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Abstract—Application of FMM to the volume integral equa-
tions for periodic boundary value problem for Maxwell’s equa-
tions is investigated. We propose effective preconditioners for the
discretized volume integral equations. We confirm the accuracy
and high performances of the proposed method in several
numerical examples including periodic problems near Wood’s
anomalies.

Index Terms—Fast multipole methods, Integral equations,
Periodic structures, Preconditioner

I. INTRODUCTION

Developing fast solvers for periodic boundary value prob-
lems is an important research subject because they are the basis
of the analysis for periodic structures such as metamaterials
and photonic crystals. Integral equation methods accelerated
with FMM (Fast Multipole Method, [1]) are considered to
be among promising candidates for such solvers. This is
particularly true when the problem under consideration is of
scattering type, since integral equation methods can deal with
radiation conditions easily. In addition, we can take the effect
of the periodicity into account in FMM using a few additional
ingredients including lattice sums of the ordinary fundamental
solution and its derivatives.

In this paper, we focus on doubly-periodic transmission
problems for Maxwell’s equations. An FMM-accelerated
Boundary Integral Equation Method (BIEM) for such prob-
lems, called periodic FMM, has been proposed by Otani
and Nishimura [2]. The periodic FMM uses the lattice sum
expression of the periodic Green’s function to regard a periodic
boundary value problem as an ordinary problem with an
infinite repetition of the replicas of the unit cell. Contributions
from far replica cells can then be evaluated as the local
expansion of the level 0 cell, and this expansion can be written
with the lattice sums. The lattice sums depend only on the
periods, wavenumber and the Floquet wavenumber and can be
precomputed once for all in the FMM algorithm. Otherwise
the algorithm is exactly the same as the ordinary FMM, which
is a distinctive advantage of the periodic FMM.

In this paper, we consider a volume integral equation
counterpart of the periodic FMM [2]. The volume integral
equations are often used to analyze inhomogeneous media,
as we can see in [3] and [4], to mention just a few. Fast
solvers for VIEM have also been investigated e.g. in [5],
where the discrete BCG-FFT algorithm for the computation
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of the scattered fields from three dimensional inhomogeneous
dielectric scatterers has been presented. In [6], the Adaptive
Integral Method (AIM) has been used to solve scattering
problems for mixed dielectric and conducting objects with
the help of volume-surface integral equations. In addition,
acceleration of VIEM with FMM has been investigated in
[7], [8] and [9]. Attempts to develop fast solvers for periodic
structures using the VIEM or VSIE (Volume/Surface integral
equation method) are found in [10], where the MultiLevel
Green’s Function Interpolation Method (MLGFIM) is used for
the acceleration, and in [11], where the Accelerated Cartesian
Expansion (ACE) method is used. However, applications of
the periodic version of the genuine FMM to VIEM have not
been investigated so far.

The most common approach in the FMM accelerated inte-
gral equation methods solves the discretized integral equations
iteratively. It is crucial to reduce the number of iterations
for solving linear equations in such approaches for the bet-
ter computational efficiency. This is particularly the case
in periodic problems because the convergence of the linear
iterative solvers may deteriorate near Wood’s anomalies, which
are well-known phenomena in periodic problems where the
solution of the problem varies dramatically for small changes
of parameters [12]. In view of this, we discuss preconditioning
issues in VIEM for periodic problems. We use the volume inte-
gral equations proposed by Schaubert et al. [13] to this end. We
propose two preconditioners for discretized volume integral
equations, which are usually considered well-conditioned but
computationally intensive and do need preconditioners, as we
shall see. We show that these preconditioners are effective in
reducing the computational time of VIEM also near anomalies
in periodic problems.

