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Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a 

heterodimer containing 66-kDa p66 and 51-kDa p51 subunits. We previously showed 

that HIV-1 group M (HIV-1 M) RT and HIV-1 group O (HIV-1 O) RT have higher 

affinities for dTTP and template-primer (T/P) than Moloney murine leukemia virus 

(MMLV) RT, which is currently used for cDNA synthesis, suggesting that they might 

also be useful for cDNA synthesis (Konishi et al. (2013) Appl Biochem Biotechnol 

169:77−87). In this study, we increased the thermostability of both HIV-1 M RT and 

HIV-1 O RT by site-directed mutagenesis. The Asp443→Ala mutation, which is known 

to abolish RNase H activity, was introduced into the p66 subunits of HIV-1 M RT and 

HIV-1 O RT. The temperatures that reduced the initial activity by 50% in a 10 min 

incubation (T50) of the resulting mutants, HIV-1 M p66D443A/p51 and HIV-1 O 

p66D443A/p51, were 44°C and 52°C, respectively, which were higher than those of 

wild-type HIV-1 M p66/p51 (42°C) and HIV-1 O p66/p51 (48°C), respectively. The 

highest temperature at which both HIV-1 M p66D443A/p51 and HIV-1 O p66D443A/p51 

exhibited cDNA synthesis activity was 68°C, a higher temperature than for the 

wild-type enzymes (62°C and 66°C, respectively).     
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Introduction 

 

Reverse transcriptase (RT) is the enzyme responsible for viral genome replication. 

Human immunodeficiency virus type 1 (HIV-1) RT is a heterodimer consisting of a 

66-kDa p66 subunit and a 51-kDa p51 subunit. The p66 subunit comprises the fingers, 

palm, thumb, and connection subdomains and the RNase H domain, and the p51 subunit 

is composed of the fingers, palm, thumb, and connection subdomains, but is lacking in 

the RNase H domain (di Marzo Veronese et al. 1986; Patel et al. 1995; Ding et al. 1998). 

HIV-1 RT is widely used as a tool in the development of inhibitors for the treatment of 

HIV-1 infection. It is not used for cDNA synthesis due to its low fidelity. Moloney 

murine leukemia virus (MMLV) RT and avian myeloblastosis virus (AMV) RT are 

widely used for cDNA synthesis due to their high fidelity (Kimmel and Berger, 1987).  

HIV-1 is classified into four phylogenetic major groups: M (main), O (outlier), N 

(non-M/non-O), and P. HIV-1 group M (HIV-1 M) infection is spread all over the world, 

whereas HIV-1 group O (HIV-1 O) infection is restricted to Cameroon and neighboring 

countries in West Central Africa (Buonaguro et al. 2007). The amino-acid sequence 

homology between HIV-1 M RT and HIV-1 O RT is 79% (Quiňones-Mateu et al. 1997; 

Buonaguro et al. 2007). We previously showed that for the incorporation of dTTP into 

poly(rA)-p(dT)15, HIV-1 M RT and HIV-1 O RT have higher affinities for dTTP and 

template-primer (T/P) than MMLV RT, and are less susceptible to formamide, which is 

frequently used for cDNA synthesis of a G+C-rich RNA than MMLV RT. Indeed, in 

RT-PCR, low fidelity of RT is problematic for the cloning of cDNA. However, high 

fidelity is not often required for the detection of target RNA molecules. Hence, the use 

of HIV-1 RT for cDNA synthesis might be attractive for the detection of certain target 
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RNA molecules (Konishi et al. 2013).    

HIV-1 RT exists not only as a p66/p51 heterodimer, but also as a p66-subunit 

homodimer, (p66)2, or a p51-subunit homodimer, (p51)2. In HIV-1 M RT, based on the 

fact that monomeric p51 and p66 are inactive, the dissociation constants (Kd) of p51 and 

p66, p66 and p66, and p51 and p51 were determined to be 0.31, 4.2, and 230 µM, 

respectively (Venezia et al. 2006). It was recently reported that the Kd values of p66/p51, 

(p66)2, and (p51)2 for template-primer (T/P) are 3.9, 9.8, and 440 nM, respectively 

(Marko et al. 2013).   

