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Acceleration of Reinforcement Learning by Policy
Evaluation Using Nonstationary Iterative Method
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Abstract—Typical methods for solving reinforcement learning
problems iterate two steps, policy evaluation and policy improve-
ment. This study proposes algorithms for the policy evaluation to
improve learning efficiency. The proposed algorithms are based
on the Krylov Subspace Method (KSM), which is a nonstationary
iterative method. The algorithms based on KSM are tens to
hundreds times more efficient than existing algorithms based
on the Stationary Iterative Methods (SIM). Algorithms based
on KSM are far more efficient than they have been generally
expected. This study clarifies what makes algorithms based
on KSM makes more efficient with numerical examples and
theoretical discussions.

Index Terms—reinforcement learning, policy iteration, policy
evaluation, nonstationary iterative method.

I. I NTRODUCTION

I N a reinforcement learning (RL) problem, state and action
are evaluated as a Q-factor, where an appropriate action

might be selected by comparing Q-factors. The objective of
RL is to obtain the Q-factors that yield the optimal policy.
A typical problem solving method using RL is composed
of plant estimation steps, policy evaluation steps, and policy
improvement steps [1], [2]. Many solution methods are derived
from different ways of combining these steps. Once the plant
is estimated, an iteration of the policy evaluation steps and
the policy improvement steps, e.g. policy iteration and value
iteration, will achieve the optimal policy, improving Q-factor
efficiently [2], [3]. Hence, this study considers model-based
reinforcement learning with an estimated plant. However, the
enormous computation cost of the solution methods often
becomes an issue. Therefore, this study discusses the efficient
algorithms derived by improving the policy evaluation step ef-
ficiency. Existing methods are based on the Stationary Iterative
Method (SIM) [2], [3]. This study proposes efficient policy
evaluation methods based on the Krylov Subspace Method
(KSM), which is a nonstationary iterative method.

The policy evaluation algorithms are classified into direct
methods and iterative methods. The total number of calculation
operations in a direct method is finite. But, the direct method
is not used generally since it cannot obtain the Q-factors
that are utilized for the policy evaluation until the calculation
is completed. On the other hand, an iterative method can
terminate its iteration in mid-course since it exponentially
decreases the error, and the iterative method algorithm is
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generally applied to policy evaluation. SIM and KSM are both
classified as iterative method algorithms, but KSM has the
properties of a direct method, i.e. a finite number of iteration
operations.

It is a simple idea to use KSM instead of SIM. But, com-
pared with a general algebraic problem, which will be shown
later in a numerical example, there is little difference between
the computation efficiency of KSM and SIM. Therefore, this
idea has not attracted notice because KSM does not seem to
be more efficient than SIM for RL problems.

However, this study will show that KSM can evaluate policy
tens to hundreds of times more efficiently than SIM in an RL
problem. The entire RL algorithm using KSM also becomes
efficient. The achieved results have been far more efficient
than expected with KSM. The advantages of KSM have not
been systematically examined yet, but this research will reveal
them. Simultaneously, this research will clarify the reason why
efficient policy evaluation methods can be so efficient. These
results are suggestive for future research in RL.

The rest of this paper is organized as follows. The RL
problem is formulated in Section II. Some assumptions and
structures of the problem are mentioned in Section III. Exist-
ing and proposed algorithms are specified in Section IV. A
theoretical review evaluating the efficiency of each algorithm
is given in Section V. The efficiency of proposed methods
is examined with numerical examples in Section VI. Finally
some concluding remarks are given in Section VII.

II. REINFORCEMENTLEARNING PROBLEM

Following general dynamic programming (DP) formula-
tions, this paper treats a discrete-time dynamic system [2].
A statesi and an actionuk are the discrete variables and the
elements of finite setsS andU , respectively. The state setS
is composed ofN states denoted bys1, s2, . . . , sN , and an
additional termination states0. The action setU is composed
of K actions denoted byu1, u2, . . . , uK . If an agent is in state
si and chooses actionuk, it will move to statesj and incur
a one-step costg(si, uk, sj) within state transition probability
pij(uk).

This study deals with a discrete-time finite Markov De-
cision Process (MDP): probabilitypij(uk) is dependent on
only current statesi and actionuk. The system does not
explicitly depend on time. Stationary policyµ is a function
mapping states into actions withµ(si) = uk ∈ U , and µ is
given by the corresponding time-independent action selection
probability π(si, uk). Symbols used in this paper are shown
in the Appendix and details follow in the reference [3].
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The DP problems are distinguished from finite horizon prob-
lems where the cost accumulates over a finite number of stages
and infinite horizon problems where the cost accumulates
indefinitely. This study treats only infinite horizon problems,
but no generality is lost since finite horizon problems can be
converted into infinite horizon problems by regarding time
as an extra component of the state. The optimal policy of
an infinite horizon problem is generally deterministic and
stationary [2].

The expected total cost, Q-factor, starting from an initial
states(0) = si and an initial actionµ

(
s(0)

)
= uk, and using

a stationary policyµ is

Qµ(si, uk) = E

[ ∞∑
m=0

αmg
(
s(m), µ

(
s(m)

)
, s(m+1)

)]

whereE[·] denotes an expected value andα is a scalar called
the discount factor (0 < α ≤ 1). The optimal Q-factor is
defined asQ∗(si, uk) = minµ Qµ(si, uk), and µ is optimal
if Qµ(si, uk) = Q∗(si, uk), ∀(si, uk). This study considers
stochastic shortest path problems that are a class of infinite
horizon problems. It is assumed thatα = 1 but there is a cost-
free termination states0 wherep00(uk) = 1, g(s0, uk, s0) =
0, Q(s0, uk) = 0, ∀uk. Under those conditions, the goal is
to find the optimal policy minimizingQµ(si, uk), i.e. to reach
the states0 with minimum expected total cost. A method for
solving this problem can be applied to many RL problems [2].

