<table>
<thead>
<tr>
<th>タイトル</th>
<th>インドネシア、東ジャワ、マディウンにおけるチーク林の現存量と一次生産量</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者</td>
<td>プルワント・リス・ハディ・大畠・誠一</td>
</tr>
<tr>
<td>引用</td>
<td>森林研究、京都大学大学院農学研究科森林資源学専攻、京都大学大学院農学研究科</td>
</tr>
<tr>
<td>顔文字</td>
<td>森林研究、京都大学大学院農学研究科</td>
</tr>
<tr>
<td>顔文字</td>
<td>森林研究、京都大学大学院農学研究科</td>
</tr>
<tr>
<td>顔文字</td>
<td>森林研究、京都大学大学院農学研究科</td>
</tr>
<tr>
<td>顔文字</td>
<td>森林研究、京都大学大学院農学研究科</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/192854">http://hdl.handle.net/2433/192854</a></td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>版式いつも</td>
<td>publisher</td>
</tr>
<tr>
<td>位置</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Estimation of the biomass and net primary production in a planted teak forest in Madiun, East Java, Indonesia

Ris Hadi PURWANTO* and Seiichi OOHATA*

Permanent plots of 0.1 ha were established at 22 forests in the Forest District in Madiun, East Java. The biomass and productivity of planted teak forests (Tectona grandis Linn.) in old stands of 10 to 40-year-old were estimated and compared with those of young stands already investigated in our previous study. In April 2000, sample trees selected around the plot were felled for collecting of stem weight and other related data needed for estimating the allometric relationships of various dimensions of individual trees e.g. stem diameter at breast height DBH and stem diameter at the lowest branch Db. Tree censuses were conducted in the plots twice in September of 2000 and 2001. The productivity was estimated using the biomass increment during the period between the censuses and leaf production which was estimated by measuring litter fall two times every month. The old stands showed lower net primary production (NPP) compared with the young stands fertilized as one of the agroforestry practices. However, the NPP were higher than deciduous forests in Japan and teak stands in India and Thailand. The higher NPP in early stage seemed to be maintained by the intensive agricultural practices such as fertilization and tillage for agroforestry and by a long tree growth period in East Java under tropical climate.

Key words: Planted teak forest, net productivity, allometry method, East Java

Introduction

As the main timber species, teak (Tectona grandis Linn.) has been planted for the past two hundred years in monsoon climate regions of Indonesian lowlands. Recently, teak plantations were established in a large area in Madiun, East Java, as a component of an agroforestry system to settle the social problems of the forest farmers. In agroforestry, trees and agricultural crops are planted in alternating lows, so that the land can be used continuously by the forest farmers. Although the area of teak forest is very large, precise investigation of dry matter production of teak forests has not been carried out. The productivity of young stages of the forest has been recorded and results showed a high net production in 7-year-old forests under light conditions of 8.5 % in relative light intensity. The high productivity in the forest at a young stage was assumed to be caused by the tillage and fertilization for cultivation of agricultural crops in...
the agroforestry.

After five years, the tree density of the forests was controlled by thinning management. The growth rate of teak forests in Java depends on the site quality and thus varies from locality to locality. The resulting growth and yield is a complex one and involves silvicultural treatment, soil, drainage, rainfall, temperature, slope and human impact e.g., livestock grazing, forest fire and illegal cutting. Therefore, there are a lot of constraints to evaluate and quantify the exact level of impact. Various combinations of the above factors can influence the productive capacity of a site to different degrees.

In this report, productivity for 10 to 40-year-old stands was estimated by measuring the biomass increment and leaf litter production with measuring methods proposed by Kira6) and Ogawa12), who investigated forest productivity in Thailand and Cambodia.

Material and methods

About 30,000 ha of planted teak forests at the western foot of Mt. Lawu (7° 30’ S and 112° 30’ E) in East Java of Indonesia are being managed by Forest District of Madiun, State-Owned Enterprise of Java (Badan Usaha Milik Negara). Various aged forests grow on volcanic soil from 50m to 600m in altitude. The monthly mean temperatures and precipitation in 2000 - 2001 at the research site were consistent with a typical monsoon climate with a short dry season (July to September), as shown in the Fig. 1.