For cDNA synthesis, a higher reaction temperature is desirable because it reduces 

RNA secondary structures and nonspecific primer binding. Therefore, improving the 

thermal stability of RT is an important aim. The thermostabilities of MMLV RT and 

AMV RT have been improved by eliminating the RNase H activity (Kotewicz et al. 

1998; Gerard et al. 2002; Mizuno et al. 2010), by introducing positive charges at 

positions that have been implicated in the interaction with T/P (Yasukawa et al. 2010b; 

Konishi et al. 2012), and by random mutagenesis (Arezi and Hogrefe, 2009; 

Baranauskas et al. 2012). This study aimed to increase the thermostabilities of HIV-1 M 

RT and HIV-1 O RT. We introduced the Asp443→Ala mutation, which abolishes the 

RNase H activity, into the p66 subunit of both RTs. Our results indicate that the mutant 

RTs have higher stability than the wild-type p66/p51 enzymes. 

 

Materials and methods 

 

Materials 
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p(dT)15 was purchased from Life Technologies Japan Ltd. (Tokyo, Japan). 

[methyl-3H]dTTP (1.52 TBq/mmol) and poly(rA) were from GE Healthcare 

(Buckinghamshire, UK). The RT concentration was determined by the method of 

Bradford (Bradford, 1976) using Protein Assay CBB Solution (Nacalai Tesque, Kyoto, 

Japan) with bovine serum albumin (Nacalai Tesque) as standard. Standard RNA, an 

RNA of 1014-nucleotides corresponding to DNA sequence 8353–9366 of the cesA gene 

of Bacillus cereus (GenBank accession no. DQ360825), was prepared by an in vitro 

transcription (Yasukawa et al. 2010a). 

 

Bacterial strains, plasmids and transformation  

 

pET-HisHIVMp51, pET-HisHIVMp66, pET-HisHIVOp51, and pET-HisHIVOp66 are 

expression plasmids for N-terminally (His)6-tagged HIV-1 M p51, HIV-1 M p66, HIV-1 

O p51, and HIV-1 O p66, respectively (Fig. 1). To introduce the mutation of 

Asp443→Ala in the p66 subunit, Quikchange method was carried out with the plsamid 

pET-HIVMp66 and the primers pHIVMD443A 

5’-GCAGAAACTTTTTATGTGGCCGGAGCTGCG-3’ (mismatch is underlined) and 

pHIVMD443A_CP 5’-CGCAGCTCCGGCCACATAAAAGTTTCTGC-3’ for HIV-1 M 

RT and the plasmid pET-HIVOp66 and the primers pHIVOD443A 

5’-GCTGAAACCTTCTACGTCGCTGGTGCGGCC-3’ and pHIVOD443A_CP 

5’-GCCGCACCAGCGACGTAGAAGGTTTCAGC-3’ for HIV-1 O RT. The resulted 

plsamids were named pET-HIVMp66D443A and pET-HIVOp66D443A, respectively. E. coli 

BL21(DE3) [F-, ompT, hsdSB (rB
- mB

-) gal dcm (DE3)] cells were transformed with each 

plasmid and cultured in L broth. Ampicillin was used at the concentration of 50 µg/ml. 

Fig. 1 
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Expression and purification of HIV-1 M RT and HIV-1 O RT 

 

The overnight culture of the transformants (20 mL) was added to 2,000 mL of L broth 

in a 2-liter flask and incubated with vigorous aeration by air-pump at 37ºC. When OD660 

reached 0.6–0.8, 0.8 mL of 0.5 M IPTG was added and growth was continued at 30ºC 

for 4 h. After centrifugation at 10,000 × g for 10 min, the cells were harvested, 

suspended with 20 mL of 0.02 M potassium phosphate, 2.0 mM dithiothreitol (DTT), 

10% glycerol, pH 7.2 (buffer A) containing 1 mM phenylmethylsulfonyl fluoride 

(PMSF). For the production of (p51)2 and (p66)2, the suspension containing the 

N-terminally (His)6-tagged p51 and that containing the N-terminally (His)6-tagged p66 

were used, respectively. For the production of p66/p51, the mixture of the above 

suspensions was used. They were disrupted by sonication. After centrifugation at 

15,000 × g for 20 min, the supernatant was collected and applied to a column [25 mm 

(inner diameter) × 120 mm] packed with Toyopearl DEAE-650M gel (Tosoh, Tokyo, 

Japan) equilibrated with buffer A. The pass-through was collected, to which solid 

