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Abstract—Typical methods for solving reinforcement learing  generally applied to policy evaluation. SIM and KSM are both
problems iterate two steps, policy evaluation and policy improve- classified as iterative method algorithms, but KSM has the

ment. This study proposes algorithms for the policy evaluation to -, gherties of a direct method, i.e. a finite number of iteration
improve learning efficiency. The proposed algorithms are based operations

on the Krylov Subspace Method (KSM), which is a nonstationary ) > ) )
iterative method. The algorithms based on KSM are tens to It is & simple idea to use KSM instead of SIM. But, com-

hundreds times more efficient than existing algorithms based pared with a general algebraic problem, which will be shown
on the Stationary Iterative Methods (SIM). Algorithms based |ater in a numerical example, there is little difference between
on KSM are far more efficient than they have been generally o computation efficiency of KSM and SIM. Therefore, this
expected. This study clarifies what makes algorithms based . .

on KSM makes more efficient with numerical examples and idea has nqt .attracted notice because KSM does not seem to
theoretical discussions. be more efficient than SIM for RL problems.

However, this study will show that KSM can evaluate policy
tens to hundreds of times more efficiently than SIM in an RL
problem. The entire RL algorithm using KSM also becomes
efficient. The achieved results have been far more efficient
I. INTRODUCTION than expected with KSM. The advantages of KSM have not

N a reinforcement learning (RL) problem, state and actidigen sy_stematically examined yet, but_ this r_esearch will reveal
I are evaluated as a Q-factor, where an appropriate actmﬁm' Slmul.taneously, lth|s research will clarify the_ r_eason why
might be selected by comparing Q-factors. The objective gfficient policy evall_Jatlon methods can be_so efficient. These
RL is to obtain the Q-factors that yield the optimal policy/€Sults are suggestive for future research in RL.
A typical problem solving method using RL is composed The rest of this paper is organized as follows. The RL
of plant estimation steps, policy evaluation steps, and pmgoblem is formulated in Section Il. Some assumptions and
improvement steps [1], [2]. Many solution methods are derive ructures of the problem are mentloneq.m S_ect|on .III. Exist-
from different ways of combining these steps. Once the plali@ @nd proposed algorithms are specified in Section IV. A
is estimated, an iteration of the policy evaluation steps aff¢goretical review evaluating the efficiency of each algorithm
the policy improvement steps, e.g. policy iteration and vali@ 9iven in Section V. The efficiency of proposed methods
iteration, will achieve the optimal policy, improving Q-factor’S €xamined with numerical examples in Section VI. Finally
efficiently [2], [3]. Hence, this study considers model-base¥pme concluding remarks are given in Section VII.
reinforcement learning with an estimated plant. However, the
enormous computation cost of the solution methods often II. REINFORCEMENTLEARNING PROBLEM

becomes an issue. Therefore, this study discusses the efficier?;[ lowi | d . . DP) f |
algorithms derived by improving the policy evaluation step ef- 0 ot\;]v_lng genetra tynarg_lc prtogtr_amn:jlng ( . ) oimu aé
ficiency. Existing methods are based on the Stationary Iterat yens, tis paper treats a discrete-ime dynamic system [2].
Method (SIM) [2], [3]. This study proposes efficient polic states; and an actioru;, are the discrete variables and the

evaluation methods based on the Krylov Subspace Meth%lc?ments of dﬂmfff s?tf anc?u’ tregpsctlvely. The state dsst
(KSM), which is a nonstationary iterative method. IS composed oty states denoted by, sz,. .., sy, ahd an

The policy evaluation algorithms are classified into direcf;{dd't'or""lI termination statg. The action seif is composed

methods and iterative methods. The total number of calculatigh’S actions denoted by, uy, ..., ug. If an agent is in state

operations in a direct method is finite. But, the direct methdd and (t:hooses a.ct|onk,. it Wt'::.motvi t? Sta??‘sj andbmt():.llj{
is not used generally since it cannot obtain the Q-factofsOn€-SteP COH(si, u, s;) within state transition probability

that are utilized for the policy evaluation until the calculatiof’ (u_’“>' _ . . -
is completed. On the other hand, an iterative method canThIS study deals with a discrete-time finite Markov De-

terminate its iteration in mid-course since it exponentiall |s||on Proc?sst (tMDP):dpmb:.ib'“t’oing‘ﬁ) IS ciependdent ont
decreases the error, and the iterative method algorithm {dly current states; and actionuy. the sysiem does no
explicitly depend on time. Stationary poligy is a function
Kei Senda is with the Department of Aeronautics and Astronautics, Kyoraapping states into actions witl(s;) = ux € U, and i is
University, Kyoto 615-8540, JAPAN e-mail: senda@kuaero kyoto-u.acjp. given by the corresponding time-independent action selection
S. Hattori, T. Hishinuma, and T. Kohda are with Kyoto University. o . .
pobability 7(s;, uy). Symbols used in this paper are shown
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The DP problems are distinguished from finite horizon prolwherep;; (ux) is given. Eq. (1) is called Bellman’s equation
lems where the cost accumulates over a finite number of stagéseny; is optimal. Then, the policy improvement step obtains
and infinite horizon problems where the cost accumulatasnew policyu; 1, a greedy policy, which is deterministic as:
indefinitely. This study treats only infinite horizon problems, B o v
but no generality is lost since finite horizon problems can be pia(si) = arg I?iinQ (51, uk), i 2)
converted into infinite horizon problems by regarding tim%
as an extra component of the state. The optimal policy E
an infinite horizon problem is generally deterministic angptimal policy * with a finite number of policy improvement
stationary [2]. steps.