II. FORMULATION

A. Periodic boundary value problem

We consider doubly-periodic transmission problems for
Maxwell’s equations in 3D. We assume that the domain under
consideration is periodic in the x2 and x3 directions, with
the periods of L2 and L3, respectively. We define Ω0 =
(−∞,∞) ⊗ [−L2/2, L2/2] ⊗ [−L3/2, L3/2] to be the unit
domain (i.e., the unit of periodicity) in which we have a
finite scatterer Ω as shown in Fig.1. Our problem is to solve
Maxwell’s equations:

∇×H = −iωϵE, ∇×E = iωµ0H (1)

for the electric field E and the magnetic field H subject to
the following periodic boundary conditions:

E(x1, L2/2, x3) = eiβ2E(x1,−L2/2, x3)

E(x1, x2, L3/2) = eiβ3E(x1, x2,−L3/2)

H(x1, L2/2, x3) = eiβ2H(x1,−L2/2, x3)

H(x1, x2, L3/2) = eiβ3H(x1, x2,−L3/2),

and the radiation condition for the scattered wave. Here,
ω is the frequency (with the e−iωt time dependence), ϵ is
the permittivity in Ω0 and β2 and β3 ∈ R are the (non-
dimensional) Floquet wave numbers (phase differences of the
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incident wave) along x2 and x3 directions, respectively. In
Ω0 \Ω, where the wave number ke = ω

√
ϵeµ0 is constant, we

consider the incident plane wave of the following forms:

E0(x) = ainceik
inc·x, H0(x) = binceik

inc·x.

The Floquet wavenumber βi is then expressed by βi = Lik
inc
i .

We assume that the permeability is equal to the vacuum
permeability µ0 everywhere and ϵ is a function of the position
x given as follows:

ϵ(x) =

{
ϵ(x) (x ∈ Ω)
ϵe (const.) (x ∈ Ω0 \ Ω).

We note that many periodic problems of interest, such as
photonic crystals and metamaterials, belong to low frequency
problems.

Fig. 1. Periodic boundary value problems. Ω0 is the unit domain (unit of
periodicity) which extends to ±∞ in x1-axis, and Ω is a finite
scatterer.

B. Volume integral equation

We consider the volume integral equation for the electric
flux density D(x) = ϵ(x)E(x) written as follows:

Di(x)

ϵ(x)
− ω2µ0

∫
Ω

ΓP
ij(x− y)κ(y)Dj(y)dy = E0

i (x) (2)

where κ is a function given by κ(x) = (ϵ(x)− ϵe)/ϵ(x) and
ΓP
ij denotes the periodic Green’s function which can be written

as follows:

ΓP
ij(x− y) =

(
δij +

1

k2e

∂

∂yi

∂

∂yj

)
GP (x− y) (3)

GP (x− y) =
∑
ω∈L

G(x− y − ω)eiβ·ω

L = {ω = (0, n2, n3)|n2, n3 ∈ Z} ,β = (0, β2, β3)

G(x− y) =
eike|x−y|

4π|x− y|
(4)

and G and GP are the fundamental solution and periodic
Green’s function of Helmholtz’ equation, respectively. The
second term on the LHS of (2) has a strong singularity at
x ∈ Ω which has to be interpreted in the sense of distribution.

Written explicitly, the integral in (2) in x ∈ Ω takes the
following form:(

1

ϵ(x)
+

κ(x)

3ϵe

)
Di(x)−ω2µ0

∫
Ω

GP (x−y)κ(y)Dj(y)dy

− 1

ϵe
p.v.

∫
Ω

∂

∂yi

∂

∂yj
GP (x− y)κ(y)Dj(y)dy

= E0
i (x), x ∈ Ω (5)

where p.v. stands for the standard Cauchy’s principal value.

C. Discretization

Note that the unknown D in the integral equation in (2) is
in Hdiv(Ω). It is therefore reasonable to discretize (2) (or (5))
using the SWG (Schaubert-Wilton-Glisson) basis functions
[13] for D ∈ Hdiv(Ω). We substitute this expansion into (2)
and test it with the SWG basis function. Namely, we define
tm(·) as the m-th SWG basis function and approximate D(x)
by:

D(x) ≈
∑
n

dntn(x). (6)

We thus obtain the following discretized version of the volume
integral equation in (2):∑

n

(∫
Ω

1

ϵ(x)
tm(x) · tn(x)dx−∫

Ω

ω2µ0tm(x) ·
∫
Ω

ΓP (x− y) · κ(y)tn(y)dydx
)
dn

=

∫
Ω

E0(x) · tm(x)dx. (7)

The equation in (7) is solved for the coefficients dn with the
help of the periodic FMM [2] and a certain iterative solver.

