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ABSTRACT

We investigate the hydrodynamical evolution of an ultra-relativistic fireball colliding with a freely expanding gas.
The hydrodynamical interaction of the fireball and the gas results in the formation of a geometrically thin shell.
We study the dynamical evolution of the shell analytically and perform a numerical simulation equipped with
adaptive mesh refinement to investigate the internal structure of the shell. The shocked gas can give rise to bright
emission in the X-ray and gamma-ray energy range. We propose that the breakout emission from the forward shock
and the photospheric emission from the reverse-shocked fireball contribute to early gamma-ray emission from
gamma-ray bursts.
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1. INTRODUCTION

The hydrodynamics of relativistic outflows is of crucial
importance in many astrophysical phenomena. Some high-
energy astrophysical phenomena found in X-ray and gamma-
ray observations can naturally be explained by introducing
relativistic outflows because the observed energy of a photon
emitted from a particle moving at a highly relativistic speed
toward an observer could become much higher than that in
the rest frame of the particle. For example, emission from an
expanding hot gas at relativistic speeds with spherical symmetry,
which is often called a relativistic fireball, is a key ingredient
in understanding the dynamics of gas in extremely energetic
explosive phenomena.

Gamma-ray bursts (GRBs) are one of these explosive phe-
nomena. They are characterized by the sudden appearance of a
bright gamma-ray point source on the celestial sphere (see, e.g.,
Mészáros 2006, for review) and thought to originate from stellar
explosions at cosmological distances. A collimated jet launched
from a compact object at relativistic speeds is needed to account
for the bright gamma-ray emission. Although the mechanism
to produce highly energetic photons is still under debate, some
mechanisms to dissipate a fraction of the kinetic energy of the
flow are indispensable to account for the total energy of the
gamma-ray emission.

It has been recognized that spectra of GRBs are well fitted by
a broken power law, i.e., the so-called Band function (Band et al.
1993). The most widely discussed model to explain the spectral
and temporal features of the prompt gamma-ray emission from
GRBs is the internal shock model, in which shocks propagating
in an ultra-relativistic jet dissipate part of the kinetic energy of
the jet and produce non-thermal particles capable of emitting
highly energetic photons.

Recent observations of GRBs by the BATSE instrument on
the Compton Gamma Ray Observatory and the Fermi satellite
revealed that spectra of some GRBs consist of a component
well fitted by a Planck function in addition to non-thermal
components (Ryde 2004, 2005; Ryde et al. 2006, 2010; Ryde
& Pe’er 2009; Guiriec et al. 2011; Axelsson et al. 2012),
suggesting the presence of photospheres in ultra-relativistic

jets. The photospheric emission from an ultra-relativistic jet is
thought to play important roles in producing the prompt gamma-
ray emission. From a theoretical point of view, contributions of
the photospheric emission to GRB spectra have been widely
discussed (Goodman 1986; Paczynski 1986; Thompson 1994).
Since the discovery of blackbody components in GRB spectra,
great attention has been paid to photospheric emission models
for prompt gamma-ray emission and investigations into the
mechanism that modifies a Planck function into a broken power
law through some dissipative process have been undertaken
(e.g., Giannios 2006; Giannios & Spruit 2007; Beloborodov
2010; Lazzati & Begelman 2010).

The evolution of an ultra-relativistic jet and the interaction
with ambient gas are of great importance in determining the
spectral and temporal features of the gamma-ray emission.
Shock waves are an especially efficient and ubiquitous way
to convert the kinetic energy of a flow into internal energy.
Therefore, the dynamics of relativistic shock waves in various
situations has been considered. The Blandford–McKee solution
(Blandford & McKee 1976), the relativistic extension of the
Sedov–Taylor point explosion problem, is one of the well-
known examples. The dynamical evolution of a relativistic shock
in a stellar atmosphere whose density profile is described as a
power of the distance from the surface has been studied using
a self-similar approach (Nakayama & Shigeyama 2005; Pan &
Sari 2006) and numerical simulations (Kikuchi & Shigeyama
2007). The interaction of freely expanding ejecta moving at
relativistic speeds with an ambient gas is also important because
it could also give rise to bright emission. A self-similar solution
describing the hydrodynamical interaction was discovered by
Nakamura & Shigeyama (2006).

As the progenitor of long-duration GRBs, the gravitational
collapse of the core of a massive star in its final evolutionary
stage is the most plausible scenario because of the so-called
GRB–supernova connection (see, e.g., Woosley & Bloom 2006,
for review). The scenario is schematically illustrated in the
upper panel of Figure 1. In this scenario, an ultra-relativistic
jet emanating from a massive star is responsible for the prompt
gamma-ray emission. The injection and propagation of a jet in a
massive star have been extensively studied both analytically and
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Figure 1. Schematic views of the plausible scenarios for the long (upper panel) and short (lower panel) GRB progenitor systems. In both scenarios, the hydrodynamical
interaction of an ultra-relativistic fireball with freely expanding ejecta could be realized.

(A color version of this figure is available in the online journal.)

numerically. For example, Bromberg et al. (2011) analytically
dealt with the propagation of a jet in an ambient gas and obtained
a criterion for the collimation of the jet. There are a number of
numerical studies on the dynamical evolution of GRB jets (Aloy
et al. 2000; Zhang et al. 2003; Mizuta et al. 2006; Morsony et al.
2007). These studies clarified that the penetration of the jet into
the stellar mantle stratified on the jet results in the formation
of a hot cocoon surrounding the jet (see the upper panel of
Figure 1). Since the cocoon is created by the hydrodynamical
interaction of the jet with the star, the gas in the cocoon moves
at subsonic speeds. Therefore, the gas starts expanding into
the interstellar space in a nearly spherical manner after the
cocoon emerges from the stellar surface. Hereafter, we call the
expanding gas as “ejecta.” When the jet injection continues
after the emergence, the injected jet can leave the star through a
hole created by the jet penetration and propagate almost freely
following the ejecta. Thus, freely expanding ejecta pushed by an
ultra-relativistic fireball is naturally realized in this scenario. In
addition, one can expect that the photospheric emission from the
ejecta powered by the jet would contribute to the early gamma-
ray emission from GRBs when the density of the ejecta is
sufficiently high.

On the other hand, for short GRBs, the merger of double neu-
tron stars (NSs) in a closed binary system, which is schemati-
cally illustrated in the lower panel of Figure 1, is a promising
scenario (Narayan et al. 1992). Numerical relativity is a pow-
erful tool to investigate the dynamics of NS–NS mergers and
resultant gravitational wave signals, which may be detected by
next-generation gravitational wave detectors, such as the ad-
vanced LIGO, advanced VIRGO, and KAGRA (see Duez 2010;
Faber & Rasio 2012, for review). Recent numerical simulations
of NS–NS mergers based on numerical general relativity re-
vealed that materials bound in the gravitational potential of the

binary could be accelerated to the escape velocity of the sys-
tem due to heating by the shock generated from the impact of
the merger (Hotokezaka et al. 2013). The ejected gas travels at
mildly relativistic speeds in a nearly spherical manner. Then, it
gradually approaches free expansion. An ultra-relativistic jet re-
sponsible for the prompt gamma-ray emission is expected to be
launched shortly after the merger. Thus, the launched jet prop-
agates in the ejected material, resulting in the hydrodynamical
interaction of an ultra-relativistic fireball with freely expanding
gas (Nagakura et al. 2014; Murguia-Berthier et al. 2014).