III. SOLUTION METHODS FORRL

A. Fundamental Assumptions for Solution Methods

The optimal policy is obtained by having a proper policy
and improving its Q-factor as well as many other RL methods.
A stationary policy is said to be proper if it leads to the
termination states0 from any initial statesi within M stages
(0 < M < ∞) with positive probability. For example, anε-
greedy policy and a softmax action selection law used as a
behavior policy are proper [1]. The Q-factor is calculated by
state transition probabilities which are estimated and retained
by sampling. This study calculates the Q-factors using the
state transition probability model, which is supposed to be
estimated so accurately that the estimation error does not affect
the discussions in this study.

B. Fundamental Constructions for Solution Methods

Under these assumption, there are many solution methods to
obtain the optimal Q-factorQ∗ and the corresponding optimal
policy. This study considers policy iteration, starting from a
proper policyµ0 and generating a sequence of proper policies
µ1, µ2, . . .. A policy evaluation step solves the following linear
algebraic equations forQµl concerning policyµl given by
probability πl(si, uk):

Qµl(si, uk) =
N∑

j=0

pij(uk)
{

g(si, uk, sj) (1)

+
K∑

`=1

πl(sj , u`)Qµl(sj , u`)
}

, ∀(si, uk),

wherepij(uk) is given. Eq. (1) is called Bellman’s equation
whenµl is optimal. Then, the policy improvement step obtains
a new policyµl+1, a greedy policy, which is deterministic as:

µl+1(si) = arg min
uk

Qµl(si, uk), ∀si. (2)

These two steps are repeated until the obtained policyµl satis-
fiesQµl+1 = Qµl . Policy iteration terminates after finding the
optimal policyµ∗ with a finite number of policy improvement
steps.

Value iteration is a method in which the policy evaluation
step is terminated after only one iteration, and it moves into a
policy improvement step. TD-learning, e.g. TD(λ), is a method
between policy iteration and value iteration, and Q-learning
is an approximate method of value iteration. This being the
case, most methods are based on policy evaluation and policy
improvement. From now on, this study focuses on making
policy evaluation efficient.

In addition to the method based on the Q-factor, there is a
method based on state value function, i.e. J-factor. The J-factor
based method calculates all Q-factors of action and state pairs
using J-factors in policy improvement steps. In this study, Q-
factors are directly calculated without using J-factors because
this method makes it easy to evaluate the computation costs
and so on. On the other hand, in every following algorithm, the
computation cost of the Q-factor method is aboutK times as
many as that of the J-factor method. Therefore, the amounts of
computation cost of J-factor methods are almost proportional
to Q-factor methods shown in this study.

IV. POLICY ITERATION ALGORITHMS

A. SIM Type Algorithms

Existing policy evaluation algorithms are based on SIM.
This paper shows their outline according to references [2], [3].
Consider a situation in which we seek a solutionQµ satisfying
Eq. (1) for proper policyµ with action selection probability
π(si, uk). The iteration will be terminated if the obtained
solution satisfies required accuracy, because it is guaranteed
to converge on the true solution asm →∞.

1) Policy Evaluation Iteration (PEI) Algorithm:The fol-
lowing mappingHµ is applied:

Q(m+1)(si, uk) = Hµ

(
Q(m)

)

≡
N∑

j=0

pij(uk)
{

g(si, uk, sj)

+
K∑

`=1

π(sj , u`)Q(m)(sj , u`)
}

. (3)

2) Jacobi Algorithm:The following mappingFµ is applied:

Q(m+1)(si, uk) = Fµ

(
Q(m)

)

≡ 1
1− pii(uk)π(si, uk)

N∑

j=0

pij(uk)
{

g(si, uk, sj)

+
K∑

`=1

π(sj , u`)Q(m)(sj , u`)(1− δijδk`)
}

, (4)
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whereδij = 1 if i = j andδij = 0 if i 6= j. The method using
Eq. (3) or Eq. (4) is a synchronous iteration since iteration
numbers updating all Q-factor elements are the same asm.

3) Gauss-Seidel (GS) Algorithm:The following asyn-
chronous iteration is applied:

Q(m+1)(si, uk) = Fµ

(
Q̂

)
, (5)

where Q̂ denotes a vector containing the newest Q-factor
elements.

4) SOR Algorithm:The following asynchronous iteration
is applied:

Q(m+1)(si, uk) = (1− ω)Q(m)(si, uk) + ωFµ

(
Q̂

)
, (6)

where ω denotes a relaxation factor and0 < ω < 2 is a
necessary condition for convergence.

B. KSM Type Algorithms

This paper proposes policy evaluation algorithms based
on KSM [4], [5], [6], which are different from existing
ones. We then developed the Conjugate Gradient (CG) algo-
rithm [7] and its extensions, i.e. the Bi-Conjugate Gradient
(BCG) [8] and the Block Product-type Krylov Subspace
Method (BPKSM) [9] algorithms. TheA ∈ RNK×NK is a
coefficient matrix whereA = I − PΠ is defined by using
symbols in the Appendix. The(a, b) represents the inner
product of vectorsa andb.

1) CG Algorithm:
1) Let m = 0 and prepare the initial vectorQ(0),

r(0) = ḡ −AQ(0), c(0) = r(0).