The study area was situated on a hillside about 145–370 m above sea level; the geological structure was volcanic and the soil type belonged to the red-brownish latosol in most of the area, and the topography is gently undulating6).

Teak seeds are directly sown on the site and are grown together with other crops such as peanuts, cassava, maize and rice in the Madiun agroforestry system. Leucaena glauca, the Leguminosae tree species was also added by line planting for the purposes of supplying fodder, fuel wood, and green manure. This intercropping practice in the early years of the teak plantations had several beneficial effects e.g., increased areal utility, supply benefits to the local community and maintenance of the area free of the weeds6). Leaves of Leucaena glauca are usually harvested at a half-year-old after sowing. Thinning of teak plantations is carried out five years after sowing in immature stands in order to stimulate the trees growth9).

To estimate the forest biomass and net production of the teak stands, 22 sample plots of 0.10 ha (25m x 40m) were set up in September 2000 in artificial teak forests of 10 to 40-year-old. The stands are located at 145m to 370m in altitude.

Stem diameter at breast height, DBH or at 1.3m above the ground (D) was measured for all trees in the quadrates twice in September of 2000 and of 2001. At the same time tree height (H) was measured for selected sample trees.

For producing the allometric equations in individual trees, seven sample trees from 3 to 52-years old were cut down around the plots, and tree size as D, H, and weights of stem, branch and leaf of the sample trees were measured in April, 2000. To confirm the allometric relations among the aboveground parts, additional censuses for the teak trees were done in the dry season of September, 2000. 137 sample trees were measured for allometric relations between stem diameter at 1.3m above the ground (D) and stem diameter at the lowest branch (Dh), 24 trees for stem weight and 10 trees for branch weight. The amount of leaves was estimated from the relation between the values of square of diameter at the lowest branch (Dh²), using the relation between D and Dh. Root biomass was estimated from the assumption that it is 20 percent of the above ground woody organs after
Whittaker and Marks\textsuperscript{29}, Karizumi\textsuperscript{4} and Tadaki\textsuperscript{20}.

The fresh samples were dried in a ventilated oven at 80°C for at least one week and weighed. Ratios of dry/fresh mass were calculated and used for converting fresh weight into dry weight.

Field observation suggested the consumption of leaves by herbivorous animals and insects (G) was not negligible so that the G-term was considered in the measurement. The amount of leaf losses by grazing of herbivores (G) was measured from holes and the discolored areas from the sample leaves\textsuperscript{8}.

To confirm leaf production per year, ten litter traps, 1m x 1m in size, were set up in each stand in September, 2000, and the fallen litter was collected twice a month from October, 2000 to September, 2001. To estimate the decomposition rate of leaf three plots of 2m x 2m in size were set up and the amounts of decomposed leaf litter on the ground in 10-year-old and 15-year-old forests were measured in April the end of the rainy season 2001.

The relative light intensity in these forests was measured by a pair of electric photometers at 50 points in each stand and in the open land, respectively, in April, 2001.

The rainfall records for the past twenty two years were taken from six stations of the Weather Bureau distributed in the forest areas including the Madiun Forest District (unpublished data). The monthly mean temperatures during the study period in 2000-2001 is shown in Fig. 1.

Yield and growth tables for teak forests in Indonesia were used to determine the site index of the stands\textsuperscript{31}.

Results

The number of plots, six levels of stand age, site indexes, altitude of stands and mean values of relative light condition under the stand are shown in Table 1. Relative light intensity shows slightly larger values than Japanese deciduous forests, 252 \%\textsuperscript{6}, nevertheless a large amount of leaf biomass was measured in the young stands of our previous study\textsuperscript{16}. Some weeds and Dalbergia sissoo, an evergreen indigenous species, usually grows under the forest floor of planted teak forests. As shown by the climate data in Fig. 1, the precipitation in the measured period was higher than the previous year in 1999, and showed more moist conditions.