In other words, the hydrodynamical interaction of an ultra-
relativistic fireball with an expanding gas is naturally realized
in potential long and short GRB progenitors. In this paper, we
consider an ultra-relativistic fireball following expanding ejecta
and investigate their hydrodynamical interaction in spherical
symmetry. In Section 2, the dynamical evolution of the gas is
studied in approximate and numerical ways. The propagation of
the shocks forming as a result of the hydrodynamical interaction
between the gases is investigated in detail in Section 3. Then, we
discuss possible processes to produce high-energy emission in
Section 4. We conclude this paper in Section 5. In the following,
we use the unit c = 1, where c denotes the speed of light.

2. DYNAMICAL EVOLUTION OF EJECTA

In this section, we consider the dynamical evolution of ejecta
expanding into the interstellar space and being followed by
an ultra-relativistic fireball with spherical symmetry. Thus,
hydrodynamical variables are functions of the time t and the
radial coordinate r. We denote the radial velocity, the density,
and the pressure of the gas by β(r, t), ρ(t, r), and p(t, r).
The dynamical evolution of these variables is governed by the
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following hydrodynamical equations in spherical symmetry,

∂(ρΓ)

∂t
+

∂(r2ρΓβ)

∂(r3/3)
= 0, (1)

∂(ρhΓ2β)

∂t
+

∂[r2(ρhΓ2β2) + p]

∂(r3/3)
= 2p

r
, (2)

and
∂(ρhΓ2 − p)

∂t
+

∂(r2ρhΓ2β)

∂(r3/3)
= 0, (3)

where the Lorentz factor Γ is expressed in terms of the velocity
as

Γ = 1√
1 − β2

, (4)

and the specific enthalpy h for an ideal gas with an adiabatic
index γ is given by

h = 1 +
γ

γ − 1

p

ρ
. (5)

In this work, we assume that the gas is radiation-dominated and
thus the adiabatic index is fixed to be 4/3.

2.1. Fireball Solution

At first, we consider the profiles of the physical variables in
the fireball. The relativistic fireball solution (Meszaros et al.
1993; Piran et al. 1993; Kobayashi et al. 1999) is a well-known
solution for the special relativistic hydrodynamical equations
with spherical symmetry. A great attention has been paid to this
solution to reveal the nature of GRB jets. In the following, we
briefly review the solution.

We consider a gas continuously injected from r = Rin
at constant mass and energy injection rates, Ṁ and L. It is
convenient to introduce a non-dimensional parameter, η, which
gives the ratio of the energy injection rate to the mass injection
rate,

η = L

Ṁ
. (6)

We assume that the flow is ultra-relativistic, β ∼ 1. Thus, the
balance of the mass and the energy fluxes, Equations (1) and (3),
at r yields

4πr2ρΓ = Ṁ, (7)

and
4πr2ρhΓ2 = L. (8)

Furthermore, the gas is adiabatic along the streamline,

p ∝ ρ4/3. (9)

When the internal energy of the gas dominates over its rest
mass energy, p � ρ, the gas expands by converting its internal
energy into a kinetic one. In this case, the dependence of
the Lorentz factor, the density, and the pressure on the radial
coordinate is found to be

Γ ∝ r, ρ ∝ r−3, p ∝ r−4. (10)

On the other hand, for a gas with rest mass energy much larger
than the internal one, p � ρ, the radial profiles of the variables
are as follows:

Γ = η, ρ ∝ r−2, p ∝ r−8/3, (11)

which is identical to a wind solution with constant velocity and
mass-loss rate.

When a gas with internal energy much larger than the rest
mass energy is released in a small region, the gas initially
expands according to Equations (10). Then the kinetic energy
eventually dominates over the internal one and the gas finally
reaches the state well described by Equations (11).

2.2. Thin Shell Approximation

When the ejecta pushed by an ultra-relativistic fireball are
slower than the fireball and the pressure at the interface between
the ejecta and the fireball is sufficiently small, the forward and
reverse shocks form at the interface and the swept gas forms a
geometrically thin shell. We call the resultant shocked gas the
“shell” hereafter. Then, before going to numerical calculations,
we derive the dependence of the physical variables of the shell
on the time t using a thin shell approximation.

We denote the mass of the shell by Mshell. The shell is
accelerated by the pressure gradient inside the shell. When we
denote the pressure of the post-shock gas of the forward and the
reverse shocks by pfs and prs, the equation of motion of the shell
at a position r = Rshell, which governs the time dependence of
the Lorentz factor Γshell of the shell, is expressed as follows:

d(MshellΓshellβ)

dt
= 4πR2

sh(prs − pfs). (12)

Here, we assume the Lorentz factor Γshell to be much larger
than unity and consider the following limit, β ∼ 1. Thus, the
position Rshell of the shell is proportional to the time t, Rshell ∝ t .
Furthermore, the post-shock pressure pfs at the forward shock
is assumed to be much smaller than prs at the reverse shock,
pfs � prs. Then, the equation of motion can be approximated
as follows:

d(MshellΓshell)

dt
∝ t2prs. (13)

The dependence of the post-shock pressure prs is determined
by the shock jump condition at the reverse shock. The pressure
is proportional to the product of the density of the fireball and
the square of the ratio of the Lorentz factors, Γf and Γshell, of
the fireball and the shell under the strong shock approximation
(see Appendix A for the derivation of the jump condition at the
reverse shock),

prs ∝ ρf
η2

Γ2
shell

∝ t−2Γ−2
shell, (14)

where we denote the pre-shock density at the reverse shock
by ρf , which is proportional to the inverse square of the time,
ρf ∝ t−2, according to Equation (11). We regard the Lorentz
factor η of the fireball to be constant, because the fireball
approaches a steady wind solution at a large distance. The
equation of motion is finally written as

d(MshellΓshell)

dt
∝ Γ−2

shell. (15)

This equation can be solved once the dependence of the mass
Mshell on the time t is determined. We consider cases where the
mass is proportional to a power of the time t, Mshell ∝ tα . The
exponent α cannot be negative as long as the system evolves
with spherical symmetry, because the mass of the gas swept by
the reverse and the forward shocks would increase with time. For
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example, one may assume that the mass of the shell is dominated
by that of the ejecta and most of the ejecta have been swept by
the forward shock. In this case, the mass hardly changes with
time, α = 0.

