter λ to λ = 2 as it performs the best for all of the

datasets5 .

4.5.2 Results

Figure 4.4 shows the computation time of PPR on the two datasets when changing

the number of base vectors, i.e., the number of columns of the multiplied matrix,

and Figure 4.6 shows the computation time needed for NMF while changing the

dimension R of factorized matrices. Since when computing NMF, we also need

to perform multiplications with the transposed matrix, we show the result with a

transposed matrix as News (Tr). Comparing the baseline with the proposed meth-

ods shows that the adjacency forest is faster in almost all cases except when the

multiplied dense matrix has very few columns. In particular with Web dataset the

adjacency forest is more than 300% faster than the baseline. With the Amazon

dataset the speed is slightly faster than with the Web dataset. These results can

5 We tried λ ∈ [0.5,3.0], and found that the compression ratio was insensitive to changes of λ,

i.e., the changes in the compression ratio were around 2%, when λ ≥ 2.

71

 1

 10

 100

 1000

 1 10 100

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Number of base vectors

Adjacency forest
CRS

(a) Amazon

 0.1

 1

 10

 100

 1000

 1 10 100

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Number of base vectors

Adjacency forest
CRS

(b) Web

Figure 4.4: Comparison of computation times needed for computing PPR.

be related to how well the dataset is compressed. Figure 4.5 shows the compres-

sion ratio of an adjacency forest with different parameters m. Here we define the

compression ratio of an adjacency forest as

compression ratio =
K + (# of jumping links)

nnz(A)
, (4.4)

where K is the number of intermediate nodes whose parent node is not a root

node. When m = 10, we can see that the compression ratio of the Amazon dataset

is high compared with Web, and it means the proposed method is more effective

for the Web dataset. The results for the News dataset are similar. The compression

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
om

pr
es

si
on

 ra
tio

Value of m

Amazon
Web

News
News (transposed)

Figure 4.5: Compression ratio with different m.

ratio of News is smaller than News (Tr), and this results in the increased speed in

Fig. 4.6. If the number of base vectors is small, our method is slower than the

baseline method for all datasets. This is caused by overheads in the reference

counting, and cache miss caused by the use of many pointers.

Table 4.1 shows the time needed for preprocessing. Since we used m = 10 for

our experiments, we can see the proposed algorithm is still faster even when we

add the preprocessing time. Moreover, once the adjacency forest is constructed,

we can use it several times. PPR can be computed with several different hub

vectors, and in such cases, the time taken by preprocessing secures an adequate

return.

Figure 4.5 shows how the compression ratio changes with parameter m. We

can see that the adjacency forest becomes more compressed as m increases. This

means we do not need to make the effort to set an appropriate value for m. As

shown in Tab. 4.1, however, a large m makes the time needed for matrix division

long. There is a trade off between the preprocessing time and the size of the

adjacency forest. Although the optimum m depends on the dataset, m = 10 is

sufficient for many situations. Figure 4.7 shows the amount of heap memory used

with the Web dataset. As we noted in Section 4.3.3, the proposed algorithm needs

73

 0.01

 0.1

 1

 10

 1 10 100

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dimension of the factorized matrices

Adjacency forest
CRS

(a) News

 0.01

 0.1

 1

 10

 1 10 100

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dimension of the factorized matrices

Adjacency forest
CRS

(b) News (Tr)

Figure 4.6: Comparison of computation times needed for NMF.

a large amount of temporal buffer if it is implemented naively. However, this

figure shows that the use of a reference counter enables us to reduce the required

memory to less than that needed for the CRS data structure with Eigen.

Since the effectiveness of our proposed method depends on the compression

ratio, it is practically important to provide an indicator that shows whether we

can predict the compression ratio. After trying several metrics, we found that the

Jaccard index of ∣A ∩B∣/∣A ∪B∣ with two sets A and B, used for measuring the

similarity of row vectors represented as sets of nonzero elements, can be used as

74

 0

 10

 20

 30

 40

 50

 60

1 10 100

M
ax

 h
ea

p
m

em
or

y
(M

by
te

)

Number of base vectors

Adjacency forest
CRS

Figure 4.7: Used heap memories.

such an indicator. Figure 4.8 plots the relation between the average of the top

10 Jaccard index of row vectors and the compression ratios of 6 matrices of the

datasets and their transportation. We can see that the compression ratio tends to

be small if the average Jaccard index is large.