Net primary production (NPP) was described by the following equation\textsuperscript{6,10}.

\[ NPP = \Delta B + L + G \]  \hspace{1cm} (1)

where \( \Delta B \) is the biomass increment of the forest between time 1 and time 2. L and G are the amounts of litter fall and grazing during the period.

Various amounts and partial biomass of trees were estimated from DBH by the allometric correlation method\textsuperscript{12}, as with our previous investigation for the teak plantations at a young stage\textsuperscript{16}. The relation of \( H (m) \) to \( DBH (D \text{ cm}) \) was tentatively determined by the hyperbolic relation\textsuperscript{12,13} as follows:

\[ \frac{1}{H} = 0.8983 \frac{1}{D^{1.1}} + 0.0260 \]  \hspace{1cm} (2)

Stem diameter of a tree was an excellent predictor of

\[
\begin{array}{cccc}
\text{Stand age} & \text{Number of plots} & \text{Site index} & \text{Altitude above sea level} & \text{Relative light intensity} \\
\text{years} & \text{with census record} & & (\%) & \\
10 & 4 & 2.5 & 160 & 15 \\
15 & 4 & 2.5 & 145 & 12 \\
20 & 4 & 3.0 & 340 & 7 \\
25 & 4 & 3.5 & 370 & 6 \\
30 & 2 & 3.5 & 350 & 13 \\
40 & 4 & 2.5 & 148 & 10 \\
\text{Total} & 22 & - & - & \\
\end{array}
\]  

Fig. 2. Hyperbolic relationships between diameter at breast height (DBH) and tree height (H) for planted teak forests in the study area.
Table 2. Teak biomass of various stand ages

<table>
<thead>
<tr>
<th>Stand age years</th>
<th>LAI ha/ha</th>
<th>Leaf biomass ton/ha</th>
<th>Stem biomass ton/ha</th>
<th>Branch biomass ton/ha</th>
<th>Root biomass ton/ha</th>
<th>Total biomass ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.5±0.3</td>
<td>4.0±0.4</td>
<td>41.0± 2.0</td>
<td>15.1± 0.5</td>
<td>11.2± 0.5</td>
<td>71.4± 3.4</td>
</tr>
<tr>
<td>15</td>
<td>4.0±0.2</td>
<td>4.6±0.2</td>
<td>59.7± 0.7</td>
<td>23.3± 0.1</td>
<td>16.6± 0.1</td>
<td>104.2± 1.1</td>
</tr>
<tr>
<td>20</td>
<td>4.6±0.6</td>
<td>5.1±0.7</td>
<td>85.8±14.6</td>
<td>35.7±6.4</td>
<td>24.3±4.2</td>
<td>150.8±25.8</td>
</tr>
<tr>
<td>25</td>
<td>4.5±0.4</td>
<td>4.9±0.5</td>
<td>105.0±8.3</td>
<td>46.4±3.4</td>
<td>30.3±2.3</td>
<td>186.5±14.5</td>
</tr>
<tr>
<td>30</td>
<td>3.9±0.0</td>
<td>4.2±0.0</td>
<td>95.4± 0.0</td>
<td>42.8±0.0</td>
<td>27.6±0.0</td>
<td>170.1± 0.0</td>
</tr>
<tr>
<td>40</td>
<td>3.9±0.2</td>
<td>4.3±0.2</td>
<td>89.6± 8.0</td>
<td>39.2±3.9</td>
<td>25.8±2.4</td>
<td>158.9±14.4</td>
</tr>
</tbody>
</table>

Tree height, as shown in Fig. 2. Stem diameter at breast height explained more than 80% of the variability in tree height. The remaining variability may be attributed to inherent tree, stand (densities and age class distribution), and/or site characteristics (soil and hydrological parameters). The equation showed that the relative rate of stem elongation was slightly higher than that of stem diameter increase (h = 1.1) in the initial stage of teak forest growth. Tree form changes from a stick-like form in early stages to an umbrella form after ten years old. Using the equation, the maximum height was estimated as 38.5 meters.