Under this assumption, the temporal behavior of the Lorentz
factor turns out to be

Γshell ∝ t (1−α)/3. (16)

We also obtain the time dependence of the pressure at the reverse
shock as

prs ∝ t2(α−4)/3. (17)

2.3. Numerical Simulations

We have demonstrated that a geometrically thin shell pushed
by an ultra-relativistic fireball accelerates due to the pressure
gradient inside the shell under the thin shell approximation.
In order to obtain the profiles of hydrodynamical variables in
the shell, we have to numerically integrate the hydrodynamical
Equations (1)–(5). Numerical methods including the adaptive
mesh refinement (AMR) used in this work are briefly described
in Appendix B.

2.3.1. Initial Conditions and Fireball Injection

Numerical calculations are performed in a spherical coordi-
nate system from r = Rin to r = Rout. In this simulation, an
expanding gas is created by injecting part of the energy from the
fireball into a static gas, imitating situations expected to be real-
ized in long GRB progenitors. Initially, a static gas with density
inversely proportional to the square of the radius is distributed
from r = Rin to r = R∗ and surrounded by a dilute gas with
a steady wind profile, which is referred to as the circumstellar
medium (CSM),

ρ(r, 0) =

⎧⎪⎪⎨
⎪⎪⎩

ρ∗

(
r

R∗

)−2

for r � R∗,

ρcsm

(
r

R∗

)−2

for R∗ < r.

(18)

The gas is assumed to be cold. However, zero pressure cannot
be treated in the numerical code used in this work. Thus, we
use sufficiently small, but non-zero, values for the pressure of
the CSM. The following pressure profile is employed so that the
pressure of the gas does not interrupt the propagation of shocks
resulting from the impact of the fireball injection,

p(r, 0) =
⎧⎨
⎩

0.1ρcsm for r � R∗,

0.1ρcsm

(
r

R∗

)−2

for R∗ < r.
(19)

The boundary condition at r = Rin must be specified to
launch a fireball. For a given set of the initial Lorentz factor
Γin, the kinetic luminosity L, and the parameter η, the following
conditions for the velocity, the density, and the pressure are
imposed at r = Rin,

βin =
√

1 − 1

Γ2
in

, (20)

ρin = L

4πηR2
inΓin

, (21)

Figure 2. Results of a numerical calculation of a fireball colliding with a
stationary gas. In the panels, the radial profiles of the Lorentz factor (top),
the density (middle), and the pressure (bottom) at t = 2.0, 5.0, 10.0, 20.0, 60.0,
and 100.0 s are shown as thin solid lines. The initial profiles for these variables
are also plotted as thick dashed lines.

(A color version of this figure is available in the online journal.)

and

pin = γ − 1

γ

(
η

Γin
− 1

)
ρin. (22)

The pressure at the inner boundary pin can also be expressed in
terms of the specific internal energy εin,

pin = (γ − 1)ρinεin. (23)

2.3.2. Results

We carry out a simulation with the following parameters
for the initial configuration of the gas, Rin = 109 cm, R∗ =
1011 cm, Rout = 6 × 1012 cm, ρ∗ = 10−3 g cm−3, and ρcsm =
10−9 g cm−3. The numerical domain is covered by 2048 cells
with the refinement level l = 0 and the maximum refinement
level is set to lmax = 10.

Results of a simulation with an energy injection rate L =
1051 erg s−1, an initial Lorentz factor Γin = 5, and η = 138
(or equivalently εin = 20), are presented in Figures 2 and 3.
Figure 2 shows the snapshots of the radial profiles of the Lorentz
factor, the density, and the pressure at t = 2.0, 5.0, 10.0, 20.0,
60.0, and 100.0 s. At first, the fireball injected from the inner
boundary generates a forward shock propagating in the static
gas at r < R∗ in the earlier stages of the dynamical evolution.
After the forward shock finishes sweeping the gas, the shocked
gas starts expanding into the surrounding medium, which
corresponds to the “ejecta.” The expanding gas is followed by
the fireball, resulting in a geometrically thin shell connected
to the unshocked fireball through the reverse shock. The radial
profiles of the hydrodynamical variables of the fireball are in
good agreement with the relations given in the previous section,
Equation (11), after the Lorentz factor saturates.

2.3.3. Structure of the Shell

The ejecta expand adiabatically after the passage of the
forward shock. Thus, the pressure of the ejecta evolves as
∝ t−4, which decreases faster than the post-shock pressure of
the reverse shock in the fireball. The difference between the
pressure of the preceding ejecta and that of the reverse-shocked
fireball gets larger as time elapses, resulting in the formation of
a shock propagating into the ejecta.

4



The Astrophysical Journal, 796:30 (13pp), 2014 November 20 Suzuki & Shigeyama

Figure 3. Enlarged view of the radial profiles of the Lorentz factor, the density, and the pressure around r = 60 at t = 60 s (left panel) and r = 100 at t = 100 s
(right panel). The AMR refinement level as a function of the radial coordinate r is also plotted in the top panel.

(A color version of this figure is available in the online journal.)

Finally, the system is composed of the following layers, from
the inner boundary to the outer edge of the ejecta: (1) unshocked
fireball, (2) reverse-shocked fireball, (3) forward-shocked ejecta,
and (4) unshocked ejecta. Figure 3 presents the radial profiles
of the Lorentz factor, the density, and the pressure of the shell
at t = 60 and 100 s. The forward shock eventually develops
after the pressure of the preceding ejecta becomes sufficiently
smaller than that of the reverse-shocked fireball. In the left panel
of Figure 3, the forward shock is not clearly recognized yet. On
the other hand, the forward shock and the layers described above
are clearly seen in the right panel of Figure 3.

On the other hand, at the interface between the ejecta and
the ambient stationary gas, a pair of waves, rarefaction-forward
shock or reverse shock-forward shock, is expected to develop,
depending on the pressure of the ejecta and the density of
the ambient gas. In the simulation, the density of the ambient
gas is set to a sufficiently small value so that the ejecta are
hardly affected by the interaction with the ambient gas. As a
consequence, the resultant ejecta travel almost freely as seen
in Figure 3. In the following sections, we focus on the reverse
and forward shocks at the fireball–ejecta interface and do not
consider the waves expected to develop at the ejecta–ambient
gas interface for the sake of simplicity.

3. PROPAGATION OF SHOCK WAVES

In the previous section, we demonstrated that a shock nat-
urally forms in the expanding ejecta due to the fireball–ejecta
interaction. In the numerical simulation, we have created a freely
expanding gas by injecting energy into a static gas at the same
rate as the fireball. However, in long and short GRB progenitors,
ejecta are expected to have various density and Lorentz factors.
In this section, we generally discuss the propagation of the for-
ward and reverse shocks forming at the interface between the
fireball and the ejecta.

3.1. Forward Shock

At first, we consider the temporal evolution of the unshocked
ejecta. For ejecta with the maximum Lorentz factor Γmax, we

assume the following profiles for the density and pressure:

ρ = ρ0

(
t

t0

)−3 (
Γ

Γmax

)−n

, (24)

and

p = p0

(
t

t0

)−4 (
Γ

Γmax

)−s

, (25)

with the Lorentz factor given by

Γ = 1√
1 − (r/t)2

. (26)

This is a solution for the hydrodynamical Equations (1)–(5) with
β = r/t and p � ρ.