4.6 Related Work

Many fast matrix multiplication algorithms have been proposed. Strassen first pro-

posed the O(N2.81) algorithm for the multiplication of two N ×N matrices [77],

where a naive algorithm takes O(N3) time. The fastest algorithm was Copper-

smith and Winograd’s O(N2.376) algorithm [20] for decades, and it was recently

updated to O(N2.3727) by Williams [85]. Although these cannot exploit the spar-

sity of matrices, they are efficient if the number of nonzero elements nnz(A)

satisfies nnz(A) > N1.38. A fast multiplication algorithm for sparse matrices has

been proposed by Yuster [90]. It can perform multiplications between two N ×N

sparse matrices in O((nnz(A))0.7N1.2 +N2+o(1)) time. However, many knowl-

edge discovery algorithms including PPR and NMF need to multiply a sparse

matrix with dense matrices, Yuster’s algorithm cannot be directly applied to these

75

Figure 4.8: Relation between similarities (Jaccard coefficient) of rows and com-

pression ratio.

settings. A simple O(nnz(A) × N) algorithm can be executed by using well-

known data structures for sparse matrices, such as the Compressed Row Storage

(CRS) format [2]. With the CRS format, a matrix multiplication can be executed

by performing additions and multiplications of vectors of length N nnz(A) times.

Our proposed algorithm can further reduce the number of operations by sharing

equivalent intermediate results.

Research on graph compression [6, 16] is similar to our work. Graph com-

pression is a technique for compressing large graphs, such as web graphs or social

networks, to make them fit into a memory and it can perform certain graph opera-

tions without expansion. Boldi and Vigna [6] exploit the locality and similarity of

web graphs to make them in a compact form. Karande et al. [45] proposed an al-

gorithm for multiplication with a compressed graph that is made by adding virtual

nodes to a graph to reduce the number of edges [10]. Although the interpretation

of the proposed method in the context of a graph algorithm is future work, since

76

our method does not impose any assumptions on the structure of a graph, it may

be used with virtual node techniques.

From another viewpoint, our proposed method can be seen as a variant of the

sparse matrix-vector multiplication (SpMV) methods. While there is a wealth of

literature on SpMV to exploit the potential power of hardware including memory

bandwidth [83] or multi-cores [84], we have not seen any published work that

reduces the number of required multiplications and additions themselves. Since

our method does not assume any special hardware architecture, we believe we

still have some room to improve the performance by considering the hardware

architecture, especially caches.

We dealt with PPR and NMF as example tasks, and many accelerating algo-

rithms have been proposed for both problems. For example, PageRank and PPR

can be efficiently computed by using extrapolation [44], or dividing an adjacency

matrix into groups [43]. As for NMF, several methods including the projected

gradient descent method [52] and the active-set method [47] have been proposed.

Since our method is not problem specific, it may be less efficient than these meth-

ods. However, the proposed method can be used in combination with these spe-

cialized methods that perform matrix multiplications, and can help to speed them

up.

The adjacency forest is closely related to a zero-suppressed binary decision

diagram (ZDD) [60]. ZDD is a data structure that represents a family of sets as a

directed acyclic graph. If we represent an adjacency matrix as a set of row vectors

each represented as a set of nonzero elements in the row, a ZDD representing this

set of row vectors is equivalent to a STAF that represents the matrix.

4.7 Chapter Summary

We proposed a method for accelerating the computation of repeated matrix multi-

plications with a graph adjacency matrix. This operation appears in many knowl-

77

edge discovery tasks such as PPR and NMF. By using an adjacency forest, we can

reduce the number of multiplications and additions. The additional cost incurred

by converting the data structure is small thanks to a new efficient construction and

preprocessing method, and our proposals can be easily combined with existing

power iteration based algorithms.

78

Chapter 5

Conclusion

5.1 Summary of the Results

We provided three algorithms for efficiently solving numerical optimization prob-

lems that appear in text summarization and relational learning tasks. Our methods

exploit the discrete structure inherent to the problem domains, and solve problems

by decomposing them in such a way that we can efficiently exploit their inherently

discrete structure. This approach has two impacts: first, we can solve complex op-

timization problems more efficiently and obtain better solutions. Second, we can

flexibly design optimization problems for solving a broad range of complex tasks

that appear in ML and NLP. Our algorithm can also be applied to accomplishing

tasks other than those treated in this thesis.