D. Periodic FMM

FMM is a well-established fast algorithm to compute the
matrix-vector product Ax for the discretized integral equation.
In this paper, we use the periodic version of the low-frequency
FMM to evaluate the potential term in (2) given by:

Vi(x)

= −ω2µ0

∫
Ω

(
δij +

1

k2e

∂

∂yi

∂

∂yj

)
GP (x−y)κ(y)Dj(y)dy

(8)

for x ̸∈ Ω. As a matter of fact, the periodic FMM, developed
for BIEM, can be used with VIEM with a minimal change of
the definition of the multipole moments. We therefore show
only the results, and do not elaborate on the periodic FMM
here. See Otani and Nishimura [2] for further details.

The low-frequency FMM for non-periodic problem is based
on the following expansion of G:

G(x− y) =
ike
4π

∑
n,m

(2n+ 1)Imn (−−→x0x)

×
∑
n′,m′

(2n′ + 1)Tm′,m
n′,n (

−−→
Ox0)(−1)m

′
I−m′

n′ (
−→
Oy) (9)
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where O and x0 are points near y and x, respectively, for
which we assume that |−−→Ox0| > |−−→x0x +

−→
Oy| holds. The

functions On
m and Inm are the radiating and entire solutions

of Helmholtz’ equation defined as follows:

Om
n (

−→
Ox) = h(1)

n (ke|
−→
Ox|)Y m

n

( −→
Ox

|
−→
Ox|

)

Imn (
−→
Ox) = jn(ke|

−→
Ox|)Y m

n

( −→
Ox

|
−→
Ox|

)

Y m
n

( −→
Ox

|
−→
Ox|

)
=

√
(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ

where h
(1)
n and jn are the spherical Hankel function of the

first kind and n-th order and the spherical Bessel function
of the n-th order, (r, θ, ϕ) are the polar coordinates of the
vector

−→
Ox and Pm

n is the associated Legendre function. The
coefficients Tm′,m

n′,n can be computed by a recurrence formula.
Substituting (9) into the non-periodic version of (8), we obtain
the following local expansion of the potential Vi:

Vi(x) =
iω

√
µ0

4π
√
ϵe

∑
n,m

(2n + 1)Lm
r,n(x0)eiqr

∂

∂xq
Imn (−−→x0x)

(10)

where Lm
i,n(x0) is the coefficients of the local expansion

around x0 which is defined by the following M2L formula:

Lm
i,n(x0) =

∑
n′,m′

(2n′ + 1)Tm′,m
n′,n (

−−→
Ox0)M

m′

i,n′(O) (11)

and Mm
i,n is the multipole moment around O:

Mm
i,n(O) =

∫
Ω

eipq
∂

∂yp
(−1)mI−m

n (
−→
Oy)κ(y)Dq(y)dy (12)

The shift formulae for Mm
i,n and Lm

i,n (M2M and L2L) are the
same as those for the BIEM. In practice the infinite series in
(10) and (11) are truncated. We use sufficient number of terms
to assure 3 digits of accuracy in the examples to be shown
later. The periodic FMM interprets periodic boundary value
problems as ordinary boundary value problems for infinite
replicas. The contributions from replicas near the unit cell are
evaluated by the ordinary FMM and the effects from other
replicas are computed using a periodic version of the M2L
formula obtained by replacing Tm′,m

n′,n (
−−→
Ox0) in (11) by the

lattice sum given by:∑
n2,n3

Tm′,m
n′,n (n2L2e2 + n3L3e3)e

−i(n2β2+n3β3) (13)

where the summation is over indices for far replicas. See Otani
and Nishimura [2] for a practical way of computing the sum
in (13).

We note that the present formulation assumes that the
structure is orthotropic. It is possible to extend the formulation
to other cases, but the details remain to be worked out.

III. PRECONDITIONERS

In this section, we propose two preconditioners for (7).
It is generally believed that VIEMs produce well condi-

tioned matrices. This is because the operator of the volume
integral equation (2) is well-conditioned, as we can infer e.g.
from the related spectral analysis in Costabel et al.[14] who
noted that the essential spectrum of the integral operator in (2)
(applied to κDj and multiplied by ϵe, to be precise) consists
of only 0, 1/2 and 1 when Ω is homogeneous [14]. However,
developing good preconditioners for VIEM is considered to be
worth the efforts because reducing the already small number of
iterations for VIEM even by a few times will have considerable
effects on the overall computational time since VIEM tends
to be computationally intensive.