2) Sequentially calculate from top to bottom:

α(m) =

(
r(m), r(m)

)
(
c(m),Ac(m)

)

Q(m+1) = Q(m) + α(m)c(m)

r(m+1) = r(m) − α(m)Ac(m)

β(m) =

(
r(m+1), r(m+1)

)
(
r(m), r(m)

)

c(m+1) = r(m+1) + β(m)c(m)

3) End the iteration if terminal conditions are satisfied. Oth-
erwise, substitutem + 1 for m and return to step 2).

2) BCG Algorithm:
1) Let m = 0 and prepare the initial vectorQ(0),

r(0) = ḡ −AQ(0), c(0) = r(0), r̃(0) = c̃(0) = r(0).

2) Sequentially calculate from top to bottom:

α(m) =

(
r̃(m), r(m)

)
(
c̃(m),Ac(m)

)

Q(m+1) = Q(m) + α(m)c(m)

r(m+1) = r(m) − α(m)Ac(m)

r̃(m+1) = r̃(m) − α(m)AT c̃(m)

β(m) =

(
r̃(m+1), r(m+1)

)
(
r̃(m), r(m)

)

c(m+1) = r(m+1) + β(m)c(m)

c̃(m+1) = r̃(m+1) + β(m)c̃(m)

3) End the iteration if terminal conditions are satisfied. Oth-
erwise, substitutem + 1 for m and return to step 2).

3) BPKSM Algorithm:
1) Let m = 0 and prepare the initial vectorQ(0),

r(0) = ḡ −AQ(0), c(0) = r(0), r̃(0) = c̃(0) = r(0),

t(−1) = u(−1) = w(−1) = z(−1) = 0, β(−1) = 0.

2) Sequentially calculate from top to bottom:

α(m) =

(
r̃(0), r(m)

)
(
r̃(0), Ac(m)

)

y(m) = t(m−1) − r(m) − α(m)
(
w(m−1) −Ac(m)

)

t(m) = r(m) − α(m)Ac(m)

Parameters η(m) and ζ(m) are calculated.

u(m) = ζ(m)Ac(m)

+ η(m)
(
t(m−1) − r(m) + β(m−1)u(m−1)

)

z(m) = ζ(m)r(m) + η(m)z(m−1) − α(m)u(m)

Q(m+1) = Q(m) + α(m)c(m) + z(m)

r(m+1) = t(m) − η(m)y(m) − ζ(m)At(m)

β(m) =
α(m)

(
r̃(0), r(m+1)

)

ζ(m)
(
r̃(0), r(m)

)

w(m) = At(m) + β(m)Ac(m)

c(m+1) = r(m+1) + β(m)
(
c(m) − u(m)

)

3) End the iteration if terminal conditions are satisfied. Oth-
erwise, substitutem + 1 for m and return to step 2).

There are various methods to calculateη(m) andζ(m). We
chose two ways, CGS and BiCGSTAB. The CGS algorithm
uses the following parameters

η(m) =
α(m)β(m−1)

α(m−1)
, ζ(m) = α(m).

The BiCGSTAB algorithm uses the following parameters

η(m) = 0, ζ(m) =

(
t(m), At(m)

)
(
At(m), At(m)

) .
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V. THEORETICAL EFFICIENCY OFPOLICY EVALUATION

This section provides a theoretical discussion to explain the
reasons for policy evaluation efficiency.

A. Policy Evaluation and Algebraic Equation

Defining P by p, Π by µ, and ḡ by p and g as in the
Appendix, Eq. (1) are formulated as

Qµ = ḡ + PΠQµ. (7)

Eq. (7) is regarded as a large-scale algebraic equation for
unknownQµ, which is solved as

Qµ = (I − PΠ)−1
ḡ = A−1ḡ. (8)

If policy evaluation is regarded as an algebraic problem in
Eq. (8), algorithms for the problem can be classified into direct
methods and iterative methods. A direct method’s total number
of calculation operations is finite, but it cannot obtain the Q-
factor for policy evaluation until its calculations completed.
On the other hand, an iterative method can terminate its itera-
tion since it exponentially decreases the error. Typical policy
evaluation is not completed accurately or fully. An iterative
method algorithm is applied to policy evaluation because it can
generally terminate with less iteration. SIM and KSM are both
iterative method algorithms, but KSM has a property common
to direct methods. The number of calculation operations is
finite. SIM requires infinite iterations in order to solve the
problem accurately without taking computational error into
consideration. But, KSM’s iteration number is finite. The
size of the problem determines the iteration number, which
is estimated to be as many as the direct method, e.g. LU
factorization.

B. Features of SIM and Efficiency Evaluation Index

A general iterative form of Eq. (7) denoting the policy
evaluation is

Q(m+1) = b + CQ(m), (9)

whereC is a constant iteration matrix. NowA can be uniquely
factored to

A = L + D + U , (10)

where D is a diagonal matrix with non-zero diagonal el-
ements,L and U are lower and upper triangular matrices
with zero diagonal elements. The iteration matrices of SIM
algorithms in Section IV-A are [3]

CPEI = PΠ, CJacobi = −D−1(L + U),
CGauss−Seidel = −(D + L)−1U ,

CSOR = −(D + ωL)−1 {(1− ω)D − ωU} .

The error∆Q(m) ≡ Q(m) −Qµ rearranges Eq. (9) as

∆Q(m) = Cm∆Q(0). (11)

Therefore,∆Q(m) and Q(m) converge ifρ(C) < 1, where
ρ(C) is the spectral radius (the maximum absolute eigenvalue)
of C. They converge exponentially because‖∆Q(m)‖2 ∝
ρ(C)m. Hence,ρ(C) can be an index of the convergence rate.
Here‖·‖p is thep-norm, and the 2-norm is a Euclidean norm.