3.1.1. Passage of a Strong Shock

We consider the temporal evolution of a shock with the
Lorentz factor expressed by a power-law function of the time t,

Γ2
fs = At−m. (27)

Integrating the shock velocity, βfs � 1 − 1/(2Γ2
fs), with respect

to the time from 0 to t gives the position Rfs of the forward shock
at t,

Rfs = t

[
1 − 1

2(m + 1)Γ2
fs

]
. (28)

The pre-shock values of the Lorentz factor Γfs,u and the density
ρfs,u of the ejecta are obtained as functions of the time t by
substituting the shock position into profiles (26) and (24),

Γfs,u � (m + 1)1/2Γfs, (29)

and

ρfs,u � ρ0

(
t

t0

)−3

(m + 1)−n/2

(
Γfs

Γmax

)−n

, (30)

where we have assumed that the shock is ultra-relativistic,
Γfs � 1.
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Table 1
Values of y, fρ , and fp for Some Values of the Exponent m

m y fρ fp

−0.5 0.952 7.18 0.107
−0.6 0.937 7.31 0.191
−2/3 0.926 7.45 0.282

3.1.2. Shock Jump Condition

The post-shock Lorentz factor Γfs,d is found by solving
Equation (A9). Introducing the ratio y of the post-shock Lorentz
factor to the shock Lorentz factor,

Γfs,d = yΓfs, (31)

one has to solve the following cubic equation to find y (see
Appendix A for the derivation),

γy3 + 2(m + 1)1/2y2 − 2y − γ (m + 1)1/2 = 0. (32)

The post-shock density and pressure are obtained from
Equations (A10) and (A12),

ρfs,d = ρfs,u
my

(m + 1)1/2(y2 − 1)
≡ fρρfs,u, (33)

and

pfs,d = ρfs,u
m(m + 1 − y2)

2(m + 1)(y2 + m + 1)
≡ fpρfs,u. (34)

It is worth noting that the time dependence of these quantities
ρfs,d and pfs,d are exactly the same as that of the pre-shock
density ρfs,u. This is because both the pre-shock and the post-
shock Lorentz factors are proportional to the shock Lorentz
factor. Numerically evaluated values of y, fρ , and fp for some
values of m are presented in Table 1.

3.2. Reverse Shock

In the relativistic fireball, the reverse shock forms and converts
the kinetic energy of the fireball into the internal energy of
the shocked gas. When the reverse shock is at r = Rrs(t), the
density and the pressure of the gas flowing into the shock front
are expressed as follows:

ρrs,u = ρin

(
Rrs

Rin

)−2

, (35)

and

prs,u = ρinε0

3

(
Rrs

Rin

)−8/3

. (36)

Assuming a strong shock, one finds the post-shock density ρrs,d
and the pressure prs,d from Equations (A14) and (A15),

ρrs,d =
√

2
η

Γrs
ρin

(
Rrs

Rin

)−2

, (37)

and

prs,d = 2

3

η2

Γ2
rs

ρin

(
Rrs

Rin

)−2

. (38)

From the thin shell approximation, the shock Lorentz factor
evolves as:

Γrs ∝ t (1−α)/3. (39)

Therefore, the time dependence of these two variables is found
to be

ρrs,d ∝ t (α−7)/3, (40)

and
prs,d ∝ t2(α−4)/3. (41)

The time dependence of the pressure is identical with that
derived under the thin shell approximation in Section 2.2.

3.3. Comparison with Numerical Simulation

From the numerical simulation presented in the previous
section, we find that the Lorentz factor Γpeak, the density ρpeak,
and the pressure ppeak at the point where the density profile
shows a peak evolve as

Γpeak ∝ t0.32, ρpeak ∝ t−1.8, ppeak ∝ t−2.5, (42)

by fitting a power-law function of the time t from t = 50 s to
t = 100 s. On the other hand, from the thin shell approximation
and the theoretical consideration in this section, the temporal
behavior of these variables with α = 0 should be

Γrs ∝ t0.33, ρrs,d ∝ t−2.3, prs,d ∝ t−2.7. (43)

The exponents of the Lorentz factor and the pressure obtained
from the numerical simulation are in good agreement with the
theoretical values. The density decreases at a slower rate than
the theoretical expectation. In fact, the density peak is located
at the contact discontinuity separating the shocked fireball and
the ejecta as seen in Figure 3. At the contact discontinuity,
the swept gas exhibits a sharp peak in the density and the
temporal evolution of the peak value of the density seems to
be significantly affected by the resolution of the numerical
simulation. This is why the exponent of the temporal evolution
of the peak density deviates from the theoretical value. On the
other hand, the Lorentz factor and the pressure of the shocked
fireball and the ejecta are continuous at the contact discontinuity.
Therefore, the numerically obtained exponents of the Lorentz
factor and the pressure agree well with the theoretical values.

We also fit power-law functions of the time t to the temporal
evolution of the Lorentz factor, the density, and the pressure of
the gas immediately behind the reverse shock from t = 65 s to
t = 100 s and obtain the following scaling laws,

Γrs,sim ∝ t0.11, ρrs,sim ∝ t−2.2, prs,sim ∝ t−2.3. (44)

Although the exponent of the temporal evolution of the den-
sity agrees with the value expected from the analytical consid-
erations, those of the Lorentz factor and the pressure deviate
from the analytical values. For the forward shock, it is hard to
correctly measure the values of the hydrodynamical variables
behind the front because the shock structure gradually develops
after the pressure of the ejecta decreases to a sufficiently small
value as we have described in Section 2.3.3.

4. EXPECTED EMISSION FROM SHOCKED GAS

The ejecta are dense and opaque immediately after the
formation and the photosphere is initially located at the outer
edge of the ejecta. As the ejecta expand, the photosphere recedes
from the forward shock. As a consequence, the photosphere
eventually enters into the fireball. In this section, we summarize
the expected phenomena capable of producing bright X-ray or
gamma-ray emission.
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4.1. Shock Breakout from Expanding Ejecta

The forward shock propagating in the ejecta emerges from
the photosphere, which leads to bright shock breakout emission.
From analytical considerations, we find the ratio of the pre-
shock Lorentz factor of the ejecta to the forward shock Lorentz
factor to be (1 + m)−1/2 = 1.7. The corresponding relative
velocity is ∼0.8, suggesting a mildly relativistic shock breakout.
There are a number of studies on the supernova shock breakout
predicting a bright X-ray flash at the moment of the emergence
of a radiative shock from the stellar atmosphere (Colgate 1974;
Klein & Chevalier 1978; Falk 1978). The stationary structure
of a radiative shock in a radiation-dominated medium was
investigated by several authors (e.g., Weaver 1976; Katz et al.
2010; Budnik et al. 2010). Furthermore, Nakar & Sari (2010,
2012) studied the emission from the gas ejected from the stellar
surface. The radiative shock emerging from the photosphere in
a freely expanding gas might produce electromagnetic signals
similar to those predicted by the earlier studies. In the following,
we estimate the expected average photon energy and the
isotropic luminosity of the flash by using a simplified model.