Since tree density was controlled well by farmers after 5 years, the relationships among measured tree dimensions drew a simple linear; suggesting the growth pattern of tree dimensions in each individual plant are closely inter-dependent. These features among tree form seemed to be caused by similar management methods applied in the sample stands, as shown in Fig. 2. Stem diameter at breast height explained more than 80% of the variability in tree height. The remaining variability may be attributed to inherent tree, stand (densities and age class distribution), and/or site characteristics (soil and hydrological parameters). The equation showed that the relative rate of stem elongation was slightly higher than that of stem diameter increase (h = 1.1) in the initial stage of teak forest growth. Tree form changes from a stick-like form in early stages to an umbrella form after ten years old. Using the equation, the maximum height was estimated as 38.5 meters.

Since tree density was controlled well by farmers after 5 years, the relationships among measured tree dimensions drew a simple linear; suggesting the growth pattern of tree dimensions in each individual

![Fig. 3. Relation between diameter at breast height DBH (cm) and diameter at the lowest branch D_b (cm).](image-url)

![Fig. 4. Allometry between the oven-dry weight of leaves per tree W_L (kg) and square of diameter at the lowest branch D_b^2 (cm^2).](image-url)

![Fig. 5. Allometry between the oven-dry weight of branch per tree W_B (kg) and D^2H (cm^2.m), expressed by the linearity between the logarithms of the two amounts.](image-url)
Table 3. Teak production of various stand ages

<table>
<thead>
<tr>
<th>Stand age (years)</th>
<th>Total Biomass (stem, branch, root, leaf)</th>
<th>L (t/ha)</th>
<th>G (t/ha)</th>
<th>NPP (t/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sep. 2000</td>
<td>Sep. 2001</td>
<td>ΔB (t/ha)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>69.5±3.6</td>
<td>73.3±2.8</td>
<td>3.8±0.3</td>
<td>4.5±0.1</td>
</tr>
<tr>
<td>15</td>
<td>101.4±1.8</td>
<td>107.1±0.3</td>
<td>5.7±1.5</td>
<td>4.8±0.1</td>
</tr>
<tr>
<td>20</td>
<td>145.4±25.3</td>
<td>156.3±26.4</td>
<td>10.8±1.0</td>
<td>4.7±0.0</td>
</tr>
<tr>
<td>25</td>
<td>180.7±15.1</td>
<td>192.3±13.8</td>
<td>11.7±1.3</td>
<td>5.1±0.0</td>
</tr>
<tr>
<td>30</td>
<td>162.0±14.7</td>
<td>178.2±0.0</td>
<td>16.2±0.0</td>
<td>5.8±0.4</td>
</tr>
<tr>
<td>40</td>
<td>155.7±13.1</td>
<td>162.0±15.7</td>
<td>6.3±2.6</td>
<td>5.6±0.2</td>
</tr>
</tbody>
</table>

ΔB: biomass (stem, branch, root, and leaf) increment of the forest.
L, G: leaf litter and grazing during the period.
NPP: Net Primary Production = ΔB + L + G.

The biomass values are shown in Table 2. Total biomass changed with stand age, reaching a peak in twenty-five-year-old forests and declining thereafter. Leaf biomass increased steeply with age and had a maximum value of 5.1 ton/ha in twenty-year-old forests. The leaf biomass in the teak forests was slightly higher than values of those in deciduous broad-leaved forests in Japan, 2.7 ton/ha.21,22 The mean value of leaf area index (LAI) was calculated as 4.6 ha/ha in the twenty-year-old forests under light conditions of 7% in relative light intensity.