C. Features of KSM and Efficiency Evaluation Index

The KSM algorithms in Section IV-B have properties of
both iterative methods and direct methods that can obtain an
accurate solution of the policy evaluation step withinn = NK
iterations unless a breakdown occurs, i.e. a denominator
becomes zero. CG guarantees convergence on the correct
solution ifA is a positive-definite symmetric matrix. BCG and
BPKSM guarantee convergence, even ifA is not symmetric.
When A is not symmetric in a general RL problem, BCG
applies CG iteration to the following coefficient matrix

F̃ Ã ≡
[

0 I
I 0

] [
A 0
0 AT

]
=

[
0 AT

A 0

]
. (12)

BPKSM is regarded as a modification of BCG. Hence, their
behavior is similar to CG [10].

The CG iteration monotonically decreases the evalua-
tion value J(Q(m)) ≡ 1

2 (Q(m), AQ(m)) − (ḡ, Q(m)) for
a positive-definite symmetricA with size NK. There-
fore, the error norm weighted byA, i.e. ‖∆Q(m)‖A ≡√

(∆Q(m), A∆Q(m)) =
√

2J(Q(m)), also decreases mono-

tonically. Hence,‖∆Q(m)‖A is used to evaluate the efficiency
of KSM algorithm. Moreover,λi andvi denote the eigenvalue
and corresponding eigenvector ofA, where0 < λ1 ≤ . . . ≤
λn. This defines transformation matrixU as

U ≡
√

ΛV T ,√
Λ ≡ diag

[ √
λ1, . . . ,

√
λn

]
, V ≡ [ v1, . . . , vn ] .

By introducing the transformation̂Q
(m)

= UQ(m) andQ̂
µ

=
UQµ, we have the formula‖∆Q(m)‖A = ‖Q̂(m) − Q̂

µ‖2.
Hence, the weighted norm becomes the normal Euclidean

norm of transformed variableŝQ
(m)

andQ̂
µ
.

This paper applies this transformation and considers a
convergence rate corresponding to the spectral radius of SIM
along with the convergence theorem of the CG algorithm [11].

∥∥∥Q̂
(m) − Q̂

µ
∥∥∥ ≤ 2νm

∥∥∥Q̂
(0) − Q̂

µ
∥∥∥ (13)

ν ≡
(√

λn −
√

λ1

)/(√
λn +

√
λ1

)

The ν in Eq. (13) gives the worst convergence rate, i.e. the
upper limit, wherem is the iteration number.

The residual vectors of BCG denoted byr
(m)
BCG satisfies

r
(m)
BCG = P (m)(A)r(0)

BCG, (14)

whereP (m)(λ) is them-th order residual polynomial [10]. In
the meantime, the residual vectors of CGS denoted byr

(m)
CGS

satisfies

r
(m)
CGS = P (m)(A)P (m)(A)r(0)

CGS , (15)

whereP (m)(λ) is the same polynomial. Therefore, the residual
vectors of BCG and CGS are

r
(m)
BCG = P (m)(A)r(0), (16)

r
(m)
CGS = P (m)(A)P (m)(A)r(0), (17)

for the sameQ(0), i.e.r(0) = r
(0)
BCG = r

(0)
CGS . Hence, the CGS

algorithm is expected to converge twice as fast as the BCG
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TABLE I
CULCULATION COST FOR UPDATING VECTORQ(m)

Algorithm Nunber of multiplication / division operations

PEI N2K2

Jacobi N2K2 + NK

Gauss-Seidel N2K2 + NK

SOR N2K2 + 3NK

BCG 2N2K2 + 7NK + 2

CGS 2N2K2 + 12NK + 5

BiCGSTAB 2N2K2 + 14NK + 4

algorithm, which will be confirmed in a numerical example.
We also find that BCG and CGS intrinsically the same.

D. Computation Cost Estimation of KSM from Learning Prob-
lem Characteristics

According to the regularity ofA = I − PΠ and Ger-
schgorin’s theorem [12], all eigenvalues ofA are crowded
together in the following interval.

λi ∈
(
0, 2(1−min

(j,k)
π(sj , uk)pjj(uk))

]
, ∀i (18)

As shown in a numerical example,A has many degenerated
eigenvalues of 1. Its degeneracy is calculated as follows. We
find that µi = 1 − λi,

∀i for any eigenvalueµi of PΠ ∈
RNK×NK . Hence, the degeneracy degree of zero-eigenvalues
of PΠ, denoted bym0, are equal to that of eigenvalues 1 of
A. On the other hand, the rank ofPΠ is no more thanN ,
sinceP andΠ are(NK)×N andN × (NK) matrices. The
rank cancellationNK −N is degeneracy of zero-eigenvalues
of PΠ, andm0 ≥ NK −N .

As mentioned before, a rigorous solution is obtained at most
NK iterations by KSM algorithm. But, KSM algorithm can
stop a policy evaluation step withn−m0+1 ≤ N+1 iterations
since the iteration number is decreased as many times as the
degeneracy degree of the eigenvalues ofA [6]. This is also
decreased more if there are degenerated eigenvalues other than
1. Hence KSM algorithm guarantees to get the optimal policy
with finite iterations far fewer thanA.

Table I lists the number of multiplications and division
operations required in each algorithm to updateQ(m) once
for A = I −PΠ. The computation cost of the CG algorithm
is the same as SIM, and BCG, and BPKSM requires twice
as many computations as SIM. However, the total cost of the
proposed methods is smaller than SIMs, as shown in numerical
examples. When KSM algorithms converge at mostN + 1
iterations, as mentioned before, total computation cost required
in a rigid evaluation is aboutN3K2 or 2N3K2.