The(oe)zxpected total cost, Q-factor, (ﬁ)tartmg from an_mmal Value iteration is a method in which the policy evaluation
states'” = s; and an initial actiory (s”) = w, and using step is terminated after only one iteration, and it moves into a
a stationary policy. is policy improvement step. TD-learning, e.g. TD(is a method

> between policy iteration and value iteration, and Q-learning
> amyg (s(m),u (s(m)) ,s“’””)] is an approximate method of value iteration. This being the
m=0 case, most methods are based on policy evaluation and policy
where E[] denotes an expected value amds a scalar called improvement. From now on, this study focuses on making

the discount factor(( < a < 1). The optimal Q-factor is Policy evaluation efficient.
defined asQ*(s;,ux) = min, Q" (s;,us), and u is optimal In addition to the method based on the Q-factor, there is a

if Q*(ss,up) = Q*(s4,ur), "(si,ur). This study considers method based on state value function, i.e. J-factor. The J-factor
stochastic shortest path problems that are a class of infif@sed method calculates all Q-factors of action and state pairs

horizon problems. It is assumed that= 1 but there is a cost- Using J-factors in policy improvement steps. In this study, Q-
free termination state, wherepgo(ux) = 1, g(so,ux,so) = factors are directly calculated without using J-factors because

0, Q(so,ux) = 0, Yug. Under those conditions, the goal ighis method makes it easy to evaluate the computation costs

to find the optimal policy minimizing)* (s;, ux,), i.e. to reach and so on. On the other hand, in every following algorithm, the
the states, with minimum expected total cost. A method forcomputation cost of the Q-factor method is abélitimes as

solving this problem can be applied to many RL problems [2[nany as that of the J-factor method. Therefore, the amounts of
computation cost of J-factor methods are almost proportional

to Q-factor methods shown in this study.

ese two steps are repeated until the obtained pplicatis-
sQM+t = QM. Policy iteration terminates after finding the

Q" (siup) = E

I1l. SoLuTION METHODS FORRL
A. Fundamental Assumptions for Solution Methods

V. PoLicY ITERATION ALGORITHMS
The optimal policy is obtained by having a proper poliif

M. SIM Type Algorithms
and improving its Q-factor as well as many other RL methods. yp ) g ) )
A stationary policy is said to be proper if it leads to the Existing policy evaluation algorithms are based on SIM.

termination states, from any initial states; within A/ stages NS Paper shows their outline according to references [2], [3].
(0 < M < o) with positive probability. For example, an Consider a situation in wh|ch. we se_ekasolut_@h sansfymg
greedy policy and a softmax action selection law used asEd- (1) for proper policy: with action selection probability
behavior policy are proper [1]. The Q-factor is calculated b§(si> ux)- The iteration will be terminated if the obtained
state transition probabilities which are estimated and retaing@fution satisfies required accuracy, because it is guaranteed
by sampling. This study calculates the Q-factors using th@ converge on the true solution as — oco.

state transition probability model, which is supposed to be1) Policy Evaluation lteration (PEI) Algorithm:The fol-
estimated so accurately that the estimation error does not affQ¥{ing mappingi,, is applied:

the discussions in this study. m m
Yy Q' +1)(5i7uk) —H, (Q( ))
N
B. Fundamental Constructions for Solution Methods _ Zp“(uk){g(s’ s 55)
== ¥ [x) y9)]
Under these assumption, there are many solution methods to j=0

obtain the optimal Q-facto®™* and the corresponding optimal K
policy. This study considers policy iteration, starting from a + Zw(sj,ug)Q(’”)(sj,ug)}. 3)
proper policyuo and generating a sequence of proper policies r=1

p1, p2, - .. A policy evaluation step solves the following linear 2y jacobi Algorithm: The following mappingF), is applied:
algebraic equations fo@"! concerning policyu; given by

probability 7 (s;, ux ): QU (s, up) = F, (Q(””)
N 1 N
QI” (S“’Mk) = J_z_:opu(uk){g(suuka57) (l) = 1 _pii(uk)ﬂ—(si,uk) Jgopzj(uk){g(szauk75])
K K
+ ) milsg,un) QM (s, W)}7 (0, up), + ) (s, ue) QU (s, ue) (1 — 6z‘j5k6)}7 4)

{=1 {=1
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whered;; = 1if i = j andd,;; = 0 if ¢ # j. The method using 2) Sequentially calculate from top to bottom:
Eqg. (3) or Eq. (4) is a synchronous iteration since iteration _(m) (m)
numbers updating all Q-factor elements are the same.as (m) (7’ oT )

o =0

3) Gauss-Seidel (GS) AlgorithmThe following asyn- (a(m),Ac(m))

chronous iteration is applied:
PP QU+ — QM) 4 q(m)¢m)

QU (si,ui) = F (@) ®) P e —a A
plm+1) — zm) _ (m) AT a(m)
. (,:(m+1> r(m+1))
where Q@ denotes a vector containing the newest Q-factor gm — ’
elements. (;«("ﬂ?q«(m))
4) SOR Algorithm:The following asynchronous iteration

L9 SOR mH1) 1) 4 gm) gm)
IS applied: é(7n+1) _ 7~,,(m—&-1) + ﬁ(m)é(m)

QU (s, up) = (1 — w)Q™ (5, ur,) + wF, (Q) ., (6) 3) End the iteration if terminal conditions are satisfied. Oth-
erwise, substituten + 1 for m and return to step 2).

h d | ion f . 3) BPKSM Algorithm:
where w denotes a relaxation factor afd< w < 2 is a 1) Let m — 0 and prepare the initial vecta@(®,

necessary condition for convergence.
r® — g5 AQW, ¢ — O 70 _ 50 _ 1.(0)

-1 = (D — (-1 = 4D Z g gD

B. KSM Type Algorithms 2) Sequentially calculate from top to bottom:
This paper proposes policy evaluation algorithms based ) (f’(o),r(m)>

on KSM [4], [5], [6], which are different from existing Q= -0 Ao\ (m)

ones. We then developed the Conjugate Gradient (CG) algo- (r , Ac )

rithm [7] and its extensions, i.e. the Bi-Conjugate Gradient y(m) = ¢(m=1) _ p(m) _ o (m) (w(m—l) _Ac(m))
(BCG) [8] and the Block Product-type Krylov Subspace

Method (BPKSM) [9] algorithms. Thed € RVEXNE s g tm) = p(m) _ o (m) ge(m)

coefficient matrix whereA = I — PII is defined by using Parameters (™) and (™ are calculated.
symbols in the Appendix. The¢a, b) represents the inner wl™ = ¢(m) gelm)

product of vectorsz andb.
1) CG Algorithm: +p(m) (t<m—1> _pm) 5(m—1>u<m—1>)