From the biomass, the NPP of each stand was estimated using Equation 1, as shown in Table 3. The values of NPP varied from 8.8 ton/ha/yr to 22.5 ton/ha/yr. NPP increased with stand age and site index, reaching a peak in the thirty-year-old forest, 22.5 ton/ha/yr., and declining thereafter. The consumption of leaves by herbivores (G) was nearly the same value, 0.6 ton/ha, or less than 12% of leaf weight among these stands. In most of teak forests in Java, teak bee-hole borer and insects pests such as leaf eating caterpillars, leaf-rolling and leaf-mining caterpillars, leaf-eating beetles and grasshoppers can be found. They vary in abundance by season, from locality to locality and also year to year, possibly due to varied climatic and topographical conditions.24 In East Java, these defoliating insects, leaf eating caterpillars and grasshoppers are commonly found in the early rainy season, November-December. There are also many species of leaf eating caterpillars in teak forests in India, and the most important are the teak skeletonizer Eutectona machaeralis (Lepidoptera: Pyralidae) and Hyblaea puera (Lepidoptera: Hyblaeidae). In both cases, total or partial damage of leaf loss of increment is reported to the tune of 8.2% of total annual increment.22

The annual litter fall in the planted teak forests did not vary greatly among these stands, ranging from 4.5 ton/ha-y. to 5.8 ton/ha-yr, comprised of 100 percent leaf litter. Leaf litter production in 25, 30 and 40-year-old forests was slightly over 5 ton/ha-y. These leaf-litter falls were nearly the same average measured in over twenty tropical forests, at 5.5 ton/ha-yr.25

Discussion

Although the teak tree is usually considered as a deciduous species in tropical monsoon climates, it is often evergreen in moist regions.25 In this study site, young teak trees often have only a slight amount of leaves at the stem top in the dry season. In order to confirm the amount of leaves production in this area, leaf litter fall was measured in various stand ages. The patterns of leaf litter fall are different by stand age. In the younger stages of 10, 15 and 20-year-old stands, maximum leaf litter fall occurred in June. In the older stage, leaf litter fall had two peaks in June and
Table 4. The mean longevity of leaves of various stand ages in 10-year-old and 15-year-old forests was measured to some extent every year. Lead litter on the forest floor produced around 40 kg/ha of leaves and shedded the fall of conifer trees is thus increased that the leaf litter mass was estimated to be about 10 kg/ha. A sweeping method were compared and shown in Table 4. Both of the leaves are the same level. The mean longevity of leaf fall (ton/ha/month)

```plaintext
<table>
<thead>
<tr>
<th>Year</th>
<th>10-year-old</th>
<th>15-year-old</th>
<th>20-year-old</th>
<th>25-year-old</th>
<th>30-year-old</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>2003</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>2004</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>2005</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>
```

The graphs show changes of lead litter fall and precipitation (mm/month) in 2002-2005 of various stand ages.

**Month**

- **Precipitation (mm/month)**
  - 10-year-old: 148 mm
  - 20-year-old: 370 mm
  - 30-year-old: 350 mm

- **Leaf litter fall (ton/month)**
  - 10-year-old: 1.45 t
  - 20-year-old: 1.60 t
  - 30-year-old: 1.50 t

September is shown in Fig. 6.
estimate the decomposition rate of leaf at the end of
the rainy season. April 2001. The remaining amount of
leaf litter on the ground was 40 percent of that annual
leaf litter fall.

The NPP of the old forests in this study was nearly
half of about 35 ton/ha/yr for 7-year-old forests
obtained in our previous study14, as shown in Fig. 7. It
is well known that teak is a moderately fast growing
species and will grow faster in initial years, but slow
down afterwards8. However, high production in the
young stage might have been caused partly by
application of intensive agricultural practices such as
the fertilization and tillage in agroforestry8. Many
artificial teak forests in Java are being grown in
combination with many agriculture crops at least in
the initial years of establishment. Wide inter-space
having no shade is utilized as strips of agriculture
field. In our previous study, field research in the early
stages of forests was a pilot plantation proposed by
Simon19, characterized by more opportunity for forest
farmers and/or unemployed people to participate
under the state-owned forest company in the Madiun
Forest District. The pilot plantation applied intensive
agricultural practices such as tillage, weeding and
fertilization. A lot of fertilizers, either chemical or
manure were subsidized by the state-owned forest
company, Madiun Forest District, two times for two
years in middle of rainy season (February) in the
current years. The amount of chemical fertilizer, urea
was 5 gr./seedling and 10 gr./seedling when the teak
stands were at a half and one and a half years old,
respectively, and manure fertilizers (cow dung, poultry
manure, and decomposed rice straw) were 250 kg/ha
for agricultural crops. First thinning within teak
plantations is carried out four and half years old
stands10. On the contrary, the old teak forests were
established with the taungnya system adopted from
Burma (1856), which is characterized by low capital,
without subsidy of fertilizers and fee for tillage, and
cultivation of agricultural crops by forest farmers is
limited until the third year, so that can have a negative
influence on sustaining the teak forest plantations10.