(NH4)2SO4 was added to a final concentration of 40% saturation. After centrifugation at 

20,000 × g for 20 min, the pellet was collected and dissolved in 10 mL of 50 mM 

Tris-HCl, 200 mM KCl, 2.0 mM DTT, 10% glycerol, pH 8.3 (buffer B) and applied to 

the column packed with a Ni2+-sepharose (HisTrap HP 1 mL, GE Healthcare, 

Buckinghamshire, UK) equilibrated with buffer B containing 50 mM imidazole. The 

bound RT was eluted with buffer B containing 500 mM imidazole. The eluate was 

dialyzed against 50 mM Tris-HCl, 200 mM KCl, 50% glycerol, pH 8.3, and stored at 

−80°C. 
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Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

SDS-PAGE was performed in a 10% polyacrylamide gel under reducing conditions. 

Proteins were reduced by treatment with 2.5% (v/v) of 2-mercaptoethanol at 100ºC for 

10 min, and then applied onto the gel. A constant current of 40 mA was applied for 40 

min. After electrophoresis, proteins were stained with Coomassie Brilliant Blue R-250. 

The molecular mass marker kit consisting of rabbit muscle phosphorylase B (97.2 kDa), 

bovine serum albumin (66.4 kDa), hen egg white ovalbumin (44.3 kDa), and bovine 

carbonic anhydrase (29.0 kDa) was purchased from Takara Bio Inc (Otsu, Japan). 

 

Measurement of RT activity for incorporation of dTTP into poly(rA)-p(dT)15   

 

RT activity for incorporation of dTTP into poly(rA)-p(dT)15 was measured as described 

previously (Yasukawa et al. 2008; 2009). Briefly, the reaction was carried out in 25 mM 

Tris-HCl (pH 8.3), 50 mM KCl, 2.0 mM DTT, 5.0 mM MgCl2, 25 µM poly(rA)-p(dT)15 

(this concentration is expressed as that of p(dT)15), 0.2 mM [3H]dTTP, and active 

fractions or purified preparations of RT at 37ºC. An aliquot (20 µL) was taken from the 

reaction mixture at a predetermined time and immediately spotted onto the glass filter 

GF/C 2.5 cm (Whatman, Middlesex, UK). The amounts of [3H]dTTP incorporated was 

counted, and the initial reaction rate was determined.  

 

Measurement of RT activity for cDNA synthesis 
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RT activity for cDNA synthesis was measured as described previously (Yasukawa et al. 

2010a). Briefly, the reaction (20 µL) was carried out in 25 mM Tris-HCl (pH 8.3), 50 

mM KCl, 2.0 mM DTT, 0.1 mM dNTP, 0.5 µM primer RV-R26 

5’-TGTGGAATTGTGAGCGGTGTCGCAATCACCGTAACACGACGTAG-3’, 0.8 

pg/µL (corresponding to 2 pM) standard RNA, and various concentrations (0–100 nM) 

of RT at 46ºC for 30 min and stopped by heating at 95ºC for 5 min. The PCR reaction 

(30 µL) was then carried out in 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 

0.5 µM (each) primers F5 5’-TGCGCGCAAAATGGGTATCAC-3’ and RV 

5’-TGTGGAATTGTGAGCGG-3’, 0.1 mM dNTP, 10% v/v product of the reverse 

transcriptase reaction, and 0.05 U/µl Taq polymerase. The cycling parameters were 

95ºC for 30 s, followed by 30 cycles at 95ºC for 30 s, 55ºC for 30 s, and 72ºC for 60 s. 

The amplified products were separated on 1.0% agarose gels and stained with ethidium 

bromide (1 µg/mL).  