1) Letm = 0 and prepare the initial vectc(t)(o), 2(m) = ¢m)p(m) 4 n(m)z(m%) — oM (m)
Q(m+1) _ Q(Tn) + Oé(m,)c(m) + z(m)
0 — 0 0 0
’l”‘( ) — g— AQ( )’ C( ) — r( ) r(7n+1) — t(m) _ 77('rn)y(m) _ C(m)At(m)
alm) (;,<0>,r<m+1>)
2) Sequentially calculate from top to bottom: B =
¢om) (;<0>7r<m>)
o(m — (T(m),'r(m)) w™ — AM) + ﬁ(m)Ac(m)
(ctm), Ac(m)) (m+1) — p(m+1) | g(m) (C(m) _ u(m))
Q(m—i-l) — Q(m) + a(m)c(m)
(m+1) _ .(m) _ ~(m) g (m) 3) End the iteration if terminal conditions are satisfied. Oth-
T =r™ —a'™ Ac . .
(pm D) 1) erwise, substitutern 4 1 for m and return to step 2).
ﬁ(m) = m : m
(r(m), p(m)) There are various methods to calculat&”) and¢(™. We

M) = p(mt1) 4 gm) o(m) chose two ways, CGS and BiCGSTAB. The CGS algorithm
uses the following parameters

3) End the iteration if terminal conditions are satisfied. Oth- a(m) g(m=1)

erwise, substituten + 1 for m and return to step 2). 0 = T om—1) ) = alm,
2) BCG Algorithm: o The BICGSTAB algorithm uses the following parameters
1) Let m = 0 and prepare the initial vecta®®,
(t(m) At(m))
M) — 0, () — )

0 =5 AQO, ¢ — (O 70 — g0) _ 1.(0), (At A¢m™))
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V. THEORETICAL EFFICIENCY OFPOLICY EVALUATION C. Features of KSM and Efficiency Evaluation Index
This section provides a theoretical discussion to explain theThe KSM algorithms in Section IV-B have properties of

reasons for policy evaluation efficiency. both iterative methods and direct methods that can obtain an
accurate solution of the policy evaluation step withia= N K
A. Policy Evaluation and Algebraic Equation iterations unless a breakdown occurs, i.e. a denominator
Defining P by p, IT by », andg by p and g as in the becomes zero. CG guarantees convergence on the correct
Appendix, Eq. (1) are formulated as solution if A is a positive-definite symmetric matrix. BCG and
BPKSM guarantee convergence, everdifis not symmetric.
Q" =g+ PIIQ". (") When A is not symmetric in a general RL problem, BCG
Eq (7) is regarded as a |arge_sca|e a|gebraic equation ﬁp(p"es CG iteration to the fO”OWing CoeffiCient matriX
unknown@Q*, which is solved as - - T
k P[00 [25 ][00 ]
Q'=I-PII) g=A""g 8)

If policy evaluation is regarded as an algebraic problem RPKSM is regarded as a modification of BCG. Hence, their
Eq. (8), algorithms for the problem can be classified into direBghavior is similar to CG [10].
methods and iterative methods. A direct method’s total numberNe CG iteration m(l)notonlcally decreases the evalua-
of calculation operations is finite, but it cannot obtain the @lon value J(Q(Tn)) = §(Q(_m)vAQ(m))__ (9.Q"™) for
factor for policy evaluation until its calculations completed® Positive-definite symmetricA with size N—’f-) There-
On the other hand, an iterative method can terminate its itefgf€ the error norm weighted by, i.e. [AQ™[|4 =
tion since it exponentially decreases the error. Typical poliGy (AQ™, AAQ™)) = \/QJ(Q("L)), also decreases mono-

evaluation is not completed accurately or fully. An iterativ?onica”y Hence“AQ(m)HA is used to evaluate the efficiency

method algorithm is applied to policy evaluation because it cap kgm algorithm. Moreover),; andv; denote the eigenvalue
generally terminate with less iteration. SIM and KSM are both, corresponding eigenvector df where0 < A, < ... <
iterative method algorithms, but KSM has a property COMMON This defines transformation m’atrlx as - -

to direct methods. The number of calculation operations is

finite. SIM requires infinite iterations in order to solve the U = VAV,

problem accurately without taking computational error into VA = diag [ VAL \/E} , V=[v,...,0,].
consideration. But, KSM’s iteration number is finite. The

size of the problem determines the iteration number, whiq—bky introducing the transformaﬂO@(m) =UQ" andQ" =

is estimated to be as many as the direct method, e.g. IthQu, we have the formuld AQ™|| 4 = ”Q(m) — 0"

factorization. : i
Hence, the weighted norm becomes the normal Euclidean

norm of transformed variable@(m) andQ".

This paper applies this transformation and considers a

onvergence rate corresponding to the spectral radius of SIM
along with the convergence theorem of the CG algorithm [11].
QU =b+cCQ™, )

’Q(m) B Qlt < oym HQ(O) B QM
whereC is a constant iteration matrix. Novk can be uniquely

factored to V= (\/E— \/X) /(\/EJr \/E)

A=L+D+U, (10) Thewv in Eq. (13) gives the worst convergence rate, i.e. the
upper limit, wherem is the iteration number.
The residual vectors of BCG denoted nggG satisfies

B. Features of SIM and Efficiency Evaluation Index

A general iterative form of Eq. (7) denoting the policyC
evaluation is

(13)

where D is a diagonal matrix with non-zero diagonal el
ements,L and U are lower and upper triangular matrices

. . ' . f . . 0
with zero d_|agona_l elements. The iteration matrices of SIM Tg;c)c; _ pl )(A)Tgs)cca (14)
algorithms in Section IV-A are [3]