The combinatorial optimization algorithm used for the text summarization in-

troduced in Chapter 2 was designed to maximize a combined objective function.

Such a function measures the quality of a summary as a combination of different

multiple objective functions. We mainly used two techniques. The first technique

is sub-modular function maximization, and the second is a Lagrangian relaxation.

The combination of these two techniques enables an optimization problem to be

efficiently solved using a complex objective function. Our experimental results

79

show that our Lagrangian relaxation method generates summarizations with high

ROUGE scores compared with state-of-the-art extractive summarization methods.

The experiment results also show that our method is more than 30-times faster

than a commercial ILP solver.

In Chapter 3, we described a new parameter estimation algorithm for a PLP.

PLP theories tend to yield more complicated statistical models compared to other

statistical models used for machine learning tasks. Hence, a parameter estima-

tion algorithm that can estimate sparse models, i.e., models with fewer parame-

ters, is preferable. Our proposed algorithm can efficiently estimate such sparse

models by combining the knowledge compilation technique with optimization al-

gorithms that work with ℓ1, such as regularization techniques and the projected

gradient method. Our algorithm can exploit the discrete structure inherent to a

logic program, and can use a regularization technique to create constraints on the

estimated parameters. We experimentally showed that our algorithm can estimate

PLP models with a smaller number of parameters compared with a state-of-the-art

parameter estimation algorithm that uses an EM style algorithm.

In Chapter 4, we proposed a new data structure called an adjacency forest. An

adjacency forest can represent a sparse graph adjacency matrix in a compressed

form, and can speed up repeated matrix multiplications using an adjacency ma-

trix. It also exploits the inherently discrete structure of an adjacency matrix, and

divides a matrix into a set of trees to compress the equivalent substructure of the

matrix. This is also an important application of discrete-structure based decompo-

sition techniques because repeated matrix multiplications with an adjacency forest

appear in many relational learning tasks. Our algorithm is up to 300% faster than

the use of an existing sparse matrix representation.

80

5.2 Future Research Directions

Here, we describe some limitations and future research directions for the methods

proposed in this thesis. The text summarization algorithm described in Chapter

2 will be applied to other types of summarizations because it is in the develop-

ment stage in which we can combine arbitrarily different objective functions. If

we want to consider different aspects when making a summary, we can easily

extend the proposed method by adding new objective functions. If we can eas-

ily maximize a newly added objective function itself, our Lagrangian relaxation

formulation will also work efficiently.For example, a query-focused summariza-

tion [26, 87] is a task of generating a summary that can answer a given query.

Our method can be easily extended to a query-focused summarization by adding

another objective function that measures the relevance with the given query. Ex-

tractive text summarization methods have recently been used in combination with

sentence compression techniques [86, 61]. A sentence compression is a technique

for shortening input sentences, and we can obtain a considerably concise sum-

mary by combining this technique with an extractive summarization algorithm.

Our summarization method will also be used for this setting.

A shortcoming of our Lagrangian-relaxation based summarization method in-

troduced in Chapter 2 is that its convergence is not guaranteed. In some Lagrangian-

relaxation based algorithms used in NLP tasks, several techniques are used for

promoting convergence [13, 14]. In these methods, once-relaxed constraints are

added back into the relaxed problem to promote convergence. Adding constraints

makes the Lagrangian dual problem difficult to solve, but helps find feasible solu-

tions. Although our method converges at a relatively high rate 1 , applying certain

techniques can contribute to a further improvement in performance. For exam-

ple, the alternating direction method of multipliers (ADMM) is an extension of a

1 For example, it is reported in [29] that the convergence rate of Lagrangian relaxation based

method was only 6% when it is applied to bidirectional word alignment problem.

81

Lagrangian relaxation method that promotes robustness and fast convergence [8].

The parameter estimation algorithm for the PLP models shown in Chapter 3

has several promising research directions. We used a penalty term to encourage

many parameters to take a value of 0 or 1. This penalty term was inspired by

ℓ1 regularization methods. There are many extensions of the ℓ1 regularization

method, and it would be interesting to apply such extensions to our parameter es-

timation algorithms. For example, the grouping of regularization techniques has

been proposed as an extension of the ℓ1 regularization method [59, 89]. These

methods impose sparsity on groups of parameters. This is useful for removing

unused feature groups together to promote the sparsity of the estimated models.