4.1.1. Breakout Radius

The photospheric radius of the ejecta is calculated as follows.
The optical depth of the gas measured from a radius r = r∗ to
the outer edge of the ejecta along the radial direction at t = t∗
is given by

τ (t∗, r∗) =
∫ ∞

r∗
κρΓ(1 − β) dr (45)

(e.g., Abramowicz et al. 1991). We assume that the dominant
opacity source is electron scattering, κ = κes = 0.2 cm2 g−1,
which is reasonable for a fully ionized hot gas. It is worth
noting that the density and the Lorentz factor of the gas evolve
as the photon ray of interest moves toward the outer edge of the
ejecta. We define the photospheric radius Rph at t = t∗ as the
radius where the thus calculated optical depth is equal to unity.
Therefore, it is obtained by solving the following equation with
respect to Rph,

τ (t∗, Rph) = 1. (46)

We consider a freely expanding gas with the density,
the pressure, and the Lorentz factor profiles given by
Equations (24), (25), and (26). The parameters characterizing
the profiles are t0 = 10 s, Γmax = 20, ρ0 = 10−5 g cm−3, and
p0/ρ0 ≡ f0 = 0.03. The exponents n and s are set to n = 1
and s = 4n/3, which gives a spatially uniform entropy profile,
p/ρ4/3 = Const. The photospheric radius is numerically calcu-
lated for the given set of parameters and the distance t − Rph
between the photosphere and r = t is shown as a function of the
time t in Figure 4. On the other hand, specifying the value of A
in Equation (27), the position of the forward shock is obtained
from Equation (28). The distance t − Rfs between the forward
shock and r = t is plotted in Figure 4 for A = 20, 50, 70,
and 100. For a specific value of the parameter A, the breakout
time when the forward shock emerges from the photosphere is
obtained as the time satisfying Rph = Rfs, i.e., the intersection
of the curves showing t −Rph and t −Rfs in Figure 4. The radius
of the photosphere at the breakout time is called the breakout
radius and denoted by Rbr. Larger values of the parameter A in-
dicate faster forward shocks, leading to earlier breakout times.
This is why smaller breakout radii are realized for larger values
of the parameter A as shown in Figure 4.

Figure 4. Temporal evolution of the positions of the photosphere and the forward
shock for the ejecta model considered in Section 4.1.1. The distance of the
photospheric radius (thick black line) and the forward shock (thin red lines)
from r = t is shown as functions of the time t. Forward shocks with A = 20,
50, 70, and 100 are presented.

(A color version of this figure is available in the online journal.)

4.1.2. Estimate of the Average Photon Energy in the Post-shock Gas

Initially, the ejecta are sufficiently dense and equilibrium
between radiation and matter is achieved. We assume that
the internal energy of the ejecta is dominated by radiation.
Denoting the post-shock pressure by pfs,d, the equilibrium
photon temperature Teq can be obtained by solving

arT
4

eq = 3pfs,d, (47)

where ar is the radiation constant. On the other hand, the time teq
required for the post-shock gas to achieve equilibrium between
matter and radiation by producing a sufficient number of photons
via the free–free process is estimated by dividing the internal
energy density arT

4
eq by the free–free emissivity εff ,

teq = Γ
arT

4
eq

εff
, (48)

where the Lorentz factor of the gas in the above expression is
needed to convert the timescale in the comoving frame of the gas
to that in the laboratory frame. This timescale is usually much
longer at t > 100 s than the elapsed time for the parameters of
interest. Therefore, we can assume that the photon production
via the free–free process after the passage of the forward shock
is negligible. In such a situation, the internal energy produced
by the dissipation of the shock kinetic energy is shared by ions,
electrons, and photons swept by the shock. The ion and electron
number density in the pre-shock gas with the density ρfs,u are
estimated to be

nion = ne

Zion
= ρfs,u

Aionmu
, (49)

where the gas is assumed to be fully ionized and the mass and
the atomic numbers of ions are denoted by Aion and Zion. The
photon temperature Tfs,u and the photon number density nfs,u in
the pre-shock gas is estimated by

Tfs,u =
(

3pfs,u

ar

)1/4

, (50)
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Figure 5. Lorentz factor, the estimated luminosity, the observed photon
temperature, and the density at the photosphere as functions of the breakout
radius.

(A color version of this figure is available in the online journal.)

and

nfs,u = arT
3

fs,u

3kB
, (51)

where kB is the Boltzmann constant. For parameters of interest,
the number density of photons is much larger than those of ions
and electrons.

These photons are tightly coupled with electrons through
Compton scattering. Thus, at the shock front, the jump in the
photon number density is same as that in the rest mass density.
After energy equipartition between gas and radiation is realized
via Compton scattering, the average energy for a single photon
would be

εfs,d = 3pfs,d

fρnfs,u
, (52)

if we assume that nfs,u � ne, nion. If the photosphere is present
immediately after the forward shock, radiation with the doppler-
boosted average photon energy,

εfs,obs = Γfs,dεfs,d, (53)

would be observed. The thus estimated observed photon energy
is shown as a function of the breakout radius in Figure 5.

Although we have assumed that the number of photons does
not change in the course of the energy equipartition, some
processes changing the number of photons and electrons, such
as double Compton scattering and pair production, may increase
the number densities of photons and electrons and change the
average photon energy. The thermal evolution of the mixture
of gas and radiation toward energy equipartition should be
investigated in detail to find the accurate value of the average
photon energy. In the following, we simply note that emission
with the photon energy given in Equation (53) is observed as
the shock breakout emission.

4.1.3. Luminosity

The isotropic luminosity of the breakout emission is estimated
as follows. We assumed that the internal energy of the post-shock

gas is dominated by radiation. In addition, we assumed that the
radiation field in the post-shock gas is isotropic in the comoving
frame of the gas and the gas is moving at ultra-relativistic
speeds, Γfs,d � 1. From the Lorentz transformation of the
energy–momentum tensor of the radiation field, the radiative
flux Ffs along the radial direction in the laboratory frame can be
obtained as

Ffs � 4

3
Γ2

fs,dufs,d � 4Γ2
fs,dpfs,d. (54)

The isotropic luminosity for the breakout emission with the
breakout radius Rbr is estimated to be

Lfs = 16πffsR
2
brΓ

2
fs,dpfs,d, (55)

where we have introduced a parameter ffs representing the
efficiency of the emission. The luminosity thus estimated with
ffs = 1 is shown as a function of the breakout radius in Figure 5.

4.2. Photospheric Emission from
the Reverse-shocked Fireball

After the shock breakout emission, photospheric emission
from the shocked fireball is expected.