. where P("™)()) is them-th order residual polynomial [10]. In
Cpgrr = PII, Cjucopi = —D" (L +U),

the meantime, the residual vectors of CGS denotedé@s

CGauss—Seidel = —(D + L)"'U, satisfies
Csor=—(D +wL) " {(1 -w)D - wU}. T(c"é:)s = P(’”)(A)P(’”)(A)rg%s, (15)
The errorAQ™) = Q™ — Q" rearranges Eq. (9) as whereP(™) (1) is the same polynomial. Therefore, the residual
AQ™ =cCcmAQW™. (11) vectors of BCG and CGS are
Therefore, AQ™ and Q™ converge ifp(C) < 1, where rim . =P (A)r®), (16)
p(C) is the spectral radius (the maximum absolute eigenvalue) 7,(Cné)s = P (A) P (A)r(©), (17)

of C. They converge exponentially becau$AQ™ ||,
p(C)™. Hence,p(C) can be an index of the convergence ratdor the sameQ”, i.e.r(® = r%”ca = rg)gs. Hence, the CGS
Here||-||, is thep-norm, and the 2-norm is a Euclidean normalgorithm is expected to converge twice as fast as the BCG
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TABLE |
CULCULATION COST FOR UPDATING VECTORQ (™) 10° ke e —
AT m - ++ Gauss-Seidel
= \,‘z:“ N e |- -'SOR(w=15) | _
Algorithm | Nunber of multiplication / division operations‘ 3 [ANRN cor ggg
PEI N2K? g "*\2““ \'\\ \= 1=/ BICGSTAB
Jacobi N2K? + NK ® 1Y S
, 2 2 2107 B >
Gauss-Seidel N°K*+ NK © AN .
SOR N2K? 4+ 3NK 2 EU .
BCG IN?K? + TNK + 2 NN
cGs IN2K? +12NK +5 B N
BICGSTAB 2N?K? + 14NK +4 0 20 40 60 80

Number of iterations

. . . . . . i i =g i i
algorithm, which will be confirmed in a numerical example['d: 1+ Convergence of soluticd Q" = g, where A is a general matrix.

We also find that BCG and CGS intrinsically the same.

D. Computation Cost Estimation of KSM from Learning Prob-
lem Characteristics

According to the regularity ofA = I — PII and Ger-
schgorin’s theorem [12], all eigenvalues & are crowded
together in the following interval.

Occurrence frequency of A

i € (0, 2(1 — min 7 (s, up)pj; (ur))], ¥ (18) o
(3:k) 0 05 1 1.5 2
As shown in a numerical examplel has many degenerated Eigenvalue A

eigenvalues of 1. Its degeneracy is calculated as follows. We

find that u; = 1 — \;, ¥i for any eigenvalug:; of PII € Fig. 2. Eigenvalue distribution of matrid.

RNEXNE ‘Hance, the degeneracy degree of zero-eigenvalues

of PTI, denoted bym,, are equal to that of eigenvalues 1 of ) ) ] )
A. On the other hand, the rank @TI is no more thanV, Jacobi, the Gauss-Seidel, SOR (where the relaxation factor is
since P andII are (NK) x N and N x (NK) matrices. The * = 1.5) as SIM algorithms, and BCG, CGS, BIiCGSTAB as

rank cancellationVK — N is degeneracy of zero-eigenvalue&SM algorithms. _ _ (
of PTI, andmg > NK — N Figure 1 shows their relative residudig— AQ™|2/||l-
L —_— . . 0 _ . .

As mentioned before, a rigorous solution is obtained at mo¥arting fromQ® = . It is found that all KSM algorithms
NK iterations by KSM algorithm. But, KSM algorithm canCOnverge two to three times faster than SOR. However, con-
stop a policy evaluation step with-mg+1 < N-+1 iterations sidering Table I, there is almost no difference in performance
since the iteration number is decreased as many times as@M¥Nng the algorithms. This result has been reconfirmed by
degeneracy degree of the eigenvalues4of6]. This is also thellr computanon penqu_usmg a computer. Hdrés chosen _
decreased more if there are degenerated eigenvalues other B €igenvalues exist in the same interval as Eq. (18) in
1. Hence KSM algorithm guarantees to get the optimal poli@fder to compare the following learning problem. THeis
with finite iterations far fewer tham. very sparse and has little degeneracy, as shown in Figure 2.

Table 1 lists the number of multiplications and divisiorEVven if other matrices similar tel are used, their results are
operations required in each algorithm to upd@€™ once Similar.
for A = I — PII. The computation cost of the CG algorithm
is the same as SI_M, and BCG, and BPKSM requires twigg Rapid Convergence Rate of KSM in A RL Problem
as many computations as SIM. However, the total cost of the , q ¢ blerhi .
proposed methods is smaller than SIMs, as shown in numerical) Setting and Features of a RL ProblenThis section
examples. When KSM algorithms converge at mosty 1 considers a mass control problem shown in reference [3].

iterations, as mentioned before, total computation cost requir-gae obj_ect|ve as the o_p_tlmal regulator pr_oblem is to establish
in a rigid evaluation is abouN3 K2 or 2N3 K2, control inputu,; that minimizes cost function

o0
1 2 -2 2
VI. NUMERICAL EXAMPLES J = 3 (@f + 37 +uf) .
A. Convergence Properties in A General Numerical Problem =0

This section examines the convergence performance of SIMT_h_e state of the_ mass is updated as fOHO\.NS' At ‘”"E‘“?_
and KSM algorithms in a general numerical problem. THROSItoN of Mass, is l_deated by Eq (192) with a probability
problem is to solve the simultaneous equaticd®” = g of 0.9 or Eq. (19b) with a probability of 0.1:
for Q" with a given positive definite symmetric matrix and { Ter1l = Ty + oy (19a)

a vectorg, where their size i:» = 200. We compare the Typ1 = Ty + By — sign (dy) (19b)
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TABLE I 10°
SPECTRAL RADIUS p(C) =
5
Algorithm H Spectral radius ‘ §
PEI 0.997439 g 10°
Jacobi 0.997380 b
Gauss-Seidel 0.995058 2
SOR (v = 1.5) 0.986642 g
[&]
o'ty LM
. . . _ 0 05 1 15
where sign( ) denotes sign function. The velocity of mass Eigenvalue A
is updated by Eq. (20a) with a probability of 0.9 or Eq. (20b)
with a probability of 0.1. Fig. 3. Eigenvalue distribution of — PII.
Tey1 = Ty + Uy (20a) .
Bpp1 = T + up — sign (uy) (20b) 3
— 0 -'\n’
The P is defined by the above probabilities. g 10 'L“ TRTIIIT
We quantize the intervdl-2, 12] of z; into 15, the interval ? s T -
[-5,5] of 4, into 11, and the interva]-5, 4] of w, into 10. o, 5| .
. . . 210" ¢ = = = Jacobi
Hence, the state number, except the termination staf¥, 4s g L SoRtens
164, and the action number i& = 10, which results in the T ': - - - 806 '
size of A, NK = 1640. 1010:: - = BICGSTAB
The eigenvalue distribution oA = I — PII is shown i

100 200 300 400 500
Number of iterations

o

in Figure 3, wherell is given as a random policy, i.e.

m(si,ur) = 1/K Y(s;,u). All eigenvalues ofA exist in

the interval (0, 2] because of Eq. (18).. Simultanequsly, it i%ig. 4. Convergence of SIM and KSM.
found that the degeneracy degree of eigenvalue 1 is more than
N(K — 1) = 1476.