A. Gram-Preconditioner

As the first preconditioner for (7) used with linear iterative
solvers, we propose to use the first term of (7) as the right
preconditioner:

Pmn =

∫
Ω

1

ϵ(x)
tm(x) · tn(x)dx. (14)

Obviously, this preconditioner is expected to work as a good
scaling factor for (7) since the free term in (7) is reduced to
an identity with this preconditioner. Another function of this
preconditioner is to make the discretized system in (7) a better
approximation to the original integral equation in (2) (See [15]
for further explanation) in that the identity operator (multiplied
by a scalar function, to be precise) is transformed into an
identity matrix. As a matter of fact, the operator of the volume
integral equation (2) is well-conditioned, as we have already
noted. Therefore, we expect that the discretized equation in
(7) will show better convergence with linear iterative solvers
if the spectral properties of the discretized system is made
closer to the original equation in (2).

We call this preconditioner as the Gram-preconditioner in
this paper since the matrix defined by (14) is the Gram matrix.
To implement the Gram-preconditioner in the iterative solver,
the following steps are required for a candidate solution y at
every iteration step in the iterative solver:

1) solve Px = y for x
2) compute the matrix-vector product Ax

Namely, the additional computational cost of the Gram-
preconditioner is one inversion of P (i.e. solve Px = y) at
every step of the iterative solver. P is a sparse matrix which
can be easily inverted iteratively.

B. AP−1BQ−1-preconditioner

It can be shown that the operator defined by

(Bϕ)j =
ϕj(x)

ϵe
+ ω2µ0

∫
Ω

ΓP
jk(x− y)κ(y)ϕk(y)dy (15)

satisfies

AB =
1

ϵeϵ(x)
(I +K) (16)
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when the domain Ω extends to infinity, where A is the operator
on the LHS of (2) given by

(AD)i =
Di(x)

ϵ(x)
− ω2µ0

∫
Ω

ΓP
ij(x− y)κ(y)Dj(y)dy, (17)

I is the identity operator and K is a compact operator. To see
this, we consider the homogeneous case (i.e., ϵ = const.). The
principal symbol of A, or the Fourier transform of the most
singular part of the kernel, is given as follows:

1

ϵ
δij +

(
1

ϵe
− 1

ϵ

)
ξiξj
|ξ|2

(18)

where ξi is the Fourier variable. The inverse of (18), multiplied
by 1/(ϵϵe), is given by:

1

ϵe
δjk −

(
1

ϵe
− 1

ϵ

)
ξjξk
|ξ|2

(19)

which is the principal symbol of B, thus proving (16). The fact
that (16) remains valid for the variable ϵ case may be shown
with the help of the theory of pseudo differential operators
(see [16] for example).

Using the same argument as has been used in III-A, we
expect that the matrix given by

AP−1BQ−1

has a spectral property similar to that of AB and, hence, gives
a well conditioned equation, where

Qmn =

∫
Ω

1

ϵe
tm(x) · tn(x)dx,

and A and B are the discretized matrices for A and B,
respectively. We thus propose to right-precondition (7) using
the matrix QB−1P as a preconditioner even when Ω is
bounded. Note that the integral part of B is exactly the same
as that for A. In applying B, we can therefore make good use
of the matrix-vector product implementation which we already
have for A. In this paper, we call this preconditioner as the
AP−1BQ−1-preconditioner. To implement the AP−1BQ−1-
preconditioner, the following steps are required for a candidate
solution y at every iteration step in the iterative solver:

1) solve Qz = y for z
2) compute the matrix-vector product Bz
3) solve Px = Bz for x
4) compute the matrix-vector product Ax

The computational costs for steps 2 and 4 are almost identical
and those for steps 1 and 3 are negligible. Hence this precon-
ditioning is considered worth the efforts if it can reduce the
number of iterations to less than 1/2 of the original.