4.2.1. Estimation of the Average Photon Energy
in the Post-shock Gas

We estimate the average photon energy of the post-shock
gas in the same way as the breakout emission. We evaluate the
photon number density immediately after the shock passage.
The number density of photons is expected to be

nrs,u = arT
3

ph

3kB
= a

1/4
r ρ

3/4
in ε

3/4
in

3kB

(
Rrs

Rin

)−2

(56)

before being swept by the shock. Thus, the post-shock value of
the photon number density leads to

nrs,d =
√

2nrs,u
η

Γrs
=

√
2a

1/4
r ρ

3/4
in ε

3/4
in

3kB

η

Γrs

(
Rrs

Rin

)−2

. (57)

We estimate the average photon energy εrs,d by dividing the
post-shock internal energy, which is given by 3prs,d, by the
post-shock photon number density,

εrs,d = 3
√

2kBρ
1/4
in

a
1/4
r ε

3/4
in

η

Γrs
= 3

√
2kBL1/4η3/4

(4π )1/4a
1/4
r ε

3/4
in R

1/2
in Γ1/4

in Γrs

. (58)

Since the post-shock Lorentz factor for the reverse shock with
the Lorentz factor Γrs is given by

Γrs,d =
√

2Γrs, (59)

the average photon energy in the observer frame leads to

εrs,obs = Γrs,dεrs,d = 6kBL1/4η3/4

(4π )1/4a
1/4
r ε

3/4
in R

1/2
in Γ1/4

in

. (60)

4.2.2. Luminosity

Then, we estimate the isotropic luminosity of the photo-
spheric emission when the photosphere is close to the reverse
shock in the same way as the breakout emission. The isotropic
luminosity Liso,rs is estimated to be

Liso,rs � 16πfrsR
2
rsΓ

2
rsprs,d = 32π

3
frsR

2
inη

2ρin = 8

3
frsL

η

Γin
,

(61)
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where a parameter frs representing the efficiency of the emission
has been introduced.

4.3. Implications for GRB Prompt Emission

In the previous sections, we proposed that the breakout emis-
sion from the forward shock in the ejecta and the photospheric
emission from the reverse shocked fireball could contribute to
the prompt emission of GRBs.

As described in Section 4.1, larger breakout radii are realized
when smaller values of the parameter A are assumed. The value
of the parameter A depends on the energy and the mass of the
ejecta and thus reflects the structure of the stellar envelope and
the energy deposition from the fireball at the initial phase of the
injection. Since a smaller value of A represents a slower forward
shock, the breakout occurs at a later phase of the dynamical
evolution, resulting in a more dilute medium and less luminous
emission in the breakout. This is why a larger breakout radius (or
equivalently smaller A) produce emission with smaller average
photon energy and luminosity values as shown in Figure 5.
Furthermore, for a fireball with a larger kinetic power and a
mass injection rate, brighter emission is expected.

Recent observations of GRBs by the Fermi satellite have
revealed the temporal behaviors of the prompt gamma-ray
emission in great detail. The delayed detection of GeV photons
(Abdo et al. 2009, 2010) is especially one of the outstanding
features of bursts observed by Fermi. In other words, spectra
become harder in the later phase of the prompt emission. In
addition, components well fitted by Planck functions are found
in the prompt emission in the first few seconds after the trigger
(Ryde 2004, 2005; Ryde et al. 2006; Axelsson et al. 2012).

From our model, the emission from the forward shock
emerging from the photosphere in the expanding ejecta can
be detected as an early electromagnetic signal. If we take a
model with the breakout radius of Rbr = 200, for example, the
observed average photon energy and the isotropic luminosity
are estimated to be

εfs,obs ∼ 120 keV

(
Γfs

20

) (
fρ

7.5

)−1 (
fp

0.28

)

×
(

ρfs,u

1.3 × 10−9 g cm−3

) (
nfs,u

1.4 × 1019 cm−3

)−1

,

(62)

and

Lfs ∼ 7 × 1051ffs erg s−1

(
Rbr

6 × 1012 cm

)2 (
Γfs

20

)2

×
(

fp

0.28

) (
ρfs,u

1.3 × 10−9 g cm−3

)
, (63)

which are in good agreement with the observed temperature
and luminosity of the thermal components in the BATSE bursts
(Ryde 2004, 2005; Ryde et al. 2006).

After the shock emergence, the photosphere moves into the
inner region of the shell and the photospheric emission from
the reverse-shocked fireball starts contributing to the prompt
gamma-ray emission. In this region, the kinetic power of the
jet is converted to the internal energy of the shocked gas and
escape as radiation. Thus, the luminosity of the emission from
the reverse shock is constant as we have assumed steady energy
injection. For the fireball with L = 1051 erg s−1, Γin = 5, and

εin = 20, which corresponds to η = 138, the observed average
photon energy and the isotropic luminosity yield

εrs,obs = 1 MeV

(
L

1051 erg s−1

)1/4(
η

138

)3/4(
ε0

20

)−3/4

×
(

Rin

109 cm

)−1/2(Γin

5

)−1/4

, (64)

and

Liso,rs = 7 × 1052frs erg s−1

(
L

1051 erg s−1

)( η

138

)(
Γin

5

)−1

.

(65)
These values are similar to the typical values of the spectral
peak energy and the isotropic gamma-ray energy of GRBs.
The shocked gas finally becomes transparent and the emission
from the ultra-relativistic fireball can be seen. The delayed
GeV emission might correspond to the emission from the ultra-
relativistic fireball.

The photospheric emission from the unshocked ejecta would
also contribute to the prompt and the afterglow emission from
GRBs in the soft X-ray range. Recent discovery of a thermal
component (∼0.1–1.0 keV) in the soft X-ray spectra of some
bursts observed by the Swift XRT (see, e.g., Starling et al. 2012;
Sparre & Starling 2012) has invoked discussions on the origin
of the component. The hydrodynamical interaction between the
ambient gas and the ejecta may be important in understanding
the origin of the thermal X-ray emission as pointed out in Suzuki
& Shigeyama (2013).

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have considered the hydrodynamical interac-
tion of an ultra-relativistic fireball with a gas expanding almost
freely and studied the dynamical evolution of the resultant ge-
ometrically thin shell in analytical and numerical ways. In the
analytical considerations, the shell is assumed to have an in-
finitesimal width and the time dependence of the Lorentz factor
is derived from the equation of motion of the shell. Then, we
perform a simulation by using a one-dimensional special rela-
tivistic hydrodynamics code with AMR technique to resolve the
inner structure of the shell. The resultant temporal evolution of
the shell is compared with the analytical considerations.

We point out a possibility that the emission from the for-
ward and reverse shocks at the fireball–ejecta interface could
contribute to the prompt gamma-ray emission of GRBs. Our
findings indicate that the dynamical evolution of the gas ahead
of the ultra-relativistic fireball is of critical importance in un-
derstanding the temporal behavior of the photospheric emission
recently found in some bursts. We have estimated only the av-
erage photon energy and the isotropic luminosity expected in
the breakout and the photospheric emission. To investigate the
temporal evolutions of these quantities, detailed calculations on
how the photosphere in the ejecta evolves with time are required.
We leave investigations of the temporal evolution of the photo-
spheric emission to a future work. We claim that it is needed to
clarify whether the possibility proposed in this work is actually
responsible for early emission from GRBs.