2) Policy Evaluation: This section compares the policy
evaluation steps of the algorithms by convergence of the Q-
factor, where the random policy is evaluated. We evaluate each
algorithm with a relative residual versus the iteration number.
The initial Q-factor for the iteration iQm) =0.

Figure 4 shows the relative residuals of SIM and KSM
algorithms, wherev = 1.5 for SOR. Figure 5 shows those o
of KSM only. KSM algorithms converge much more rapidly 10 S ‘
than SIM algorithms, which is different from Figure 1. Among 0 10 .20 30

. . . Number of iterations
SIM algorithms, the asynchronous iteration methods, Gauss-
Seidel and especially SOR are efficient. However, thousands
of iterations are required to satisfy the convergence conditidrd- 5 Convergence of KSM.
The relative residual becomes smaller than. Each spectral
radius is listed in Table Il. KSM algorithms converge within
a few tens of iteration numbers if the same convergence . . . .
condition as above is used, and the iteration numbers of Sf _pol_|cy Hi—1 of the previous poll_cy e_valuat|on St.eP- Each
algorithms are tens to hundreds of times more than KSRPI!Cy_ |t(?rat|on step e“d? its iteration if both _cond|t|ons are
algorithms. It is concluded that KSM is much more efficien aﬂgﬁed. the relative residual of the Q-factor is smaller than
than SIM, considering the computation cost per iteration P (",L)and t(hntlaia;\)/erage update amount of illl Q-factor elements
KSM is at most twice as many as SIM. In addition, we fin Q" -Q l/NK is smaller thani0~=.
that KSM algorithms tend to accelerate the convergence ratiosTable Ill and Table IV list each iteration number and
whereas SIM algorithms converge at constant rates. computation period. The number within parentheses denotes

3) Policy Iteration: This section evaluates the total computhe number of states where their actions agree with those of
tation cost of the policy iteration for the same mass contrtie optimal policy, and the total number of system states is
problem. Starting from a random poligy, and generating 164. All algorithms acquire the optimal policy via the same
policy sequenceg; (I =0,1,...), we show the total compu- policy sequence with 4 policy improvement steps. We find that
tation cost of all iterations until optimal policy* is obtained. policy evaluation based on KSM is tens to hundreds of times
Here we compare two initializing methods. The first methoehore rapid than SIM. Hence, the KSM algorithm’s efficiency
initializes the Q-factorQ®) as 0 at each policy evaluation is confirmed by the entire RL procedure to obtain the optimal
step. The second method initializes the Q-factox@$-* of policy.

---BCG
1 CGS
- - BICGSTAB

Relative residual
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TABLE Il 5
MASS CONTROL PROBLEM ITERATION NUMBERS FOR TOTAL LEARNING [
BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS INITIALIZED AS O.
(GS: Gauss-SEIDEL, STAB: BICGSTAB)

€
-
o
[ Policy [ PEI [ Jacobi| GS | SOR ] BCG | CGS [ STAB | S
1o (0) || 4900 | 4800 | 2670 ] 1060 || 20 | 18 | 14 o
i 83) || 20 | 20 | 20 | sa0 || 12 | o 9 g
wa(133) | 30 | 20 | 20 | 260 | 11 | 9 9 A
s (163) | 30 | 20 | 20 | 270 | 11 | o 9
wa(64) | 30 | 20 | 20 | 270 | 11 | o 9
Total || 5010 | 4880 | 2750 | 2400 || 65 | 54 | 50 107° : ‘ ‘
- 0 10 ) ZQ 30
[Time () [ 742 ] 688 [ 390 341 31 ] 23 [ 22 | Number of iterations
TABLE IV

MASS CONTROL PROBLEM ITERATION NUMBERS FOR TOTAL LEARNING
BY POLICY EVALUATION ALGORITHMS. Q-FACTOR IS INITIALIZED AS
QHi-1, (GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Fig. 6. Distance nori Q™ — &" ..

[ Policy [ PEI [ Jacobi] GS [ SOR || BCG | CGS | STAB |

o (0) || 4900 | 4800 | 2670 ] 1060 || 20 | 18 14 =
u1 83) || 40 30 20 | 870 || 14 | 11 11 9]
u2 (133) || 20 20 10 | 220 || 10 7 6 5
us (163) || 10 10 10 | 30 6 4 4 o
ua (164) || 10 10 10 | 20 3 2 2 o

L

Total 4980 | 4870 | 2720 | 2200 || 53 | 42 37
[Time(s) ] 726 685 [ 387 [ 315 26 | 1.9 | 17 |

0 10 20 30
) Number of iterations
C. Acceleration of Convergence Rate of KSM

This section solves the simultaneous equatih@" = g  Fig. 7. Error elementd; ™.

in Section VI-A for Q¥ by CG in order to observe the

convergence of KSM. The error noriQ™ — Q" ||, plotted

in Figure 6 decreases monotonically. Foe 1,...,10, the

absolute value of theé-th element on(m) — Q" denoted

by Jq;(m) is plotted in Figure 7. The solid line in Figure 6

represents above error norm and the broken line represents its

upper bound based anof Eq. (13). It is found that the error

norm is truly decreasing and its convergence rate becomes

better.
Heredi(m

1

o

|
-

Decreasing rate
®

|
w

4

" and Q"™ — @"| satisfy below [11]; 0 05 1 15

Q(m)_Q“H2: min En:
REP, R(0)=14

n

RM () = i
(W=arg min >

- (0) 2
di "R(X)| (1) g g ROW () for m = 1,10,

(0)