VI. N UMERICAL EXAMPLES

A. Convergence Properties in A General Numerical Problem

This section examines the convergence performance of SIM
and KSM algorithms in a general numerical problem. The
problem is to solve the simultaneous equationsAQµ = ḡ
for Qµ with a given positive definite symmetric matrixA and
a vector ḡ, where their size isn = 200. We compare the
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Fig. 1. Convergence of solutionAQµ = ḡ, whereA is a general matrix.
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Fig. 2. Eigenvalue distribution of matrixA.

Jacobi, the Gauss-Seidel, SOR (where the relaxation factor is
ω = 1.5) as SIM algorithms, and BCG, CGS, BiCGSTAB as
KSM algorithms.

Figure 1 shows their relative residuals‖ḡ−AQ(m)‖2/‖ḡ‖2
starting fromQ(0) = 0. It is found that all KSM algorithms
converge two to three times faster than SOR. However, con-
sidering Table I, there is almost no difference in performance
among the algorithms. This result has been reconfirmed by
their computation periods using a computer. HereA is chosen
so its eigenvalues exist in the same interval as Eq. (18) in
order to compare the following learning problem. TheA is
very sparse and has little degeneracy, as shown in Figure 2.
Even if other matrices similar toA are used, their results are
similar.

B. Rapid Convergence Rate of KSM in A RL Problem

1) Setting and Features of a RL Problem:This section
considers a mass control problem shown in reference [3].
The objective as the optimal regulator problem is to establish
control inputut that minimizes cost function

J =
∞∑

t=0

1
2

(
x2

t + ẋ2
t + u2

t

)
.

The state of the mass is updated as follows. At timet, the
position of massxt is updated by Eq. (19a) with a probability
of 0.9 or Eq. (19b) with a probability of 0.1:

{
xt+1 = xt + ẋt (19a)

xt+1 = xt + ẋt − sign (ẋt) , (19b)



IEEE TRANS. CYBERNETICS, VOL. 43, NO. 6, DECEMBER 2013 6

TABLE II
SPECTRAL RADIUSρ(C)

Algorithm Spectral radius

PEI 0.997439

Jacobi 0.997380

Gauss-Seidel 0.995058

SOR (ω = 1.5) 0.986642

where sign( ) denotes sign function. The velocity of massẋt

is updated by Eq. (20a) with a probability of 0.9 or Eq. (20b)
with a probability of 0.1.

{
ẋt+1 = ẋt + ut (20a)

ẋt+1 = ẋt + ut − sign (ut) (20b)

The P is defined by the above probabilities.
We quantize the interval[−2, 12] of xt into 15, the interval

[−5, 5] of ẋt into 11, and the interval[−5, 4] of ut into 10.
Hence, the state number, except the termination state, isN =
164, and the action number isK = 10, which results in the
size ofA, NK = 1640.

The eigenvalue distribution ofA = I − PΠ is shown
in Figure 3, whereΠ is given as a random policy, i.e.
π(si, uk) = 1/K ∀(si, uk). All eigenvalues ofA exist in
the interval(0, 2] because of Eq. (18). Simultaneously, it is
found that the degeneracy degree of eigenvalue 1 is more than
N(K − 1) = 1476.

2) Policy Evaluation: This section compares the policy
evaluation steps of the algorithms by convergence of the Q-
factor, where the random policy is evaluated. We evaluate each
algorithm with a relative residual versus the iteration number.
The initial Q-factor for the iteration isQ(0) = 0.

Figure 4 shows the relative residuals of SIM and KSM
algorithms, whereω = 1.5 for SOR. Figure 5 shows those
of KSM only. KSM algorithms converge much more rapidly
than SIM algorithms, which is different from Figure 1. Among
SIM algorithms, the asynchronous iteration methods, Gauss-
Seidel and especially SOR are efficient. However, thousands
of iterations are required to satisfy the convergence condition.
The relative residual becomes smaller than10−6. Each spectral
radius is listed in Table II. KSM algorithms converge within
a few tens of iteration numbers if the same convergence
condition as above is used, and the iteration numbers of SIM
algorithms are tens to hundreds of times more than KSM
algorithms. It is concluded that KSM is much more efficient
than SIM, considering the computation cost per iteration of
KSM is at most twice as many as SIM. In addition, we find
that KSM algorithms tend to accelerate the convergence ratios,
whereas SIM algorithms converge at constant rates.

3) Policy Iteration: This section evaluates the total compu-
tation cost of the policy iteration for the same mass control
problem. Starting from a random policyµ0 and generating
policy sequencesµl (l = 0, 1, . . .), we show the total compu-
tation cost of all iterations until optimal policyµ∗ is obtained.
Here we compare two initializing methods. The first method
initializes the Q-factorQ(0) as 0 at each policy evaluation
step. The second method initializes the Q-factor asQµl−1 of

0 0.5 1 1.5

10
0

102

104

Eigenvalue λ

O
cc

ur
re

nc
e 

fr
eq

ue
nc

y 
of

 λ

Fig. 3. Eigenvalue distribution ofI − PΠ.
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Fig. 5. Convergence of KSM.

the policy µl−1 of the previous policy evaluation step. Each
policy iteration step ends its iteration if both conditions are
satisfied: the relative residual of the Q-factor is smaller than
10−3, and the average update amount of all Q-factor elements
‖Q(m) −Q(m−1)‖1/NK is smaller than10−4.