 

Results 

 

Comparison of activities of (p51)2, (p66)2 and p66/p51 from HIV-1 M and HIV-1 O 

 

It has been reported that for HIV-1 M RT, (p51)2 is less active than (p66)2 and p66/51 

(Le Grice et al. 1991; Hostomsky et al. 1992; Bavand et al. 1993). However, such 

comparison was not reported for HIV-1 O RT. Hence, we prepared (p51)2, (p66)2, and 

p66/51 from HIV-1 M and HIV-1 O and evaluated their activities. Figure 1 shows the 

expression plasmids for p66 and p51 of HIV-1 M and HIV-1 O, whereas each contained 

N-terminal (His)6. BL21(DE3) cells were transformed with each plasmid. Purification 

 8 



of (p51)2 and (p66)2 was carried out from the cells expressing p51 or p66, respectively, 

and purification of p66/p51 was carried out from a mixture of these cells. By 

SDS-PAGE analysis of the purified RT preparations of HIV-1 M and HIV-1 O, (p51)2 

yielded a single band with a molecular mass of 51 kDa, (p66)2 yielded a single band 

with a molecular mass of 66 kDa, and p66/p51 yielded two bands with molecular 

masses of 51 and 66 kDa (Fig. 2).  

Figure 3 shows the results of steady-state kinetic analysis of RT in the 

incorporation of dTTP into poly(rA)-p(dT)15 (T/P). The dependences of the initial 

reaction rate (vo) on dTTP (Fig. 3A, C) and T/P (Fig. 3B, D) concentrations exhibited 

the Michaelis–Menten curves. The Km,dTTP, Km,T/P, and kcat values were determined 

(Table 1). In HIV-1 M and HIV-1 O, the Km,dTTP and Km,T/P values of (p51)2 were both 

higher than those of p66/p51, whereas those of (p66)2 and p66/p51 were similar. The 

kcat values of (p51)2 and (p66)2 were lower than those of p66/p51 were. The Km,dTTP and 

kcat values of (p51)2, (p66)2 and p66/p51 of HIV-1 M were lower than those of (p51)2, 

(p66)2 and p66/p51 of HIV-1 O, respectively. This indicates that HIV-1 M RT has 

higher affinity for dTTP, but lower processivity than HIV-1 O RT. 

    The cDNA synthesis activities of RT are shown in Fig. 4. The reaction was carried 

out at 46°C for 30 min with varying enzyme concentrations from 0–100 nM, followed 

by PCR of the cDNA synthesis reaction products and agarose gel electrophoresis of the 

PCR products. For the cDNA synthesis using (p51)2 of HIV-1 M and HIV-1 O, 

PCR-amplified products with the expected size of 601 bp were not detected. For the 

cDNA synthesis with (p66)2 of HIV-1 M and HIV-1 O, the PCR-amplified products 

were detected for RT concentrations from 1×10−4–10 nM, but not for 1×10−6, 1×10−5, or 

100 nM. For the cDNA synthesis with p66/p51 of HIV-1 M and HIV-1 O, the 

Fig. 2 

Fig. 3 

Table 1 

Fig. 4 
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PCR-amplified product was detected for RT concentrations from 1×10−5–10 nM, but 

not 1×10−6 or 100 nM. The band densities of the PCR-amplified products from the 

cDNA synthesis reaction products with (p66)2 were lower than those from the cDNA 

synthesis reaction products with p66/p51 for RT concentrations of 1×10−5 – 1×10−3 nM. 

This indicates that in cDNA synthesis, (p51)2 lacks activity, (p66)2 has low activity, and 

p66/p51 has high activity. It also indicates that there is no difference in activity between 

HIV-1 M RT and HIV-1 O RT.  

 

Stabilization of HIV-1 M p66/p51and HIV-1 O p66/p51 by the Asp443→Ala mutation 

 

We previously introduced the Asp524→Ala mutation into MMLV RT and the Asp450

→Ala mutation into AMV RT and generated RT variants without RNase H activity and 

with increased thermostability (Yasukawa et al. 2010; Konishi et al. 2012). Based on a 

sequence comparison of MMLV RT, AMV RT, HIV-1 M RT, and HIV-1 O RT, 

Asp524 of MMLV RT and Asp450 of AMV RT were found to correspond to Asp443 of 

HIV-1 M RT and HIV-1 O RT. Therefore, we introduced the Asp443→Ala mutation in 

the p66 subunits of HIV-1 M RT and HIV-1 O RT. The variant enzymes, named HIV-1 

M p66D443A/p51 and HIV-1 O p66D443A/p51, were purified. By SDS-PAGE under 

reducing conditions, HIV-1 M p66D443A/p51 and HIV-1 O p66D443A/p51 yielded two 

bands with molecular masses of 51 and 66 kDa (data not shown). By defining one unit 

of RT as the amount that incorporates 1 nmol of dTTP into poly(rA)-p(dT)15 in 10 min 

at 37°C, the specific activities of HIV-1 M p66D443A/p51 and HIV-1 O p66D443A/p51 

were 1,400 and 3,500 units/mg, respectively. These activities were almost the same as 
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those of the wild-type enzymes, as HIV-1 M p66/p51 and HIV-1 O p66/p51 had 

activities of 1,900 and 5,000 units/mg, respectively (Konishi et al. 2013). 