R 2
di " R(N)| 5 (22) Figure 8 shows then-th order polynomialskR(™) ()\) for

m) 5 (0) Loy V. m = 1,10. We find that almost all error elementé(m)
=di R™(N), T, (23) decrease sinceR(™()\;) is almost zero for all\; as m

hereP,, denot t of real polynomials where their ordefs comes 10-
where >, denotes a set of real polynomia’s where their orders o «4iq that KSM is suited for sparse matrices [11] and

lirr?)rr?cljz mo;ea ﬂ:ﬁm; and R(/\) < tP;” tshat'?’f'.ﬁis(O) - Il- ijconsidered to be very efficient because coefficient matrix
+ (m) Aq(;))( } ) the decreasing rate to the ini .|a error g EMEDY of the RL problem is also sparse. However, sparsity is not
d; " /d; ", is equal toR'"™ ();). And RU™)()) is determined the only reason for this result, as shown in Section VI-A.

uniquely so that it minimizes the error norm, as shown ifinere are two properties which do not necessarily result from
Eq. (22). As the iteration numben increases, the order Ofsparseness: (i) the RL's property of eigenvalue degeneracy of
R(™()) increases and the error norm decreases. Due to {Rg coefficient matrix and (ii) the KSM algorithm's property

constraintR(™)(0) = 1, the decreasing ratéi(m)/(ii(o) = of improving convergence of the modes whose convergence
R(™)()\;) of eigenvalue); rapidly approaches zero as rates are small and make learning slow. It is also shown that
increases, which is observed in Figure 7. property (i) does not require any pre-conditioning to decrease

i=1

i,
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— S
= Mo,
5 T% =R
L NES ~Xp  convergence
kS _MG, - ...~ _condiion
ke) :\4{0 : S
ll \ 1 N ~
ll \ ll
ll \ ll
ll \ ll
ll \ ll
' \ '
1 1 1

\/

RLP _RLP GNP GNP Number of .
Mgsit Mmar TksM Tmar 'SIM jterations Fig. 10. Maze problem.

Fig. 9. Convergence characteristics of SIM and KSM for GNP and RLBnd KSM.

(GNP: general numerical problem, RLP: reinforcement learning problem). . .
For any numerical problem, we regard the solution as
converged when the error becomes a specific value. As shown
the round-off error and improve convergence. As a result, it hisis the figure,ng;a; is the convergence iteration number of
been clarified that the algorithms based on KSM are efficieBtM, nGZ¥ 1, is that of KSM for the general numerical problem,
for policy evaluation. and nftLh, is that of KSM for the RL problem. In section
VI-A, nG8F ~ ngru/2 held when KSM and SIM solved

D. Discussion on Rapid Convergence of KSM in RL Problerffi¢ general numerical problem. The calculation cost for an

The reason why the KSM type algorithms converge rapidtteratlon of _KSM was twice as much as that of SIM. Hence,
: 4 . . P10 e calculation cost for the convergence by KSM was almost
lsnec?;ng;oabr:zr?hse Iasbg\ifiir::riégle d:g:f;git(;%alF%S;L:zS;Osne fﬂle same as SIM in the case of the general numerical problem.
. . A RLP
logarithmic graph. The horizontal axis is the number of iter%n the other handpjcs), < nsru/2 held when KSM and
tions, and the vertical axis is the error. The error is considerg lculation cost for the convergence by KSM was less than
the relative residuallg — AQ™||5/|g |2, or the normalized SIM in the case of the RL broblem
error norm weighted byd, [AQ™|| 4/1AQ || 4. With- P )

¢ taki tational int derai h . KSM is more efficient than SIM for RL problems, whereas
out taking computational error into consideration, scheémag, degree of efficiency depends on the problem. This will be
graphs are plotted when a general numerical problem an

bwn by additional numerical examples in the next section.
RL problem are solved by SIM and KSM type algorithms. y P

Consider the SIM type algorithm first. The final convergence - ] .
rate of SIM is determined by the spectral radjpiC), as E. Additional Reinforcement Learning Problems
shown in sections V-B and VI-A. The error converges on zero To show the comprehensive effectiveness of the proposed
along a straight line, a constant gradient. Figs. 1 and 4 shavethod, two popular examples, a maze problem and an
the situation. Hence, SIM requires infinite iterations in order faverted pendulum problem, are solved using SIM and KSM
solve the problem. For simplicity, we assume SIM convergenetgorithms. Their learning efficiencies are compared.
in a general numerical problem is the same as that in a RL1) Maze Problem:Figure 10 shows anl x 11 maze. A
problem. tile placed within the maze is an agent. The agent’s location is
Consider the KSM type algorithm. The number of iteraa state. The top right tile G is the termination state. The agent
tions to solve the problem by KSM is finite, as mentionedhooses an action among 4 actions: up, down, right, left. By
in sections V-B and V-D. The iteration number is at mosthoosing any action, the agent stays at the present state with
Nmaz =N — »_.(n; — 1) as explained in section V-D, wherea probability 0.1. By choosing an action in the direction of
n = NK is the size ofA, andn; is the degeneracy degree ofa wall, the agent stays at the present state with probability
eigenvalue); of A. The maximum iteration number becomed. The agent incurs a one-step cost 1 for each action, except
nGNP ~ NK if almost no eigenvalue degenerates when KSKfom the termination state. Hence, the state number, except
solves the general numerical problem. On the other hand, the termination state, i&% = 120, and the action number is
maximum iteration number become§~” < N + 1 because K = 4, which results in the size afi, NK = 480.
the degeneracy degree of eigenvalue 1 is at 1883k — 1) Starting from a random policy, the optimal policy is ob-
when KSM solves the RL problem. At the same time, the erréatined by the policy iteration. The relaxation factor for SOR
norm weighted byA decreases monotonously as mentioneéd w = 1.5. Each policy iteration step ends its iteration if the
in section V-C. In addition, the convergence rate of KSMame convergence conditions as the mass control problem are
becomes smaller and smaller as explained in sections VI-B asatisfied.
VI-C. The error is zero at iteration numbey,, .. Therefore,  According to this condition, the optimal policy is obtained
the convergence rate finally becomes zero. by policy improvement first, just after the policy evaluation
As a result, graphs become like Fig. 9 when the gener random policy. Hence, Table V lists each iteration number
numerical problem and the RL problem are solved by Sidnd computation period for evaluation of the random policy.

