<table>
<thead>
<tr>
<th>Title</th>
<th>Direct micro-carbonization inside polymer using focused femtosecond laser pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Morita, Naoto; Shimotsuma, Yasuhiko; Nishi, Masayuki; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Physics Letters (2014), 105(20)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-11-17</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/192481</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Direct micro-carbonization inside polymer using focused femtosecond laser pulses
Naoto Morita, Yasuhiko Shimotsuma, Masayuki Nishi, Masaaki Sakakura, Kiyotaka Miura, and Kazuyuki Hirao

Citation: Applied Physics Letters 105, 201104 (2014); doi: 10.1063/1.4902235
View online: http://dx.doi.org/10.1063/1.4902235
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/20?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Mechanical properties of polymer/carbon nanotube composite micro-electromechanical systems bridges

Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse
J. Appl. Phys. 109, 023503 (2011); 10.1063/1.3533431

Efficient laser textured nanocrystalline silicon-polymer bilayer solar cells

Template-free synthesis of conducting-polymer polypyrrole micro/nanostructures using electrochemistry

Dual ring laser emission of conducting polymers in microcapillary structures
Appl. Phys. Lett. 86, 141903 (2005); 10.1063/1.1899229
Coherent photon pulses with duration in femtosecond regime have opened new frontiers in material research of light-matter interactions.1,2 The ultrafast feature of femtosecond laser pulses has been widely used for direct imaging of chemical reactions in gases3 and terahertz spectroscopy based on photoconductive emitters4 excited by femtosecond lasers. As a source of localized energy deposition, intense ultrashort light pulses have become key technologies for direct modification inside transparent materials due to new applications and phenomena ranging from 3D optical waveguides,5 5D optical storage,6,7 polarization imaging sensor,8,9 to 3D self-organized subwavelength nanostructures.10 The process, initiating by a multiphoton ionization, exhibits a highly nonlinear dependence on the intensity of the light beam. The light is absorbed by photoelectrons, and the optical excitation ends before the surrounding lattice is perturbed, which results in highly localized breakdown without collateral damage of material.11 In recent years, the existence of non-thermal ultrafast phase transitions has been observed on the surface of several materials such as silicon,12 gallium arsenide,13 and carbon.14,15 In many cases, these transient phases are metal-like disordered or glassy phases resulting from laser-induced electron-hole plasma. More recently, a variety of permanent and metastable phase transformations, which are based on the structural rearrangement due to thermal accumulation16 and the shock wave generation,17 have been observed.18-20 Polymer materials such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), and polydimethylsiloxane (PDMS) are widely used in many applications due to high adjustable properties, high chemical resistance and advantageous optical properties. In the last decade, many researchers extensively have studied on the interaction between polymer materials and femtosecond laser pulses, ranging from multi-photon photo-polymerization,21 polarization-dependent surface ablation,22 to refractive index change.23 However, few investigations relating spatial modification of electron properties based on the phase transformation were performed.13,24 Here, we report the observation of a localized photoconversion to graphite-like structure inside polyfluorene derivatives composed of 3D cardo structures induced by intense ultrashort light pulses. The spiral microstructures composed of an amorphous carbon are continuously formed inside polyfluorene along with the laser spot moving by using a spatial light modulator (SLM). Depending on the writing conditions, such photoinduced amorphous structures have electrical conducting properties of a maximum of 30 S/m.

In the experiments, a regeneratively amplified mode-locked Ti:Sapphire laser pulse (Coherent Inc.; central wavelength: 800 nm, pulse width: 70 fs, pulse repetition rate: 1 kHz) was focused via an objective lens (Nikon; LU Plan Fluor, 60 × 0.55 N.A.) into a polyfluorene sample (Osaka Gas Chemical Co.; bland of OKP4) of 10 × 10 × 3 mm size. This polyester has a high refractive index of 1.607, extremely low birefringence, and high transparency (optical band gap of ~4 eV). The pulse energy was tuned by a neutral density filter. A series of cylindrical structures with certain spacing were directly written by scanning with the typical speed of 2 µm/s along the laser irradiation direction from the bottom to the top surface. A typical diameter of the cylindrical modified region for the pulse energy of 100 nJ was estimated to be ~2 µm. The spiral microstructures were written by moving the sample in the direction of light propagation from the bottom to the top surface during the irradiation of femtosecond laser pulses. During moving sample, the lateral position of the laser focal spot was moved by changing spatial phase on SLM (Hamamatsu Photonics; LCOS-SLM). After writing, the sample surface was polished along the modified region, and then the cross-sectional surface was inspected by using an optical microscope, a scanning electron microscope (JEOL; JSM-6700F), and a confocal Raman spectrometer (Tokyo Instruments; Nanofinder 30). The local electrical properties of the photoinduced structures were evaluated by a nano-probing system (Hitachi High-Tech; N-6000).