The grouping of parameters is also suitable for parameter learning of PLP models

because a complex logic program usually consists of several sub-components. If

we can remove unnecessary components in a component-wise manner, the result-

ing program may be easy to understand.

Many lifted inference algorithms have recently been proposed for probabilis-

tic logic programs [81, 76, 82]. Lifted inference algorithms can accelerate the

probabilistic inference with PLP models by performing inference at a first-order

level. Ordinal inference algorithms have to first generate a ground program, and

the inference with the ground program takes an amount of time proportional to

the size of the program. Because the size of a ground program may become ex-

tremely large, the inferences may be considerably slow. Lifted inference algo-

rithms perform only necessary groundings to avoid conducting inferences with a

fully grounded model. Applying techniques developed for a lifted inference to a

parameter learning task is a promising research direction.

The efficiency of our parameter estimation algorithm depends on the size of d-

DNNFs. The size of the d-DNNF depends on the order variables, and finding the

optimal order that minimizes the number of nodes is a difficult problem. We used

existing d-DNNF compilers [63, 23] that convert a CNF into a d-DNNF. However,

it may be possible to make considerably smaller d-DNNFs by exploiting features

82

specific to our problem setting. Both theoretical and practical contributions to the

size of a d-DNNF are in high demand.

We illustrated the power of an adjacency forest by applying it to repeated ma-

trix multiplications. We believe that using an adjacency forest itself has great

value, but it will be more useful if we can apply it to some other matrix operations

such as an inverse matrix computation or singular value decomposition. These

matrix operations are also used in many ML and NLP applications. Another pos-

sible extension is to apply an adjacency forest to multi-valued adjacency matrices.

An adjacency forest can speed up the computations by sharing equivalent sub-

structures of the matrices. If an adjacency matrix is multi-valued, the amount of

equivalent sub-structures will decrease, and the proposed method cannot consid-

erably increase the speed. Therefore, we have to consider other compression rules

that encourage a compact representation.

Similar with the case of d-DNNF, the efficiency of the proposed matrix multi-

plication algorithm depends on the size of the adjacency forest. As we mentioned

in Chapter 4, an adjacency forest can be regarded as a special type of ZDD. The

size of a ZDD depends on the order of variables appearing in it, and the problem

of finding the optimal order is known to be NP-complete[7]. Therefore, finding

better heuristics is a preferable research direction. The heuristic algorithm for

creating a small adjacency forest introduced in Chapter 4 was designed for divid-

ing matrices in less time compared with the amount of time required for matrix

multiplications. If a compiled adjacency forest is used many times, we can take

more time to create a smaller adjacency forest. It is possible that a matrix division

algorithm exists that, while requiring a large amount of time, can make the size of

the adjacency forest considerably smaller. When making an adjacency forest, we

divide an adjacency matrix into sub-matrices whose number of rows is the same

as the original matrix. This method simplifies the division algorithm and shows

a high performance, but other types of divisions for making an adjacency forest

are also applicable. We should consider these relaxed matrix division methods in

83

further detail.

84

Bibliography

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with

sparsity-inducing penalties. Foundations and Trends in Theoretical Com-

puter Science, 3(2-3), 2009.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edi-

tion. SIAM, 1994.

[3] E. Bellodi and F. Riguzzi. Learning the structure of probabilistic logic pro-

grams. In Proc. ILP, pages 61–75, 2012.

[4] D. Bertsekas. On the goldstein-levitin-polyak gradient projection method.

Automatic Control, IEEE Trans. on, 21(2):174–184, 1976.

[5] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[6] P. Boldi and S. Vigna. The WebGraph framework I: Compression tech-

niques. In Proc. WWW, pages 595–602, 2004.

[7] B. Bollig and I. Wegener. Improving the variable ordering of obdds is NP-

complete. IEEE Trans. Comput., 45(9), 1996.

85

[8] S. Boyd, N. Parikh, E. Chu, P. B., and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning, 3(1):1 – 122, 2011.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Comput., C-35(8):677–691, 1986.

[10] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web

graph compression with communities. In Proc. WSDM, pages 95–106, 2008.

[11] P. Calamai and J. Moré. Projected gradient methods for linearly constrained

problems. Mathematical Programming, 39(1):93–116, 1987.