solved the RL problem in section VI-B. Therefore, the
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TABLE V TABLE VI
MAZE PROBLEM. ITERATION NUMBERS FOR TOTAL LEARNING BY POLICY INVERTED PENDULUM PROBLEM ITERATION NUMBERS FOR TOTAL
EVALUATION ALGORITHMS. (GS: GAUSS-SEIDEL, STAB: BICGSTAB) LEARNING BY POLICY EVALUATION ALGORITHMS. Q-FACTOR IS

INITIALIZED AS 0. (GS: Gauss-SEIDEL, STAB: BICGSTAB)

Policy [[ PEI [ Jacobi] GS | SOR [ BCG | CGS | STAB |

| _

[ Total || 67400 59100 | 32400 | 12500 | 102 | 189 | 87 | [ Poliey [ 7 [ PEI | Jacobi] GS [ SOR || BCG [ CGS| STAB |

- ) 116.702 8113 8088 4460 3750 48 49 42

\ Time (s) H 288.9\ 251.7\ 138.4\ 53.3 H 1.2 \ 2.0 \ 1.0 \ o Lozesill 92 a4 i 45 s | 22 20

2 1.65661 73 57 37 32 30 21 21

na 1.59852 71 62 41 36 31 20 20

4 1.59850 69 64 41 36 26 19 19

Policy evaluation based on KSM is tens to hundreds of times Total 8418 | 8355 | 4631 | 3899 || 163 | 131 | 122
more rapid than SIM. [ Time (9) | [ 2139.9] 2075.4] 1143.2] 936.1] 630 | 36.7 | 348 |

2) Inverted Pendulum ProblemThis section considers an
inverted pendulum problem, which is made referring problems TABLE VI
in reference [13] The ObjeCt Of thlS exerCise iS to move a INVERTED PENDULUM PROBLEM ITERATION NUMBERS FOR TOTAL
simple pendulum to the top and stop at minimum cost. Torque LEARNING BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS
is applied to the pendulum axis, clockwise or counterclockwise NITIALIZED AS Q=1 (GS: GAUSS-SEIDEL, STAB: BICGSTAB)
rotation. The statéz, v) is composed of the rotational position

« and rotational velocity of the pendulum. The action is [ Poliey [ 7 [ PEI [ Jacobi| GS [ SOR || BCG [ CGS [ STAB |
the applied torque. The top position is= =. The inverted po | 116702) 8113 | 8088 | 4460 | 3750 || 48 | 49 | 42
dul . deled using the followi tat tions: 1 1.92651| 144 | 130 79 68 36 | 29 | 23
pendulum is modeled using the following state equations: us | 1ese61|| 54 | 4a | 20 | 26 | 20 | 10 | 21
) s 1.50852| 45 40 26 23 22 | 19 | 17
=", (24) L4 1.59850 || 20 19 14 12 1 1 1
) 1 ) Total 8376 | 8321 | 4608 | 3879 || 136 | 117 | 104

V= mi2 (u—cv—mglsinz), (25) [ Time (s) | [ 2109.4] 2055.7] 1137.0] 9611 63.0 | 36.7 | 348 |

wherem = 2.0 is the mass at the tip of pendulum, =
9.8 is the gravitational acceleratiof,= 0.5 is the pendulum ) ] o
length, andc = 0.01 is the viscous coefficient of rotation. imes more rapid than SIM. Hence, KSM algorithm efficiency
In accordance with Egs. (24) and (25), the pendulum in stdfeconfirmed. o _ _
s, = (z1, v;) chooses actiom, at ime¢ and transits to state 10 investigate whether a similar result is obtained by
Se41 = (Tya1, ves1) after At a learning method other than the policy iteration, XD(
This study considers a learning problem that discretizes the= 0-7 is applied. The number of policy improvement steps
time and the state-action space. The time is divided\by= increase because the policy evaluation is more inaccurate as
0.1. We discretize the intervd, 27] of z into 20, the interval becomes_smalle_r. Only the totgl iteration number and the total
[—10.25, 10.25] of v into 41, and the intervdl-5, 5] of u into computation perlod_ are listed in Table VIII becags_e _th_ere are
5. The state transition probability is obtained by calculating Mere than 200 policy improvement steps. Theninimizing
all transitions among discretized states. The quantized stft@ iteration number is dependent on the problem and the
including (z, v) = (r, 0) is the termination state. It incursPolicy evaluation algorithm. In general, an efficient policy
a one-step cost 1 for each action except from the terminatigig/uation algorithm uses the minimum iteration number at
state. Hence, the state number, except the termination state 7 1 and an inefficient algorithm uses the minimum iteration
N = 819, and the action number i& = 5, which results in Number at a smalle. We find that learning by KSM is
the size ofA, NK = 4095. almost ten times faster than SIM, even though the efficient
Starting from a random policy;, and generating policy algorithms_use more iteration numbers)at: 0.7. Hence, the
sequencesy (I = 0,1,...), we show the total computation KSM algorithm efficiency is confirmed.
cost of all iterations until optimal policy* is obtained.
The relaxation factor for SOR isy = 1.1. We compare VII. CONCLUSION
the two initializing methods introduced in the mass control This study has proposed algorithms based on KSM for
problem. The first method initializes the Q-facteX?) as0 effective policy evaluation and accelerated learning. Policy
at each policy evaluation step. The second method initializegaluation using KSM is a far more efficient calculation
the Q-factor agQ*'-* of policy w;—; of the previous policy method than existing SIM algorithms. The reason is explained
evaluation step. Each policy iteration step ends its iterationtdy RL problem features and their solution methods. Despite
the same convergence conditions as the mass control probtém fact that coefficient matrixXd = I — PII has the size
are satisfied. n = NK, the maximum iteration number of KSM algorithm
Tables VI and VIl list each iteration number and compudas decreased frofV K to N + 1 due to the features of RL
tation period. In the tables] denotes the mean state valugroblems. The KSM algorithm’s convergence rate improves as
function of all states. Eacli of the policy converges to within the iteration number is increased, whereas the SIM algorithm’s
6 digits. All algorithms achieve the optimal policy via theconvergence rate remains constant. For these reasons, the KSM
same policy sequence with 4 policy improvement steps. VBiggorithm has a smaller iteration number and is more efficient
find that policy evaluation based on KSM is several tens &r RL problems than SIM. The numerical examples have
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TABLE VI [71 M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
INVERTED PENDULUM PROBLEM ITERATION NUMBERS FOR TOTAL solving linear systemsJournal of Research of the National Bureau of
LEARNING BY TD(X) WITH A = 0.7. (GS: GAUSS-SEIDEL, STAB: Standardsvol. 49, no. 6, pp. 409-436, Dec. 1952.