The remaining activities of RT, allowing incorporation of dTTP into T/P after 

thermal treatment at 42–56 °C for 10 min, are shown in Fig. 5. The relative activities, 

which were defined as the ratio of the initial reaction rate with incubation at the 

indicated temperature for 10 min to that without incubation, of all RTs decreased with 

increasing temperature. In HIV-1 M and HIV-1 O, the relative activities of (p51)2 were 

lower than those of (p66)2 and p66/p51 were at all temperatures examined. The 

temperatures that reduced the initial activity by 50% in a 10-min incubation (T50) of 

HIV-1 M (p51)2, (p66)2, p66/p51, and p66D443A/p51 were 42°C, 42°C, 42°C, and 44°C, 

respectively, and those of HIV-1 O (p51)2, (p66)2, p66/p51, and p66D443A/p51 were less 

than 42°C, 44°C, 48°C, and 52°C, respectively. The finding that for HIV-1 M and 

HIV-1 O, the T50 of p66D443A/p51 was higher than for p66/p51 indicates that the Asp443

→Ala mutation increases the thermostability of HIV-1 M p66/p51 and HIV-1 O 

p66/p51, similar to the Asp524→Ala in MMLV RT (Yasukawa et al. 2010b) and the 

Asp450→Ala in AMV RT mutations (Konishi et al. 2012). The result that the T50 of 

HIV-1 O p66/p51 was higher than that of HIV-1 M p66/p51 and that the T50 of HIV-1 

O p66D443A/p51 was higher than that of HIV-1 M p66D443A/p51 indicates that HIV-1 O 

RT is more stable than HIV-1 M RT, in agreement with a previous report 

(Menéndez-Arias et al. 2001; Álvarez et al. 2009).  

The dependence on reaction temperature of HIV-1 RT-catalyzed cDNA synthesis 

is shown in Fig. 6. We carried out cDNA synthesis with 1 nM RT. The highest 

temperatures at which cDNA synthesis occurred using HIV-1 M p66D443A/p51 was 

Fig. 5 

Fig. 6 
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68°C, higher than that of HIV-1 M p66/p51 (62°C), and the temperature using HIV-1 O 

p66D443A/p51 was 68°C, higher than that of HIV-1 O p66/p51 (66°C). This indicates 

that the Asp443→Ala mutation in the p66 subunits increases the thermostabilities of 

HIV-1 M p66/p51 and HIV-1 O p66/p51.  

 

Discussion 

 

In this study, the Asp443→Ala mutation increased T50 by 2ºC (from 42ºC to 44ºC) for 

HIV-1 M p66/p51 and by 4ºC (from 48ºC to 52ºC) for HIV-1 O p66/p51. It also 

increased the highest temperature at which the cDNA synthesis reaction occurred by 

6ºC (from 62 to 68ºC) for HIV-1 M p66/p51 and by 2ºC (from 66 to 68ºC) for HIV-1 O 

p66/p51. In a previous study of MMLV RT, the Asp524→Ala mutation increased the 

T50 by 3ºC (from 45ºC to 48ºC) and increased the highest temperature at which the 

cDNA synthesis reaction occurred by 2ºC (from 54 to 56ºC) (Yasukawa et al. 2010b). 

For HIV-1 M RT, HIV-1 O RT, and MMLV RT, the degree of stabilization conferred by 

a mutation that abolishes RNase H activity is similar.  

    Previously, we showed that the theromostabilities of MMLV RT (Yasukawa et al. 