A black cylindrical structure was induced inside the sample without any surface damages for the laser fluence larger than 1.6 J/cm2 (Fig. 1(b)). Therefore, the threshold of the photoinduced structural change inside polyfluorene was estimated to 1.6 J/cm2. The scanning electron images (SEIs) reveal that the morphology within a laser-irradiated region obviously remain densified, namely, a void does not exist (Figs. 1(c) and 1(d)). Incidentally, the dark spot in the middle...
The distance between the two probes were measured by using two-terminal method. The contact resistances was very small enough to be ignored. We also confirmed that the electrical resistivities of the modified regions were proportional to the distance between nanoprobes. Fig. 2(d) shows the current-voltage characteristics as a function of the laser fluence. Although the initial polyfluorene shows no electrical conductivity, the photoinduced structures in polyfluorene exhibit electrical conductive properties depending on the laser fluence; especially, the maximum conductivity was obtained at about 20 J/cm². Assuming that a measured region is a semicircular column-shaped structure (Fig. 2(a)), the electrical conductivities of the photoinduced structures can be obtained from the following equation: \[\sigma = \frac{6L}{\pi DR^2} \] where \(\sigma \) and \(R \) is the electrical conductivity and the measured resistance for the photoinduced structure with the length of \(L \) and the diameter of \(D \) (Fig. 2(a)). Despite the increase of the diameter of the induced structure with increasing the laser fluence, the electrical conductivities increase slightly with increase of the laser fluence, and then reached the maximum of about 30 S/m at the laser fluence of about 20 J/cm². Because this result is contrary to the equation, we speculated that there are other dominant factors affecting the conductivities. Considering the fact that the Raman intensity of the \(I_{2D}/I_{G} \) is inversely proportional to the graphite crystallize size, the relatively ordered carbon structures are thought to be formed in the relatively low fluence (Fig. 4(b)). While, in the case of the higher laser fluence than 20 J/cm², unfortunately, the electrical conductivities decreased dramatically.

To investigate the decrease of electrical conductivity for higher laser fluence, we performed the time sequential observation of the photoinduced structure corresponding to the number of pulses (Fig. 3). The modifications induced by three different laser fluence were observed from the direction perpendicular to the laser propagation (\(k_w \)). In the initial stage below 10 pulses, the structural modification occurs via multiphoton ionization process, regardless of the laser fluence. In this process, a filamentous fine structure was formed around the beam focus. After the several tens of pulses, the structural change was elongated to the laser incident direction, which can be interpreted in terms of the thermal process through the one-photon absorption by the existing modified structure, because the \(\pi \) electrons in graphite show a broad absorption from UV to IR. In the case of the low laser fluence of 6.3 J/cm², a black teardrop-shaped structure was formed. Such shape is considered to be attributed to the spherical aberration due to the refractive index mismatch between the air and the polyfluorene. In particular, in the case of the higher laser energy, it is well known that the filamentation caused by the balance between the self-focusing and the plasma generation also extend the modification along the laser propagation direction. This phenomenon causes severe localization of the laser energy, leading to the
formation of the thick and discontinuous structures. Indeed, the thicker teardrop-shaped structures caused by the multiple filamentation were induced for the higher laser fluence than 18.9 J/cm².