Table III and Table IV list each iteration number and
computation period. The number within parentheses denotes
the number of states where their actions agree with those of
the optimal policy, and the total number of system states is
164. All algorithms acquire the optimal policy via the same
policy sequence with 4 policy improvement steps. We find that
policy evaluation based on KSM is tens to hundreds of times
more rapid than SIM. Hence, the KSM algorithm’s efficiency
is confirmed by the entire RL procedure to obtain the optimal
policy.
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TABLE III
MASS CONTROL PROBLEM. ITERATION NUMBERS FOR TOTAL LEARNING

BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS INITIALIZED AS 0.
(GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Policy PEI Jacobi GS SOR BCG CGS STAB

µ0 (0) 4900 4800 2670 1060 20 18 14

µ1 (83) 20 20 20 540 12 9 9

µ2 (133) 30 20 20 260 11 9 9

µ3 (163) 30 20 20 270 11 9 9

µ4 (164) 30 20 20 270 11 9 9

Total 5010 4880 2750 2400 65 54 50

Time (s) 74.2 68.8 39.0 34.1 3.1 2.3 2.2

TABLE IV
MASS CONTROL PROBLEM. ITERATION NUMBERS FOR TOTAL LEARNING

BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS INITIALIZED AS

Qµl−1 . (GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Policy PEI Jacobi GS SOR BCG CGS STAB

µ0 (0) 4900 4800 2670 1060 20 18 14

µ1 (83) 40 30 20 870 14 11 11

µ2 (133) 20 20 10 220 10 7 6

µ3 (163) 10 10 10 30 6 4 4

µ4 (164) 10 10 10 20 3 2 2

Total 4980 4870 2720 2200 53 42 37

Time (s) 72.6 68.5 38.7 31.5 2.6 1.9 1.7

C. Acceleration of Convergence Rate of KSM

This section solves the simultaneous equationsAQµ = ḡ
in Section VI-A for Qµ by CG in order to observe the

convergence of KSM. The error norm‖Q̂(m) − Q̂
µ‖2 plotted

in Figure 6 decreases monotonically. Fori = 1, . . . , 10, the

absolute value of thei-th element ofQ̂
(m) − Q̂

µ
denoted

by d̂i
(m)

is plotted in Figure 7. The solid line in Figure 6
represents above error norm and the broken line represents its
upper bound based onν of Eq. (13). It is found that the error
norm is truly decreasing and its convergence rate becomes
better.

Here d̂i
(m)

and‖Q̂(m) − Q̂
µ‖ satisfy below [11]:

∥∥∥Q̂
(m)−Q̂

µ
∥∥∥

2

= min
R∈Pm, R(0)=1

n∑

i=1

∣∣∣d̂i
(0)

R(λi)
∣∣∣
2

,(21)

R(m)(λ) ≡ arg min
R∈Pm, R(0)=1

n∑

i=1

∣∣∣d̂i
(0)

R(λi)
∣∣∣
2

, (22)

d̂i
(m)

= d̂i
(0)

R(m)(λi), ∀i, (23)

wherePm denotes a set of real polynomials where their orders
are no more thanm and R(λ) ∈ Pm satisfiesR(0) = 1.
From Eq. (23), the decreasing rate to the initial error element,

d̂i
(m)

/d̂i
(0)

, is equal toR(m)(λi). And R(m)(λ) is determined
uniquely so that it minimizes the error norm, as shown in
Eq. (22). As the iteration numberm increases, the order of
R(m)(λ) increases and the error norm decreases. Due to the

constraintR(m)(0) = 1, the decreasing ratêdi
(m)

/d̂i
(0)

=
R(m)(λi) of eigenvalueλi rapidly approaches zero asm
increases, which is observed in Figure 7.
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Figure 8 shows them-th order polynomialsR(m)(λ) for

m = 1, 10. We find that almost all error elementŝdi
(m)

decrease sinceR(m)(λi) is almost zero for allλi as m
becomes 10.

It is said that KSM is suited for sparse matrices [11] and
is considered to be very efficient because coefficient matrix
A of the RL problem is also sparse. However, sparsity is not
the only reason for this result, as shown in Section VI-A.
There are two properties which do not necessarily result from
sparseness: (i) the RL’s property of eigenvalue degeneracy of
the coefficient matrix and (ii) the KSM algorithm’s property
of improving convergence of the modes whose convergence
rates are small and make learning slow. It is also shown that
property (i) does not require any pre-conditioning to decrease
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the round-off error and improve convergence. As a result, it has
been clarified that the algorithms based on KSM are efficient
for policy evaluation.

D. Discussion on Rapid Convergence of KSM in RL Problems

The reason why the KSM type algorithms converge rapidly
in RL problems is based on the theoretical discussion in
section V and the above numerical discussion. Fig. 9 is a semi-
logarithmic graph. The horizontal axis is the number of itera-
tions, and the vertical axis is the error. The error is considered
the relative residual,‖ḡ−AQ(m)‖2/‖ḡ‖2, or the normalized
error norm weighted byA, ‖∆Q(m)‖A/‖∆Q(0)‖A. With-
out taking computational error into consideration, schematic
graphs are plotted when a general numerical problem and a
RL problem are solved by SIM and KSM type algorithms.

Consider the SIM type algorithm first. The final convergence
rate of SIM is determined by the spectral radiusρ(C), as
shown in sections V-B and VI-A. The error converges on zero
along a straight line, a constant gradient. Figs. 1 and 4 show
the situation. Hence, SIM requires infinite iterations in order to
solve the problem. For simplicity, we assume SIM convergence
in a general numerical problem is the same as that in a RL
problem.