IV. NUMERICAL EXAMPLES

In this section, we test the proposed approaches with
numerical examples. In all the examples shown below, we use
an appropriate non-dimensionalization using ϵ0 and µ0 (the
vacuum permittivity and permeability) and a certain unit of
length l0 [m]. With this non-dimensionalization, ϵ and µ are
actually relative permittivity and permeability and we have
ϵe = 1 if the outer space is vacuum, which we assume in the
following examples. Physical quantities are obtained as one

multiplies the following quantities to the corresponding non-
dimensional quantities: length: l0, time: l0

c0
, where c0 = 3.0×

108[m/s] is the speed of light. For example, the (dimensional)
frequency f is given in terms of the non-dimensional circular
frequency ω as f = c0ω

2πl0
[Hz]. As the linear iterative solver,

we use FGMRES (Flexible Generalized Minimal RESidual
Method) [17], which allows the use of iterative methods for
the inversion of preconditioners. For the approximate inversion
of the matrices P and Q in FGMRES, we use the ordinary
GMRES. We set the tolerance (relative error) for both main
FGMRES and for GMRES for the inversion of the matrix
P and Q to be 10−5 and we set the maximum number of
iterations of FGMRES to be 1000.

A. Comparison with exact solution — non-periodic case

To test the accuracy of the proposed method, we first
consider a case in which we can obtain the exact solution.
The scatterer is a single sphere (i.e. not periodic case) having
the radius of 0.35, the permittivity ϵ in Ω is fixed to be ϵ = 4.0,
and the frequency is given by ω = π (i.e. the wavelength in
vacuum is about 5.7 × radius of the scatterer). The incident
wave is given as E0(x) = (eikex3 , 0, 0). We define the error
as follows:

relative error =

√∫
Ω
|D(x)−DMie(x)|2dx∫

Ω
|DMie(x)|2dx

(20)

where DMie is the exact solution obtained by the the Mie
series and D is the numerical solution obtained by our method.
We discretize the sphere by 6091 tetrahedron (the number of
unknowns is 12874). We found that the numerical solution
agrees with the exact solution within 4.14% of relative error.
The speedup of the total computational time obtained only by
the FMM acceleration was 5.46 in this example.

To test our preconditioners in problems with higher contrast,
we change ϵ in the scatterer to 24, and vary ω from 1.0
to 3.0 (i.e., the wavelength in the vacuum is from 17.9 to
5.98 × radius of the scatterer). We discretize the sphere with
135168 tetrahedrons (the number of unknowns is 276256).
Fig.2(a) shows the total radar cross sections for this problem
obtained by our method and the Mie-series. We see that the
results of the proposed method are satisfactory even near
the resonances at ω ≈ 1.78 and 2.58. Fig.2(b) shows the
number of iterations in the FGMRES and Fig.2(c) shows
the computational time (second) for the convergence of the
FGMRES. The no-preconditioned method could not satisfy
the error tolerance after 1000 iterations for ω > 1.2. On
the other hand, both Gram-preconditioned and AP−1BQ−1-
preconditioned methods converged within 1000 iterations.
This observation tells that preconditioning is necessary with
VIEs which are believed to be well-conditioned and that our
preconditioners are effective in high contrast problems.

B. Periodic spheres

We consider doubly-periodic spherical scatterers having
radii of 0.35. The periods L2 and L3 are both 1.0. We
discretize the sphere by 129160 tetrahedrons (the number of
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(a) (b) (c)

Fig. 2. non-periodic sphere, (a): Total radar cross section, (b): Number of iterations vs frequency, (c): Computational time(s) for FGMRES vs frequency

(a) (b) (c)

Fig. 3. periodic spherical scatterer, (a): Energy transmittance, (b): Number of iterations vs frequency, (c): Computational time(s) for FGMRES vs frequency

unknowns is 264039). Specifically, we test the performances
of our method near Wood’s anomalies.

The incident wave is given as follows (β3 = 0):

E0(x)

=


β2

keL2

−
√

1−
(

β2

keL2

)2
0

 e
i
(√

k2
e−(β2/L2)2x1+(β2/L2)x2

)
.

(21)

In this example, we set β2 = 0 and fix ϵ = 2.56 in the
spheres. We vary ω from 5.0 to 7.0 (i.e., the wavelength in
the vacuum varies from 1.26 × period to 0.90 × period, or
3.59×radius to 2.56×radius). We compare our results obtained
with VIEM and those obtained with BIEM. In BIEM, we use
the PMCHWT formulation and FGMRES as the linear iterative
solver, with the part of the coefficient matrix representing
the near field interaction as the right preconditioner [2]. As
the tolerances for the main FGMRES and GMRES for the
inversion of the near filed interaction coefficients matrix, we
use 10−5 and 10−1, respectively. In BIEM, we discretize the
surface of the sphere into 11520 triangles (almost the same
as the number of triangles on ∂Ω in the SWG mesh used for
VIEM).