2010b) and AMV RT (Konishi et al. 2012) could be increased by introducing positive 

charges at positions that had been implicated in the interaction with T/P. The mutations 

introduced were Glu286→Arg, Glu302→Lys, and Leu435→Arg in MMLV RT and 

Val238→Arg and Leu388→Arg in AMV RT. Sequence comparison showed that 

Glu286, Glu302, and Leu435 of MMLV RT correspond to Val238, Lys254, and Leu388, 

respectively, of AMV RT, and Pro243, Lys259, and Lys390, respectively of both HIV-1 

M RT and HIV-1 O RT. Based on this data, we prepared HIV-1 M p66P243R/p51 and 
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HIV-1 O p66P243R/p51 mutants; however the thermostabilities of these enzymes were 

similar to wild-type HIV-1 M p66/p51 and HIV-1 O p66/p51 (unpublished results). This 

finding suggests that this stabilization strategy is not applicable to HIV-1 RT. However, 

another possibility remains that Pro243 of HIV-1 RT does not correspond to Glu286 of 

MMLV RT. 

For MMLV RT, unlike HIV-1 RT, the structure of the RNase H domain was 

determined from a crystal of the isolated RNase H domain of MMLV RT 

(Ile498–Leu671) (Lim et al. 2006), but not from a crystal of the full length MMLV RT 

(Thr24–Leu671) (Das and Georgiadis, 2004). For xenotropic murine leukemia 

virus-related virus (XMRV) RT, which differs only at five amino acid residues from 

MMLV RT, the structure of the RNase H domain was determined from a crystal of the 

isolated RNase H domain (Kim et al. 2012), but not from a crystal of the full-length 

XMRV RT (Nowak et al. 2013). Therefore, it remains unknown how the RNase H 

domain is positioned in an intact molecule. For HIV-1 RT, the RNase H domain of p66 

is positioned far from the fingers, palm, and thumb subdomains of p66, but close to the 

connection subdomain of p66 and the thumb subdomain of p51 (Huang et al. 1988; 

Coté and Ruth, 2008). It has been reported that chimeric HIV-1 RT, which comprises 

p66 of HIV-1 M and p51 of HIV-1 O is more stable than a heterodimer containing p66 

of HIV-1 O and p51 of HIV-1 M (Menéndez-Arias et al. 2001). In this study, the 

stability of p66/p51 was higher than that of (p66)2 and (p51)2 for HIV-1 O RT while 

they were similar for HIV-1 M RT (Fig. 5). Based on these findings, we speculate that 

the Asp443→Ala mutation alters the stability of HIV-1 RT by altering the structure of 

the RNase H domain and its interaction with the thumb subdomain of p51.  

For HIV-1 M RT and HIV-1 O RT, Asp443 and Asp498 are important for RNase H 
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activity. In a previous study of HIV-1 M p66/p51, the Asp443→Ala mutation did not 

alter stability (Mizrahi et al. 1994), whereas the Asp443→Asn mutation decreased it 

(Mizrahi et al. 1994) and the Asp498→Asn mutation increased it (DeStefano et al. 

1994). The reason for the discrepancy regarding the stabilizing effects of the 

Asp443→Ala mutation observed in this study and a previous report (Mizrahi et al. 

1994) is unknown. One possibility is that in this study, p51 and p66 were separately 

expressed in the soluble fractions and then mixed, whereas in the previous study, the 

p66 precursor and the virus-encoded protease were co-expressed in the soluble fraction, 

allowing the viral protease to cleave the p66 precursor into p66 and p51 (Mizrahi et al. 

1989; 1994). We propose that the mutation in the RNase H domain affects proteolytic 

processing of the p66 precursor, as the authors in that study of a previous study noted 

(Mizrahi et al. 1994).  

    In this study, the effects of the Asp443→Ala mutation on HIV-1 M RT and HIV-1 

O RT were characterized. HIV-1 O p66D443A/p51 is more stable than HIV-1 M 

p66D443A/p51. It has been reported that HIV-1 M RT and HIV-1 O RT have higher 

affinity for substrates and are less susceptible to formamide (Konishi et al. 2013). It has 

also been reported that the Lys65→Arg, Arg78→Ala, Val75→Ile, Asp443→Asn, and 

Glu478→Gln mutations increased the fidelity of HIV-1 O RT (Barrioluengo et al. 2011; 

Álvarez et al. 2013). Taken together, these data suggest that the use of multiple HIV-1 O 

RT variants designed to have even higher stability and fidelity might be the most 

attractive for practical use in cDNA synthesis in the future. 
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Table 1  

Kinetic parameters of RT in the to incorporation of dTTP into poly(rA)-p(dT)15 (T/P) at 

37ºC. 