Consider the KSM type algorithm. The number of itera-
tions to solve the problem by KSM is finite, as mentioned
in sections V-B and V-D. The iteration number is at most
nmax = n−∑

i(ni − 1) as explained in section V-D, where
n = NK is the size ofA, andni is the degeneracy degree of
eigenvalueλi of A. The maximum iteration number becomes
nGNP

max ' NK if almost no eigenvalue degenerates when KSM
solves the general numerical problem. On the other hand, the
maximum iteration number becomesnRLP

max ≤ N + 1 because
the degeneracy degree of eigenvalue 1 is at leastN(K − 1)
when KSM solves the RL problem. At the same time, the error
norm weighted byA decreases monotonously as mentioned
in section V-C. In addition, the convergence rate of KSM
becomes smaller and smaller as explained in sections VI-B and
VI-C. The error is zero at iteration numbernmax. Therefore,
the convergence rate finally becomes zero.

As a result, graphs become like Fig. 9 when the general
numerical problem and the RL problem are solved by SIM

G

Fig. 10. Maze problem.

and KSM.
For any numerical problem, we regard the solution as

converged when the error becomes a specific value. As shown
in the figure,nSIM is the convergence iteration number of
SIM, nGNP

KSM is that of KSM for the general numerical problem,
and nRLP

KSM is that of KSM for the RL problem. In section
VI-A, nGNP

KSM ' nSIM/2 held when KSM and SIM solved
the general numerical problem. The calculation cost for an
iteration of KSM was twice as much as that of SIM. Hence,
the calculation cost for the convergence by KSM was almost
the same as SIM in the case of the general numerical problem.
On the other hand,nRLP

KSM ¿ nSIM/2 held when KSM and
SIM solved the RL problem in section VI-B. Therefore, the
calculation cost for the convergence by KSM was less than
SIM in the case of the RL problem.

KSM is more efficient than SIM for RL problems, whereas
the degree of efficiency depends on the problem. This will be
shown by additional numerical examples in the next section.

E. Additional Reinforcement Learning Problems

To show the comprehensive effectiveness of the proposed
method, two popular examples, a maze problem and an
inverted pendulum problem, are solved using SIM and KSM
algorithms. Their learning efficiencies are compared.

1) Maze Problem:Figure 10 shows an11 × 11 maze. A
tile placed within the maze is an agent. The agent’s location is
a state. The top right tile G is the termination state. The agent
chooses an action among 4 actions: up, down, right, left. By
choosing any action, the agent stays at the present state with
a probability 0.1. By choosing an action in the direction of
a wall, the agent stays at the present state with probability
1. The agent incurs a one-step cost 1 for each action, except
from the termination state. Hence, the state number, except
the termination state, isN = 120, and the action number is
K = 4, which results in the size ofA, NK = 480.

Starting from a random policy, the optimal policy is ob-
tained by the policy iteration. The relaxation factor for SOR
is ω = 1.5. Each policy iteration step ends its iteration if the
same convergence conditions as the mass control problem are
satisfied.

According to this condition, the optimal policy is obtained
by policy improvement first, just after the policy evaluation
of random policy. Hence, Table V lists each iteration number
and computation period for evaluation of the random policy.
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TABLE V
MAZE PROBLEM. ITERATION NUMBERS FOR TOTAL LEARNING BY POLICY

EVALUATION ALGORITHMS . (GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Policy PEI Jacobi GS SOR BCG CGS STAB

Total 67400 59100 32400 12500 102 189 87

Time (s) 288.9 251.7 138.4 53.3 1.2 2.0 1.0

Policy evaluation based on KSM is tens to hundreds of times
more rapid than SIM.

2) Inverted Pendulum Problem:This section considers an
inverted pendulum problem, which is made referring problems
in reference [13]. The object of this exercise is to move a
simple pendulum to the top and stop at minimum cost. Torque
is applied to the pendulum axis, clockwise or counterclockwise
rotation. The state(x, v) is composed of the rotational position
x and rotational velocityv of the pendulum. The actionu is
the applied torque. The top position isx = π. The inverted
pendulum is modeled using the following state equations:

ẋ = v, (24)

v̇ =
1

m`2
(u− cv −mg` sin x) , (25)

where m = 2.0 is the mass at the tip of pendulum,g =
9.8 is the gravitational acceleration,` = 0.5 is the pendulum
length, andc = 0.01 is the viscous coefficient of rotation.
In accordance with Eqs. (24) and (25), the pendulum in state
st = (xt, vt) chooses actionut at time t and transits to state
st+1 = (xt+1, vt+1) after ∆t.

This study considers a learning problem that discretizes the
time and the state-action space. The time is divided by∆t =
0.1. We discretize the interval[0, 2π] of x into 20, the interval
[−10.25, 10.25] of v into 41, and the interval[−5, 5] of u into
5. The state transition probabilityP is obtained by calculating
all transitions among discretized states. The quantized state
including (x, v) = (π, 0) is the termination state. It incurs
a one-step cost 1 for each action except from the termination
state. Hence, the state number, except the termination state, is
N = 819, and the action number isK = 5, which results in
the size ofA, NK = 4095.

Starting from a random policyµ0 and generating policy
sequencesµl (l = 0, 1, . . .), we show the total computation
cost of all iterations until optimal policyµ∗ is obtained.
The relaxation factor for SOR isω = 1.1. We compare
the two initializing methods introduced in the mass control
problem. The first method initializes the Q-factorQ(0) as 0
at each policy evaluation step. The second method initializes
the Q-factor asQµl−1 of policy µl−1 of the previous policy
evaluation step. Each policy iteration step ends its iteration if
the same convergence conditions as the mass control problem
are satisfied.