[12] J. Carbonell and J. Goldstein. The use of mmr,diversity-based reranking for

reordering documents and producing summaries. In Proc. SIGIR, 1998.

[13] Y. W. Chang and M. Collins. Exact decoding phrase-based translation model

through lagrangian relaxation. In Proc. EMNLP, 2011.

[14] Y. W. Chang, A. M. Rush, J. DeNero, and M. Collins. A constrained viterbi

relaxation for bidirectional word alignment. In Proc. ACL, pages 1481–1490,

2014.

[15] S. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis

pursuit. SIAM journal on scientific computing, 20(1):33–61, 1998.

[16] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and

P. Raghavan. On compressing social networks. In Proc. KDD, pages 219–

228, 2009.

[17] P. Combettes and J. C. Pesquet. Proximal splitting methods in signal pro-

cessing. In Fixed-point Algorithms for Inverse Problems in Science and En-

gineering, pages 185–212. Springer, 2011.

86

[18] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-

backward splitting. Multiscale Modeling & Simulation, 4(4):1168–1200,

2005.

[19] J. M. Conroy, J. D. Schlesinger, J. Goldstein, and D. P. O’leary. Left-

brain/right-brain multi-document summarization. In Proc. the Document

Understanding Conference (DUC), 2004.

[20] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. J. symbolic comput., 9(3):251–280, 1990.

[21] M. Craven and S. Slattery. Relational learning with statistical predicate in-

vention: Better models for hypertext. Machine Learning, 43(1-2):97–119,

2001.

[22] J. Cussens. Parameter estimation in stochastic logic programs. Machine

Learning, 44(3):245–271, 2001.

[23] A. Darwiche. New advances in compiling cnf to decomposable negation

normal form. In Proc. ECAI, pages 328–332, 2004.

[24] A. Darwiche. Modeling and reasoning with Bayesian networks. Cambridge

University Press, 2009.

[25] A. Darwiche and P. Marquis. A knowledge compilation map. JAIR, 17:229–

264, 2002.

[26] H. Daumé and D. Marcu. Bayesian query-focused summarization. In Proc.

ACL, 2006.

[27] L. De Raedt, K. Kersting, A. Kimmig, K. Revoredo, and H. Toivonen. Com-

pressing probabilistic prolog programs. Machine Learning, 70(2-3):151–

168, 2008.

87

[28] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog

and its application in link discovery. In Proc. IJCAI, pages 2462–2467, 2007.

[29] J. DeNero and K. Macherey. Model-based aligner combination using dual

decomposition. In Proc. ACL, pages 420–429, 2011.

[30] P. Domingos and D. Lowd. Markov logic: An interface layer for artifi-

cial intelligence. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 3(1), 2009.

[31] G. Erkan and D. R. Radev. LexRank: Graph-based lexical centrality as

salience in text summarization. JAIR, 22:457–479, 2004.

[32] D. Fierens, G. V. d. Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,

G. Janssens, and L. De Raedt. Inference and learning in probabilistic logic

programs using weighted boolean formulas. arXiv preprint arXiv:1304.6810

(to appear in Theory and Practice of Logic Programming), 2013.

[33] E. Filatova and V. Hatzivassiloglou. A formal model for information selec-

tion in multi-sentence sentece extraction. In Proc. COLING, 2004.

[34] L. Getoor and B. Taskar. Introduction to statistical relational learning. The

MIT press, 2007.

[35] D. Gillick and B. Favre. A scalable global model for summarization. In

Proc. the NAACL/HLT Workshop on Integer Linear Programming, 2009.

[36] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz. Multi-document

summarization by sentence extraction. In Proc. of ANLP/NAACL Workshop

on Automatic Summarization, 2000.

[37] B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter learning

in probabilistic databases: A least squares approach. In Proc. ECML/PKDD,

pages 473–488, 2008.

88

[38] B. Gutmann, I. Thon, and L. De Raedt. Learning the parameters of proba-

bilistic logic programs from interpretations. In Proc. ECML/PKDD, pages

581–596, 2011.

[39] T. H. Haveliwala. Topic-sensitive PageRank. In Proc. WWW, pages 517–

526, 2002.

[40] T. N. Huynh and R. J. Mooney. Online structure learning for markov logic

networks. In Proc. ECML/PKDD, 2011.

[41] G. Jeh and J. Widom. Scaling personalized web search. In Proc. WWW,

pages 271–279, 2003.