Finally, we have some remarks on the present work. We create
freely expanding ejecta by injecting a jet into a gas with a power-
law density profile and then investigate the hydrodynamical
interaction between the ejecta and the jet. Freely expanding
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ejecta with different density structure might be realized in some
short GRB progenitor. Although the analysis of the density
structure of freely expanding ejecta resulting from an NS–NS
merger in recent simulations of an NS–NS merger (Hotokezaka
et al. 2013; Nagakura et al. 2014) revealed that the density
profile is well described by a power-law function of the radius,
we cannot exclude a possibility that ejecta with a more complex
density profile could be created as a result of an NS–NS merger.

Although this work considers the dynamical evolution of the
fireball and the ejecta with spherical symmetry, the gamma-
ray emitting region of a GRB is thought to be highly collimated.
The discrepancy between the spherical and jet models should be
treated carefully. Earlier numerical studies of the jet propagation
in a massive star (e.g., Zhang et al. 2003) revealed that the inner
part of the jet is well described by the spherical fireball model.
On the other hand, at earlier stages of the dynamical evolution
of a GRB jet, when the jet propagates in the star, materials
are accumulated at the head of the jet. After the jet emerges
from the surface, the gas on the head of the jet expands in the
lateral direction, which would lead to ejecta with a mass smaller
than that expected for spherical cases. However, once the bulk
Lorentz factor of the jet reaches the critical value given by the
inverse of the opening angle of the jet, Γ ∼ θ−1

op , the ejecta and
the jet could be treated as a conical part of a spherical outflow
until the Lorentz factor decreases to the critical value and jet
break occurs.

Numerical calculations were in part carried out on the general-
purpose PC farm at Center for Computational Astrophysics,
National Astronomical Observatory of Japan. A.S. is supported
by a Grant-in-Aid for JSPS Fellows (26·10618). This work
is supported in part by the JSPS Grants-in-Aid for Scientific
Research (23224004).

APPENDIX A

DERIVATION OF THE SHOCK JUMP CONDITION
FOR HYDRODYNAMICAL VARIABLES

We describe the derivation of the shock jump condition at a
strong shock propagating into a cold gas for the completeness
of this paper. Details of the derivation can be found in some
textbooks or review papers (e.g., Landau & Lifshitz 1987; Martı́
& Müller 2003).

The shock jump condition gives the relations between the
physical variables of a gas in the upstream, ρu, βu, and pu, and
those in the downstream, ρd, βd, and pd. The corresponding
Lorentz factors are Γu and Γd for flows in the upstream and
downstream. We assume that the pressure of the gas in the
upstream is negligible, pu � ρu, and the flow is highly
relativistic, Γu, Γd � 1. From hydrodynamical equations for
one-dimensional plane-parallel flows, one finds the following
relations for the physical variables of the gas in the upstream
and the downstream of a shock propagating at a velocity of βs
(the corresponding Lorentz factor is denoted by Γs), the mass
conservation,

(ρuΓu − ρdΓd)βs = ρuΓuβu − ρdΓdβd, (A1)

the momentum conservation,(
ρuΓ2

uβu − ρdhdΓ2
dβd

)
βs = ρuΓ2

uβ
2
u − (

ρdhdΓ2
dβ

2
d + pd

)
, (A2)

and the energy conservation,(
ρuΓ2

u − ρdhdΓ2
d + pd

)
βs = ρuΓ2

uβu − ρdhdΓ2
dβd, (A3)

with
hd = 1 +

γ

γ − 1

pd

ρd
, (A4)

where hd and γ are the specific enthalpy and the adiabatic index
of the gas in the downstream. These equations can be rewritten
as follows:

ρuΓu(βu − βs) = ρdΓd(βd − βs), (A5)

ρuΓ2
uβu(βu − βs) = ρdhdΓ2

dβd(βd − βs) + pd, (A6)

ρuΓ2
u(βu − βs) = ρdhdΓ2

d(βd − βs) + pdβs, (A7)

and some algebraic manipulations in the above expressions lead
to the following equation,

γ

γ − 1
Γu(βu − βd)Γ2

d(βd − βs) = Γu(1 − βuβs) − Γd(1 − βdβs).

(A8)
Since the flows are highly relativistic, Γu, Γd, Γs � 1, one
obtains the following approximate expression of the above
equation:

Γ2
d

Γ2
s

= γ Γu + (2 − γ )Γd

(2 − γ )Γu + γ Γd
. (A9)

One can find the Lorentz factor Γd of the flow in the downstream
for a given set of the gas Lorentz factor in the upstream and the
shock Lorentz factor, Γu and Γs, by solving this equation.

Equation (A5) can be solved for the density ρd of the flow
in the downstream and approximated under the assumption of
highly relativistic flows as follows:

ρd = ρu
Γd

(
Γ2

u − Γ2
s

)
Γu

(
Γ2

d − Γ2
s

) . (A10)

Furthermore, the elimination of the enthalpy hd from
Equations (A6) and (A7) yields

pd = ρuΓ2
u(βu − βd)(βu − βs)

1 − βdβs
, (A11)

which is approximated as

pd = ρu
(
Γ2

u − Γ2
d

)(
Γ2

u − Γ2
s

)
2Γ2

u

(
Γ2

d + Γ2
s

) . (A12)

Therefore, one finds the density and the pressure of the gas in the
downstream from Equations (A10) and (A12), once the Lorentz
factor Γd of the flow in the downstream is obtained.

Here we consider a special case with Γu � Γd, Γs, which
corresponds to the reverse shock propagating in the fireball in
this study. In this limit, Equation (A9) can be solved analytically,

Γd =
(

γ

2 − γ

)1/2

Γs. (A13)

Furthermore, the rest mass density and the pressure in the
downstream are found to be

ρd = γ

2(γ − 1)
ρu

Γu

Γd
= γ

2(γ − 1)

(
γ

2 − γ

)−1/2

ρu
Γu

Γs
,

(A14)
and

pd = (2 − γ )ρu
Γ2

u

Γ2
s

. (A15)
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APPENDIX B

NUMERICAL TECHNIQUES

In this section, we briefly describe our method to numerically
integrate hydrodynamical equations.

Equations (1)–(5) are numerically integrated by using a stan-
dard finite-volume method, i.e., the hydrodynamical variables
averaged over each cell are evolved. We use the third-order
MUSCL scheme to obtain the values at the surfaces of the cell
and then the numerical fluxes are calculated using the relativistic
HLLC scheme (Mignone & Bodo 2005).

B.1. Adaptive Mesh Refinement Technique

The AMR technique (Berger & Colella 1989) is now com-
monly used in various codes for astrophysical simulations, in-
cluding some publicly available codes for hydrodynamics, such
as FLASH (Fryxell et al. 2000), ENZO (Bryan et al. 2014), and
so on. The implementation of the AMR technique in our code
is realized by the well-known block-structured mesh technique.