Tables VI and VII list each iteration number and compu-
tation period. In the tables,̄J denotes the mean state value
function of all states. Each̄J of the policy converges to within
6 digits. All algorithms achieve the optimal policy via the
same policy sequence with 4 policy improvement steps. We
find that policy evaluation based on KSM is several tens of

TABLE VI
INVERTED PENDULUM PROBLEM. ITERATION NUMBERS FOR TOTAL

LEARNING BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS

INITIALIZED AS 0. (GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Policy J̄ PEI Jacobi GS SOR BCG CGS STAB

µ0 116.702 8113 8088 4460 3750 48 49 42

µ1 1.92651 92 84 52 45 28 22 20

µ2 1.65661 73 57 37 32 30 21 21

µ3 1.59852 71 62 41 36 31 20 20

µ4 1.59850 69 64 41 36 26 19 19

Total 8418 8355 4631 3899 163 131 122

Time (s) 2139.9 2075.4 1143.2 936.1 63.0 36.7 34.8

TABLE VII
INVERTED PENDULUM PROBLEM. ITERATION NUMBERS FOR TOTAL

LEARNING BY POLICY EVALUATION ALGORITHMS . Q-FACTOR IS

INITIALIZED AS Qµl−1 . (GS: GAUSS-SEIDEL, STAB: BICGSTAB)

Policy J̄ PEI Jacobi GS SOR BCG CGS STAB

µ0 116.702 8113 8088 4460 3750 48 49 42

µ1 1.92651 144 130 79 68 36 29 23

µ2 1.65661 54 44 29 26 29 19 21

µ3 1.59852 45 40 26 23 22 19 17

µ4 1.59850 20 19 14 12 1 1 1

Total 8376 8321 4608 3879 136 117 104

Time (s) 2109.4 2055.7 1137.0 961.1 63.0 36.7 34.8

times more rapid than SIM. Hence, KSM algorithm efficiency
is confirmed.

To investigate whether a similar result is obtained by
a learning method other than the policy iteration, TD(λ),
λ = 0.7 is applied. The number of policy improvement steps
increase because the policy evaluation is more inaccurate asλ
becomes smaller. Only the total iteration number and the total
computation period are listed in Table VIII because there are
more than 200 policy improvement steps. Theλ minimizing
the iteration number is dependent on the problem and the
policy evaluation algorithm. In general, an efficient policy
evaluation algorithm uses the minimum iteration number at
λ ' 1 and an inefficient algorithm uses the minimum iteration
number at a smallerλ. We find that learning by KSM is
almost ten times faster than SIM, even though the efficient
algorithms use more iteration numbers atλ = 0.7. Hence, the
KSM algorithm efficiency is confirmed.

VII. C ONCLUSION

This study has proposed algorithms based on KSM for
effective policy evaluation and accelerated learning. Policy
evaluation using KSM is a far more efficient calculation
method than existing SIM algorithms. The reason is explained
by RL problem features and their solution methods. Despite
the fact that coefficient matrixA = I − PΠ has the size
n = NK, the maximum iteration number of KSM algorithm
has decreased fromNK to N + 1 due to the features of RL
problems. The KSM algorithm’s convergence rate improves as
the iteration number is increased, whereas the SIM algorithm’s
convergence rate remains constant. For these reasons, the KSM
algorithm has a smaller iteration number and is more efficient
for RL problems than SIM. The numerical examples have
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TABLE VIII
INVERTED PENDULUM PROBLEM. ITERATION NUMBERS FOR TOTAL

LEARNING BY TD(λ) WITH λ = 0.7. (GS: GAUSS-SEIDEL, STAB:
BICGSTAB)

Policy PEI Jacobi GS SOR BCG CGS STAB

Total 7603 7358 6098 5585 1097 926 684

Time (s) 1770.7 1603.0 1347.0 1229.3 433.7 299.1 227.42

also shown the above results. Therefore, the methods based
on KSM are recommended for RL problems.

Recently, some methods of Temporal Difference (TD) learn-
ing with function approximation have been developed [2],
[14], [15], [16], [17], [18], [19]. The proposed KSM can be
combined with popular learning methods: Least Squares TD
(LSTD), Recursive LSTD, Kernel LSTD, etc. The algorithm
developments have been left for future subjects, where com-
bined methods are expected to be more effective than the
existing methods.

APPENDIX

DEFINITION OF SYMBOLS

Symbols of state transition probability, action selecting
probability, costs and values are shown as follows: whereI is
an identity matrix. Theei denotes a vector, thei-th element
is 1 and all others are 0.

[ik] ≡ (i−1)×K+k

π(si) ≡ [ π(si, u1), π(si, u2), . . . , π(si, uK) ]T

Π(si) ≡ eiπ
T (si)

Π ≡ [ Π(s1),Π(s2), . . . ,Π(sN ) ]
pi|j6=0(uk) ≡ [ pi1(uk), pi2(uk), . . . , piN (uk) ]T

P i ≡ [ pi|j6=0(u1),pi|j6=0(u2), . . . , pi|j6=0(uK) ]T

P ≡ [ P T
1 , P T

2 , . . . , P T
N ]T

g(si, uk) ≡ [ g(si, uk, s0), . . . , g(si, uk, sN ) ]T

Ḡ(si, uk) ≡ e[ik]g
T (si, uk)

Ḡ(si) ≡ [ Ḡ(si, u1), Ḡ(si, u2), . . . , Ḡ(si, uK) ]
Ḡ ≡ [ Ḡ(s1), Ḡ(s2), . . . , Ḡ(sN ) ]
ḡ ≡ Ḡp

Q(si) ≡ [ Q(si, u1), Q(si, u2), . . . , Q(si, uK) ]T

Q ≡ [ QT (s1), QT (s2), . . . , QT (sN ) ]T
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