[42] F. Jelinek. Fast sequential decoding algorithm using a stack. IBM Journal of

Research and Development, 13:675–685, 1969.

[43] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploiting

the block structure of the web for computing PageRank. Technical report,

Stanford University, 2003.

[44] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrap-

olation methods for accelerating PageRank computations. In Proc. WWW,

pages 261–270, 2003.

[45] C. Karande, K. Chellapilla, and R. Andersen. Speeding up algorithms on

compressed web graphs. Internet Mathematics, 6(3):373–398, 2009.

[46] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem.

Information Processing Letters, 70(1):39–45, 1999.

[47] J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like

method and comparisons. SIAM J. on Scientific Computing, 33(6):3261–

3281, 2011.

89

[48] D. Koller and N. Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

[49] B. H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algo-

rithms. Springer Verlag, 2008.

[50] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data. In Proc. ICML,

pages 282–289, 2001.

[51] D. D. Lee and H. S. Seung. Algorithm for non-negative matrix factorization.

In Proc. NIPS, 2000.

[52] C. Lin. Projected gradient methods for nonnegative matrix factorization.

Neural computation, 19(10):2756–2779, 2007.

[53] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In

Proc. Workshop on Text Summarization Branches Out, 2004.

[54] C.-Y. Lin and E. Hovy. The automated acquisition of topic signatures for

text summarization. In Proc. COLING, 2000.

[55] H. Lin and J. Bilmes. Multi-document summarization via budget maximiza-

tion of submodular functions. In Proc. NAACL/HLT, 2010.

[56] H. Lin and J. Bilmes. A class of submodular functions for document sum-

marization. In Proc. ACL/HLT, 2011.

[57] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information

retrieval. Cambridge university press Cambridge, 2008.

[58] R. McDonald. A study of grobal inference algorithm in multi-document

summarization. In Proc. ECIR, 2007.

90

[59] L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic

regression. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(1):53–71, 2008.

[60] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial

problems. In Proc. DAC, pages 272–277, 1993.

[61] H. Morita, R. Sasano, H. Takamura, and M. Okumura. Subtree extractive

summarization via submodular maximization. In Proc. ACL, pages 1023–

1032, 2013.

[62] S. Muggleton. Stochastic logic programs. Advances in inductive logic pro-

gramming, 32:254–264, 1996.

[63] C. Muise, S. A. McIlraith, J. C. Beck, and E. I. Hsu. Dsharp: fast d-dnnf

compilation with sharpsat. In Advances in Artificial Intelligence, pages 356–

361. Springer, 2012.

[64] M. Nishino, A. Yamamoto, and M. Nagata. A sparse parameter learning

algorithm for probabilistic logic program. In Proc. AAAI workshop StarAI,

2014.

[65] M. Nishino, N. Yasuda, T. Hirao, J. Suzuki, and M. Nagata. Lagrangian re-

laxation for scalable text summarization while maximizing multiple objec-

tives. Trans. of the Japanese Society for Artificial Intelligence, 28(5):433–

441, 2013.

[66] M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Accelerating graph ad-

jacency matrix multiplications with adjacency forest. In Proc. SDM, pages

1073–1081, 2014.

[67] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation

ranking: Bringing order to the web. Technical report, Stanford University,

1999.

91

[68] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in

Optimization, 1(3):123–231, 2014.

[69] D. Poole. The independent choice logic and beyond. In Probabilistic induc-

tive logic programming, pages 222–243. Springer, 2008.

[70] L. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[71] J. Renkens, D. Shterionov, G. Van den Broeck, J. Vlasselaer, D. Fierens,

W. Meert, G. Janssens, and L. De Raedt. Problog2: From probabilistic pro-

gramming to statistical relational learning. In Proc. of the NIPS Probabilistic

Programming Workshop, 2012.

[72] A. M. Rush and M. Collins. A tutorial on dual decomposition and lagrangian

relaxation for inference in natural language processing. JAIR, 45:305 – 362,

2012.

[73] A. M. Rush, D. Sontag, and M. Collins. On dual decomposition and linear

programming for natural language processing. In Proc. EMNLP, 2010.

[74] T. Sato. A statistical learning method for logic programs with distribution

semantics. In Proc. ICLP, pages 715–729, 1995.

[75] T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-

statistical modeling. JAIR, 15:391–454, 2001.