In order to reveal the microscopic structural change induced by laser irradiation, we carried out micro-Raman spectroscopy on the cross-sectional surface with 1 µm spatial resolution (Fig. 4). The several narrow peaks corresponding to the ring stretch mode of fluorene and the C-C stretching mode between phenylene rings were observed in the Raman spectrum of the initial polymer. On the other hand, in the photoinduced structures, two broad Raman peaks were observed at around 1580 cm⁻¹ and 1345 cm⁻¹. These two peaks are attributed to the G-peak (∼1580 cm⁻¹) and the D-peak (∼1345 cm⁻¹), which are derived from disordered carbon structure (Fig. 4(a)). These peaks are normally assigned to optical zone center phonon of E²g symmetry involving the in-plane bond-stretching motion of all pairs of sp² sites and K-point phonons of A¹g breathing mode of C sp² atoms in rings, respectively.²⁷ The broad D-peak is indicative of the existence of disordered carbon in a carbon network, showing that the photoinduced structures are composed of graphite transformed from conformation of a polyfluorene derivative. Furthermore, the shape of Raman spectrum is considered to depend on a number of factors: clustering of the sp² phase, structural disorder, or the sp²/sp³ ratio.²⁷ Results of the curve-fitting indicate a large overlap between G- and D-peaks, implying that a crystallite size of sp² carbon structure is quite small (Fig. 4(a)). It is well known that the intensity ratio of \(I_D/I_G\), called as R-value, increases with increasing disorder.²³ The R-value for the photoinduced structures slightly decreased from 6 to 4 with increase in the laser fluence and reached a minimum at about 20 J/cm² (Fig. 4(b)). These results indicate that the degree of disorder is high and amorphous carbon is induced, suggesting that the percentage of the photoinduced sp² carbon is small. To improve the electric conductivities, a polymer structure in which aromatic rings are oriented three-dimensionally is required.

Another possibility of the low electrical conductivities of the photoinduced structures compared to the graphite is density of the modified region. Fluorene derivative polymer has lower density of about 1.22 g/cm³ compared to that of graphite of 2.26 g/cm³. Although the photoinduced regions were relatively dense, very fine nanovoids with several nanometers size were observed (Fig. 1(e)). These nanovoids cause to decrease the conductivity of photoinduced structure. Besides, in the case of the higher laser fluence, although the R-value changes little, the formation of the discontinuous structures owing to the multi filaments implies the low electric conductive properties. When the structural densification
as large as the density of graphite can be induced inside a focal volume, it is possible to enhance the electrical conductivities. Recently, an atomistic simulation of graphitization of the diamond surface by laser irradiation was reported.24 This permanent phase transformation can be interpreted in terms of the structural rearrangement from the 3D carbon network to the 2D graphite layer due to thermal accumulation and the shock wave generation. Consequently, in the case of the polymer structure including a lot of aromatic rings, graphite is considered to be induced by the femtosecond laser irradiation.

Apart from the basic understanding, we have also demonstrated the formation of the spiral microstructures with an electric conductivity (Fig. 5). Such spiral structure with electric conductivities has a potential to serve as a solenoidal magnetic fields and is reminiscent of a terahertz metamaterial.28 By switching the computer generated holograms (CGH) on the SLM in synchronization with the Z axis motorized stage, the focal spot was connected spirally. The switching speed of the CGH patterns was 60 Hz. The spiral microstructures with the helical period of 40 μm and 80 μm were formed at the stage speed of 1 μm/s and 2 μm/s, respectively. In the case of the helical period of 40 μm, no apparent continuous microstructures were induced. While, for the faster writing speed of 2 μm/s and the lower laser fluence of 1.9 J/cm², the smooth and continuous spiral microstructures were formed. By optimizing the writing conditions, more complicated microstructures with electric conductive properties can be directly formed inside polyfluorene derivative.15

In summary, we have shown that the photoinduced spiral microstructures by the femtosecond laser irradiation exhibit the electric conductive properties of about 30 S/m. Such photoinduced structures are identified as an amorphous carbon with sp² carbon structure. We believe with confidence that such microstructures act as a metallo-dielectric photonic crystals and an electronic devices on flexible platforms.

We would like to thank Dr. Hiroyuki Fujimoto from Osaka Gas Chemicals Co. for polymer sample preparation and Mr. Taiitsu Okubo from Hitachi High-Technologies Co. for lending us the nano-probing system.

![FIG. 5. Optical microscope images of the photoinduced spiral microstructures by the femtosecond laser pulses with the various fluence ranging from 5.6 to 1.9 J/cm² and the different writing speed of (upper row) 1 μm/s and (lower row) 2 μm/s. There are two different magnification photos, respectively.](image-url)