 

RT           Km, dTTP (µM)     Km,T/P (µM)    kcat (s-1)         

HIV-1 M (p51)2            34 ± 9         2.1 ± 0.8      0.19 ± 0.02 

HIV-1 M (p66)2          16 ± 3         1.6 ± 0.5      0.19 ± 0.01  

HIV-1 M RT p66/p51     18 ± 5       0.75 ± 0.30     0.60 ± 0.03 

HIV-1 O (p51)2           130 ± 50        3.5 ± 1.0      0.73 ± 0.14 

HIV-1 O (p66)2            44 ± 5         1.3 ± 0.2       2.1 ± 0.1  

HIV-1 O RT p66/p51     23 ± 3        1.7 ± 0.2       3.3 ± 0.1  

 

Average of triplicate determinations with SD value is shown.  
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Figure legends 

 

Fig. 1. Expression plasmids. The structures of pET-HisHIVMp66, pET-HisHIVMp51, 

pET-HisHIVOp66, and pET-HisHIVOp51 are shown. The asterisk indicates the 

termination codon.   

 

Fig. 2. SDS-PAGE under reducing conditions. Coomassie Brilliant Blue-stained 10% 

SDS-polyacrylamide gel is shown. (A) HIV-1 M RT. (B) HIV-1 O RT. 

  

Fig. 3. Dependence on substrate concentration of the reaction rate (vo) in HIV-1 RT 

catalyzed incorporation of dTTP into poly(rA)-p(dT)15. Dependence on dTTP (A, C) 

and poly(rA)-p(dT)15 (B, D) concentrations of HIV-1 M (A, B) and O (C, D) RT are 

shown. The initial concentrations of HIV-1 M (p51)2, (p66)2 and p66/p51 were 100, 100, 

and 20 nM, respectively, and those of HIV-1 O (p51)2, (p66)2 and p66/p51 were 40, 8, 

and 8 nM, respectively. The initial concentration of poly(rA)-p(dT)15 was 25 µM (A, C), 

and that of dTTP was 200 µM (B, D). Solid lines represent the best fit of the 

Michaelis-Menten equation with the non-linear least squares method. Symbols for the 

enzymes: (p51)2 (open circle), (p66)2 (open triangle), and p66/p51 (open square). 

 

Fig. 4. Dependence on enzyme concentration of HIV-1 RT-catalyzed cDNA synthesis. 

cDNA synthesis was carried out with various concentrations of (p51)2, (p66)2, and 

p66/p51 at 46°C. Then, PCR was carried out. Marker DNAs and the amplified products 

were separated on 1.0% agarose gels and stained with ethidium bromide. Lane M, DNA 

marker. RT concentration in cDNA synthesis: 0 (lane 1), 1×10-6 (lane 2), 1×10-5 (lane 
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3), 1×10-4 (lane 4), 1×10-3 (lane 5), 1×10-2 (lane 6), 0.1 (lane 7), 1 (lane 8), 10 (lane 9), 

and 100 nM (lane 10). The arrow indicates the expected size (601 bp) of the amplified 

products. 

 

Fig. 5. Irreversible thermal inactivation of HIV-1 RT. HIV-1 M RT (p51)2, (p66)2, 

p66/p51, and p66D443A/p51 (250, 50, 20, and 20 nM, respectively) or HIV-1 O (p51)2, 

(p66)2, p66/p51, and p66D443A/p51 (100, 20, 20, and 20 nM, respectively) was incubated 

at 42−56°C in the presence of poly(rA)-p(dT)15 (T/P) (28 µM) for 10 min. Then, the 

reaction to incorporate dTTP into poly(rA)-p(dT)15 was carried out at 37°C. The relative 

activity of HIV-1 RT was defined as the ratio of the initial reaction rate with incubation 

for 10 min to that without incubation.  

 

Fig. 6. Dependence on reaction temperature of HIV-1 RT-catalyzed cDNA synthesis. 

cDNA synthesis was carried out with 1 nM HIV-1 M p66/p51, HIV-1 M p66D443A/p51, 

HIV-1 O p66/p51, or HIV-1 O p66D443A/p51 at 46−68°C. Then, PCR was carried out. 

Marker DNAs and amplified products were separated on 1.0% agarose gels and stained 

with ethidium bromide.  
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