Fig.3(a) shows the energy transmittances computed with
our method and those obtained with BIEM. These results
agree well with each other. We also see that the computed
energy transmittance approaches 0 at ω ≈ 5.55 and 5.8,

thus indicating that these frequencies correspond to Wood’s
anomalies in this problem. We therefore test the performance
of our method near ω ≈ 5.55 and 5.8.

Fig.3(b) shows the number of iterations in FGMRES. This
figure shows that the numbers of iterations of the Gram-
preconditioned method and the AP−1BQ−1-preconditioned
method are much smaller than those of the no-preconditioned
method. Besides, we see that the numbers of iterations
for the Gram-preconditioned method and the AP−1BQ−1-
preconditioned method do not increase very much even near
Wood’s anomalies. This is in contrast to the no-preconditioned
method in which the number of iterations becomes large
near Wood’s anomalies. As a matter of fact, the numbers
of iterations for the preconditioned VIEMs do increase near
Wood’s anomalies, but they remain under control thanks to
the improved conditioning of the matrices obtained by the
preconditioners.

Fig.3(c) shows the computational time in FGMRES. Note
that the near-field interactions required in FMM are pre-
computed and the corresponding computational time is ex-
cluded from the timing results. This figure shows the same
tendency as the number of iteration. It is seen, how-
ever, that the Gram-preconditioned method is faster than
the AP−1BQ−1-preconditioned method. This is because
AP−1BQ−1-preconditioned method needs two matrix-vector
products and two inversions of matrices P and Q in one
iteration as discussed in III.
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(a) (b) (c)

Fig. 4. periodic cubic scatterer, (a): Energy transmittance, (b): Number of iterations vs β2, (c): Computational time(s) for FGMRES vs β2

C. Periodic cubes

As an example of a non-smooth geometry, we consider
cubic scatterers. Here, we consider a cube with a side length
of l = 0.35, and discretize it into 163609 tetrahedrons (the
number of unknowns is 338479). The incident wave is given
by (21). We fix ϵ = 4, ω = 4 (i.e., the wavelength in the
vacuum is 1.57 × period, the side length of the scatterer is
0.22× the wavelength in vacuum) and vary β2. Fig.4(a) shows
the energy transmittances obtained with VIEM and BIEM
(with 22118 triangles). The sharp dip near β2 ≈ 2.24 is consid-
ered to correspond to Wood’s anomaly. Fig.4(b) and Fig.4(c)
show the number of iterations and the computational time for
FGMRES, respectively. We see that our preconditioners are
effective also in this case, especially in the neighborhood of
Wood’s anomaly.

V. CONCLUSION

We summarize the results obtained in this paper as follows:
We extended the periodic FMM, which has been applied

only to BIEM so far, to VIEM for doubly-periodic transmis-
sions problems for Maxwell’s equations. We then verified the
proposed method in non-periodic problems by comparing the
numerical solutions with the analytical results. The proposed
method was then applied to periodic problems in which we
found that the numerical solutions agreed with the BIEM
solutions.

We also proposed two preconditioners. One is the Gram
preconditioner in which we use the Gram matrix part of the
discretized linear equation as the right preconditioner. The
other is the AP−1BQ−1-preconditioner, which reduces the
original integral operator essentially to a compact perturbation
of an identity when the domain Ω is of infinite extent. This
approach makes good use of matrices which we already have
in the computation of the coefficient matrix for the original
integral equation. With numerical examples, we verified that
these preconditioners can reduce the number of iterations and
the computational time for iterative solvers. We also found
that our preconditioners work even in problems where no-
preconditioned methods did not lead to convergence within
reasonable numbers of iterations. In terms of the computa-
tional time, the Gram-preconditioned method is more efficient

than the AP−1BQ−1-preconditioned method. These precon-
ditioned methods remain effective even near Wood’s anomalies
where the non-preconditioned approach becomes inefficient.
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