The leaf biomass in the early stage of forests was
closely correlated to teak production16. In other words,
the high productivity is attributed to large leaf
biomass20. On the contrary, the old teak forests did not
show any clear change of leaf biomass to teak
production. It related the change of relative stand
density with stand age in managed forests. Managed
teak forests in Java have a tendency to have lower
relative stand density with increasing age because of
thinning and/or pruning. In teak forests with high
relative stand densities competition among individual
trees is severe and low branches die earlier than in
less dense stands. Total branch biomass will build up
to an equilibrium value where production is balanced

![Fig. 7. Teak production of various stand ages. Circle, young
teak forests in our previous study16; triangle, old teak forests
in the present study.](image)

![Fig. 8. Relationships between teak production and altitude.
Triangle, low site index; circle, high site index.](image)
by loss through death and shedding. This equilibrium value will be dependent on stocking; however, if the old teak stands are heavily thinned and/or pruned the equilibrium will be upset. Also, in stands where tending is frequent total biomass will never attain the value to be found in untended stands of the same stocking.

The site index and altitude affected production, as shown in Fig. 8. Teak production increased with site index and altitude, and the relationships between production with site index and with altitude were close. The altitudinal range of teak forests varies from locality to locality—for instance in Java the growth of teak forests becomes stunted above an elevation of 750 m above sea level\(^5\). The altitudinal range of teak forests worldwide is from almost sea level to about 1300 m above sea level. However, the growth of this tree becomes stunted above an elevation of 750 m sea

![Graph showing yearly changes of precipitation in the last twenty years (1980-1999) in Madiun Forest District.](image)

Fig. 9. Yearly changes of precipitation in the last twenty years (1980-1999) in Madiun Forest District.
Teak trees require much rain, heat, humidity and deep soil for good growth, and need a tropical climate to develop fully. Altitude is one factor that governed the site index through the amount of precipitation, and the site index affect the production. The amount of precipitation seemed to increase with altitude, therefore, higher altitudes means wetter conditions in Madiun, East Java.

The production of teak forests in Java may change with the length of the rainy season or amount of precipitation. The monthly mean precipitation for the past twenty years at the site varied considerably from 693 mm/yr to 2419 mm per year, as shown in Fig. 9. According to the Q-system proposed by Schmidt and Ferguson, the climate of the area belongs to rainfall types F to B. On Whitmore’s map of rainfall types for the tropical Far East, the area is classified into types C and D (seasonal type). Fig. 9 provides a fairly good approximation of the climatic conditions in the area. August is the driest month, although it still sometimes receives rainfall. Droughts occur during El Niño, resulting in extended and drier-than-normal dry seasons. Such events occurred in 1982-1983, 1987, 1991 and 1997, and have resulted in water shortages and forest fires. A dry year may cause low result in teak production.

In the tropic, rapid growth or productivity is quite well known. The net production of a tropical forest is higher than that of temperate forest. Although the production of the old teak forests in Madiun was smaller than those of young forests, the level was still higher than deciduous broad-leaved forests in Japan, 8.7 ton/ha/yr, and also still higher than those of similar age plantations in India, for instance at Gorakhpur, 12 ton/ha-yr., Chakia, 12.9 ton/ha-yr., Haldwani, 10.35 ton/ha-yr., and in Thailand, 8-10 ton/ha-yr. Management strategy and results in Madiun, East Java may be the next problems to consider with dry matter production of teak forests.

References