BICGSTAB) [8] R. Fletcher, “Conjugate gradient methods for indefinite systeiresg-

ture notes in Mathematicsol. 506, pp. 73—-89, 1976.
[9] H. A.van der Vorst, “Bi-cgstab: A fast and smoothly converging variant
- . of bi-cg for the solution of nonsymmetric linear systen3,AM Journal
[ _Policy [| PEI [ Jacobi| GS | SOR || BCG | CGS | STAB | on Scientific and Statistical Computingol. 13, no. 2, pp. 631-644,
[ Total [ 7603 [ 7358 | 6098 | 5585 || 1097 [ 926 | 684 | March 1992.

- [10] M. Natori, “The BCG method and the CGS methoRIMS Kokyuroku,
[ Time (s) | 1770.7[ 1603.0] 1347.0] 1229.3]] 433.7 [ 299.1[ 227.42 | Kyoto University vol. 613, pp. 135-143, 1087,
[11] Y. Saad,lterative Methods for Sparse Linear Systemdghiladelphia,

PA: Society for Industrial and Applied Mathematics, 2003.
12], T. Yamamoto, Fundamentals of Matrix Calculus Tokyo, Japan:

also shown the above results. Therefore, the methods based ggience-Sha, 2010. Y P
on KSM are recommended for RL problems. [13] A. Dutech, T. Edmunds, J. Kok, M. Lagoudakis, M. Littman, M. Ried-

; _ miller, B. Russell, B. Scherrer, R. Sutton, S. Timmer, N. Vlassis,
Recently’ some methods of Temporal Difference (TD) learn A. White, and S. Whiteson, “Reinforcement learning benchmarks and

ing with function approximation have been developed [2], pake-offs ii” in Workshop in Annual Conference on Neural Information
[14], [15], [16], [17], [18], [19]. The proposed KSM can be  Processing Systemgvhistler, Canada, Dec. 2005.

] C. Szepesari, Algorithms for Reinforcement Learning San Rafael,
combined with popular learning methods: Least Squares T CA: Morgan and Claypool, 2010.

(LSTD), Recursive LSTD, Kernel LSTD, etq- The algorithmys) w. B. Powell, Approximate Dynamic Programming: Solving the Curses
developments have been left for future subjects, where com- of Dimensionality Hoboken, NJ: Wiley, 2007.

; ; M. G. Lagoudakis and R. Parr, “Least-squares policy iteratidoirnal
bined methods are expected to be more effective than e of Machine Learning Researchol. 4, pp. 11071149, 2003,

existing methods. [17] X. Xu, D. Hu, and X. Lu, “Kernel based least squares policy iteration
for reinforcement learning,IEEE Transactions on Neural Networks
APPENDIX vol. 18, no. 4, pp. 973-992, 2007.
[18] J. Boyan, “Technical update: Least-squares temporal difference learn-
DEFINITION OF SYMBOLS ing,” Machine Learningvol. 49, no. 2-3, pp. 233-246, 2002.

Symbols of state transition probability, action selectintl S. Mahadevan and M. Maggioni, “Proto-value functions: A laplacian
! framework for learning representation and control in markov decision

probability, costs and values are shown as follows: wieie processes,Journal of Machine Learning Reseaichol. 8, pp. 2169-
an identity matrix. Thee, denotes a vector, theth element 2231, 2007.
is 1 and all others are 0.
[ik] = (i—1)xK+k
— T
w(s;) = [7(siur), m(85,u2),. .., (8, uK) ]
I(s;)) = en(si) . ) . .
i) = & Kei Senda Kei Senda received the M.S. degree in
I = s JII(s aeronautical engineering in 1988 and the Ph. D. in
[ ( ) ( 2) ( N) ] engineering in 1993, both from Osaka Prefecture
D0 (ug) = [ pi(uk),pio (uk) copin(ug) )T University. From 1988 to 2008, he worked for Os-
T aka Prefecture University and Kanazawa University.
P, = | pﬂﬁo(“l%l’ﬂﬁo(”ﬁ .- 7P¢\j¢o(uK) ] From 2008, has been a professor of Department of
P = P PT Aeronautics and Astronautics, Graduate School of
= [ 25N ] Engineering, Kyoto University. His research activ-
) = . T ities have included more than 100 papers on the
Siy U = Siy Uk, S Siy Uk, S
{]( i k) [ ( “T 28055 980, ki, SN) | dynamics and control of aerospace systems, the
G(si,ur) = eprg (si,ux) intelligence and autonomy for mechanical systems,
a o Pe. be be and the motion intelligence of animals. He received the Best Presented Paper
(s:) = (si,u1), G(si, u2)_, s G(sisuk) | Award of the AIAA Guidance, Navigation, and Control Conference in 1992,

G = [ G(sl), G(82>7 o G(SN) ] the Best Paper Award of the Institute of Systems, Control and Information
Engineers in 1994, the Best Paper of the Multi-Conference on Systemics,

g = Gp Cybernetics and Informatics in 2003, Finalist of the Best Conference Paper

Q(s) = [Qsi:u1). Qs w2, Qlossvure) 7 (e post paper Award of IEEE RASEMBS Imernational Conference. on

Q = [ QT(S1)7 QT(SQ), . QT(SN) ]T :3Eicl)5n£-edical Robotics and Biomechatronics in 2012, etc. He is a member of
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