The whole numerical domain is covered by so-called AMR
blocks. A unit AMR block is composed of eight cells covering
a part of the whole numerical domain and a few cells for
communications with other blocks. If some conditions (referred
to as the “refinement criteria”) are satisfied for a block and the
level of the block is lower than the maximum refinement level,
two other blocks with finer resolution, called “child blocks,”
are created and they cover the original block (referred to as
the “parent block”). On the newly created blocks, the physical
variables are interpolated from the parent block. The code
calculates the temporal evolution of physical variables averaged
over a cell. The volume average of a variable A over the ith cell
is written as follows:

Ai = 1

Vi

∫
AdV, (B1)

where Vi denotes the volume of the cell and the volume integral
runs over the cell. When a couple of new blocks are created, the
physical variables are interpolated from the parent block so that
the volume-integrated value of the variable is conserved,

A
p
i V

p
i = Ac

jV
c
j + Ac

j+1V
c
j+1. (B2)

Here A
p
i and V

p
i are the volume-averaged variable in the ith cell

and the volume of the cell in the parent block. The jth and (j+1)th
cells in the child block are assumed to be covered by the ith cell
in the parent block and Ac

j and V c
j are the physical variable

and the volume corresponding to the jth cell in the child block,
respectively. The physical variables in the newly created blocks
are evolved according to the hydrodynamical equations with
appropriate boundary conditions. Various refinement criteria
can be used depending on the purpose of the simulations. On
the other hand, if a region is covered by cells with unnecessarily
fine resolution, the resolution is coarsened by discarding some
blocks. The synchronized time step is adopted in the current
version of the code, i.e., the time step is the same for all levels.

B.2. Some One-dimensional Test Problems

We carry out calculations of the following test problems to
confirm that the developed code works well.

Figure 6. Results of the Sod’s shock tube test with the maximum refinement
level of 8. The panels represent the refinement level, velocity, density, and
pressure profiles from top to bottom.

(A color version of this figure is available in the online journal.)

B.2.1. Sod’s Shock Tube Test

In this test problem, a domain, −1 � x � 1, is initially
separated into the following two states:

(ρ, v, p) =
{

(1.0, 0.0, 1.0) for x � 0.0,

(0.125, 0.0, 0.1) for 0.0 < x.
(B3)

The domain is covered by 256 cells with the refinement level
of l = 0 and the maximum refinement level is set to lmax = 8.
After the simulation starts, a shock wave and a rarefaction wave
form and start propagating into the +x- and −x-directions. The
gas is separated by the contact discontinuity, where the velocity
and the pressure are continuous while the density shows a jump.

The resultant profiles of the velocity, the density, and the
pressure are shown in Figure 6 and agree with the exact solution.
The AMR level is also presented in the top panel of Figure 6.
The shock front, the contact discontinuity, and the rarefaction
front are well resolved.

B.2.2. Einfeldt’s Strong Rarefaction Test

We also carry out a test problem known as Einfeldt’s 1-2-0-3
problem. In this problem, the computational domain is divided
into the following two states:

(ρ, v, p) =
{

(1.0,−2.0, 0.4) for x � 0.0,

(1.0, 2.0, 0.4) for 0.0 < x.
(B4)

The number of cells covering the domain and the maximum
refinement level are the same as the previous test problem.
Snapshots of the physical variables for the test problem at
t = 0.05 and 0.1 are shown in Figure 7. As the initial state
contains a sharp discontinuity in the velocity at x = 0, the
computational domain around x = 0 is covered by blocks with
higher resolution. After the simulation starts, the discontinuity
breaks up into a couple of rarefaction waves, which propagate
in the ±x-directions.
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Figure 7. Results of the Einfeldt’s strong rarefaction test (1-2-0-3) with the maximum refinement level of 8. Left and right panels correspond to the profiles of some
physical variables at t = 0.05 and 0.1.

(A color version of this figure is available in the online journal.)

B.2.3. Sedov–Taylor Point Explosion Test

The Sedov–Taylor point explosion is a well-known problem
of non-relativistic hydrodynamics with spherical symmetry (see,
e.g., Sedov 1959; Zel’dovich & Raizer 1967). Initially, a region
with high pressure (thermal bomb) is set in a small region
surrounded by a cold and uniform medium. Then, a blast wave
forms and propagates in the surrounding medium. Under the
strong shock approximation, it is known that the profiles of
hydrodynamical variables can be described by a self-similar
solution after effects of the initial condition disappear.

In this test problem, we set the computational domain to be
r ∈ [0, 1] and assume a static and uniform medium,

ρ = 1.0, and v = 0.0. (B5)

The formation of a strong shock wave is realized by imposing
the following initial condition for the pressure:

p = εp + (1 − εp) exp
( − r2/r2

0

)
, (B6)

with r0 = 0.02 and εp = 10−8. The adiabatic index of the gas
is set to γ = 7/5 in this problem. The computational domain is
divided into 16 AMR blocks at the coarsest level (l = 0). Thus,
the domain is covered by 8 × 16 = 128 cells at level 0. The
maximum refinement level is set to lmax = 8.

Snapshots of the radial profiles of the velocity, the density, and
the pressure are shown in Figure 8. In the top panel of Figure 8,
the refinement level is also plotted. The shock front is covered
by cells with the finest resolution. The expected density jump
is (γ + 1)/(γ − 1) = 6 under the strong shock approximation.
The density profiles in Figure 8 show that the shock front is
successfully resolved with the AMR technique. The profiles of
the hydrodynamical variables eventually show self-similarity
and agree well with the exact self-similar solution.

B.2.4. Special Relativistic Shock Tube Test

This test is an extension of Sod’s shock tube test in special
relativistic hydrodynamics. Initially, a domain, 0 � x � 1, is

Figure 8. Results of the Sedov-Taylor point explosion test with the maximum
refinement level of 8. The panels represent the refinement level, velocity, density,
and pressure profiles from top to bottom.

(A color version of this figure is available in the online journal.)

separated into the following two states:

(ρ, v, p) =
{

(10.0, 0.0, 13.3) for x � 0.5,

(1.0, 0.0, 10−5) for 0.5 < x.
(B7)

The resultant profiles of the velocity, the density, and the
pressure at t = 0.4 are shown in the left panel of Figure 9.
The refinement level is plotted as a function of the coordinate x
in the left panel of Figure 9. The shock wave propagating into
the right boundary and the contact discontinuity are covered
by cells with the finest resolution. In the right panel, the exact
solution of the problem is shown. The profiles calculated by our
code are in good agreement with the exact solution.
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Figure 9. Results of the relativistic shock tube test with the maximum refinement level of 8. The profiles of the refinement level, velocity, density, and the pressure are
presented in the left panel. The exact solution of the problem is shown in the right panel.

(A color version of this figure is available in the online journal.)
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