[76] P. Singla and P. Domingos. Lifted first-order belief propagation. In Proc.

AAAI, volume 8, pages 1094–1099, 2008.

[77] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13(4):354–356, 1969.

92

[78] H. Takamura and M. Okumura. Text summarization model based on maxi-

mum coverage problem and its variant. In Proc. EACL, 2009.

[79] H. Takamura and M. Okumura. Text summarization model based on the

budgeted median problem. In Proc. CIKM, 2009.

[80] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), pages 267–288,

1996.

[81] G. Van den Broeck, N. Taghipour, W. Meert, J. Dvis, and L. De Raedt. Lifted

probabilistic inference by first-order knowledge compilation. In Proc. IJCAI,

pages 2178–2185, 2011.

[82] D. Venugopal and V. Gogate. On lifting the gibbs sampling algorithm. In

Proc. NIPS, pages 1655–1663, 2012.

[83] J. Willcock and A. Lumsdaine. Accelerating sparse matrix computations via

data compression. In Proc. ICS, pages 307–316, 2006.

[84] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Opti-

mization of sparse matrix-vector multiplication on emerging multicore plat-

forms. In Proc. ICS, pages 1–12, 2007.

[85] V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In

Proc. STOC, pages 887–898, 2012.

[86] K. Woodsend and M. Lapata. Multiple aspect summarization using integer

linear programming. In Proceedings of the EMNLP/CoNLL 2012, 2012.

[87] N. Yasuda, M. Nishino, T. Hirao, J. Suzuki, and R. Kataoka. A query-

focused summarization method that guarantees the inclusion of query words.

In Proc. TIR, pages 126–130, 2012.

93

[88] W.-T. Yih, J. Goodman, L. Vanderwende, and H. Suzuki. Multi-document

summarization by maximizing informative content-words. In Proc. IJCAI,

2007.

[89] M. Yuan and Y. Lin. Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), 68(1):49–67, 2006.

[90] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Trans.

Algorithms (TALG), 1(1):2–13, 2005.

[91] J. M. Zelle and R. J. Mooney. Inducing deterministic prolog parsers from

treebanks: A machine learning approach. In AAAI, pages 748–753, 1994.

94

The contents in Chapter 2 were first published in Transactions of the Japanese Society for

Artificial Intelligence, 28(5).

The contents in Chapter 4 were first published in Proceedings of 2014 SIAM International

Conference on Data Mining, published by the Society of Industrial and Applied Mathematics

(SIAM). Copyright © SIAM. Unauthorized reproduction of this article is prohibited.

	課・西野正彬・全文.pdf
	Introduction
	Numerical Optimization for Natural Language Processing and Machine Learning
	Optimization Algorithm based on Discrete-Structure-based Decomposition
	Text Summarization and Relational Learning
	The Outline of this Thesis

	Lagrangian Relaxation for Scalable Text Summarization while Maximizing Multiple Objectives
	Text Summarization as a Combinatorial Optimization Problem
	An Objective Function for Text Summarization
	Relevance Score
	Redundancy Score
	Coverage Score
	ILP Formulation

	Lagrangian Relaxation
	Maximizing the Relevance Score
	Maximizing the Redundancy Score
	Maximizing the Coverage Score

	Evaluation
	Settings
	Results and Discussions

	Related Work
	Chapter Summary

	A Sparse Parameter Learning Method for Probabilistic Logic Programs
	Parameter Estimation for Probabilistic Logic Program
	Preliminaries
	Parameter Learning
	Motivating Examples
	Learning Algorithm
	Projected Gradient Algorithm
	Computation of gradient

	Discussion
	Evaluation
	Settings
	Results

	Related Work
	Chapter Summary

	Accelerating Graph Adjacency Matrix Multiplications with Adjacency Forest
	Adjacency Matrix Multiplications in Data Analysis
	Motivating Use Cases
	Personalized PageRank
	Non-negative Matrix Factorization

	Adjacency Forest
	Single Tree Adjacency Forest
	Matrix Multiplication with a STAF
	Properties of the Matrix Multiplication Algorithm
	General Adjacency Forest

	Reduce Size of Adjacency Forest
	Evaluation
	Settings
	Results

	Related Work
	Chapter Summary

	Conclusion
	Summary of the Results
	Future Research Directions

	課・西野正彬・著作権.pdf

