<table>
<thead>
<tr>
<th>Title</th>
<th>Morphological change induced with NaOH–water solution for ramie fiber: change mechanism and effects of concentration and temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakano, Takato; Tanimoto, Takashi; Hashimoto, Tsuginosuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Materials Science (2013), 48(21): 7510-7517</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/192983</td>
</tr>
<tr>
<td>Right</td>
<td>The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-013-7565-5.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Title: Morphological change induced with NaOH-water solution for ramie fiber: change mechanism and effects of concentration and temperature

Authors: Takato Nakano¹*, Takashi Tanimoto², Tsuginosuke Hashimoto¹

Affiliation:
1: Laboratory of Biomaterials Design, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University
2: Asahi woodtech company

Address:
1: Kita-Shirakawa, Kyoto, 606-8502 Japan
2: Chuoh-ku, Osaka, 541-0054, Japan

*: Corresponding author

e-mail: tnakano@kais.kyoto-u.ac.jp

Phone and Fax: +81-75-753-6234
Abstract:
The morphology of ramie fiber treated with NaOH-water solutions at various concentrations was observed with an epi-illumination microscope (EIM) equipped with a charge-coupled device (CCD) camera. The crystallinity was measured by X-ray diffraction. The morphological changes in length and width were quantified using image analysis. Changes in morphology were noted for samples treated with NaOH-water solutions at room temperature in the narrow concentration range of $0.08 < [\text{NaOH}] \leq 0.12$. For samples cooled at -5°C after treatment, the morphological changes started at a lower concentration, i.e., at $[\text{NaOH}] = 0.05$. The change was observed as contraction in length and swelling in width. The mechanism for this dimensional change related closely not to the conformation of the whole microfibril but to the crystallinity of cellulose chains that had been de-crystallized by the NaOH-water solution: the calculated bond angle was too small for a zigzag conformation of the whole microfibril.

Keywords: Morphology, NaOH-water solution, Crystallinity, Cellulose microfibril, Contraction, Conformation
Introduction

Cellulose is the main constituent of wood and other plants, serving to maintain their structures and provide various physical properties. It is the greatest sustainable bioresource on earth. Native cellulose has a high crystallinity and is mostly found in plant cell walls as aggregates of cellulose microfibrils. These microfibrils have recently been categorized as nanofibers or nanocrystals \cite{1}. In the present study, we quantified the morphological changes that occurred during treatment of ramie microfibrils with NaOH-water solution.

Native cellulose contains two crystalline forms, i.e., Iα and Iβ. These forms can be transformed into other crystalline forms, such as cellulose II, via treatment with NaOH-water solution. Such polymorphic transformations have been discussed by many researchers \cite{2-9}. O'Sullivan \cite{10} attempted to bring and examine previous studies on cellulose structure over past few decades. The dissolution mechanism of cellulose during NaOH treatment has been studied by nuclear magnetic resonance (NMR) spectroscopy \cite{11,12}. Recently, Cai et al. \cite{13-15} applied the method of Roy et al. \cite{16} to the NaOH/urea and LiOH/urea systems. The latter authors used calorimetry, small X-ray scattering, and viscometry to study the structure of NaOH-water and cellulose-NaOH-water solutions in the range of various concentration, and proposed a mechanism that was appropriate at lower temperatures.

The morphological changes of cellulose that occur with NaOH-water treatment have been known for a long time. Davidson \cite{17} and Sobue et al. \cite{18} reported the effects of both concentration and temperature on qualitative changes in morphology. Watanabe et al. \cite{19} also observed
crystallinity changes at low temperatures. Moigne et al. [20, 21] studied the morphological and
swelling properties of native and regenerated cellulose from the viewpoint of cellulose solubility using
water-soluble solvents such as NMMO (N-methylmorpholine-N-oxide). Although the crystalline
transformations and dissolution of cellulose in alkali have been extensively studied, the quantitative
evaluation of the morphological changes of the fibers during de-crystallization treatment has rarely
been discussed, and its mechanism is poorly understood.

Stöchmann [22, 23] first reported the changes in morphology of wood pulp that occurred
when it was treated with NaOH-water solutions and proposed a mechanism. Nakano [24, 25],
Ishikura and Nakano [26], and Tanimoto and Nakano [27, 28] reported changes in the dimensional
and mechanical properties of wood that occurred after treatment with NaOH-water solution; they
attributed these changes to morphological changes in the microfibrils in the wood cell walls. Their
results were later confirmed by Voronova et al. [29] and Ray and Sarkar [30]. Although many studies
concerning treatments of wood and cellulose with NaOH-water solution have been reported, a
quantitative description of the morphological changes of the microfibrils and fibers after treatment,
particularly with respect to conformational changes, has not been reported to our knowledge.

The next subject of this work was to obtain quantitative, fundamental information on the
conformation of microfibrils treated with NaOH-water solution. A goal was to model these
conformational changes that occur during such treatment; the modeling and simulation results will be
reported in a separate publication. Nishiyama et al. [31] and Sao et al. [32] examined the morphology
of alkali-treated ramie in detail, but they focused on the changes in crystal structure and did not
establish a relationship between the macroscopic morphology and the conformation of the amorphous cellulose chains which is the structural arrangement. Thus, in the present work, conformational changes in the cellulose chains and in the whole microfibrils are discussed for ramie fiber partially de-crystallized by treatment with NaOH-water solution. These conformational changes were inferred from changes in their macroscopic morphologies and crystallinities.

Experimental

Materials and sample preparation

Purified ramie (commercial grade) was donated by Nichimen Kyokai. Samples of 10 ramie fibers cut about 2 mm long were treated with NaOH-water solution of different concentrations. The change in morphology of a sample was observed using an epi-illumination microscope (EIM) (Nikon Optiphot, Tokyo, Japan) equipped with a charge-coupled device (CCD) camera. The magnification of the image was determined by a scale in the image; the magnification of the objective lens was always 5 ×.

To confirm the morphological changes in detail, the ramie fibers were continuously treated with NaOH-water solution at concentration fractions increasing from 0.00 to 0.20 (Experiment I). The same procedure was repeated several times to confirm reproducibility. In Experiment I, a sample was placed in distilled water and allowed to stand overnight at room temperature. The sample was then placed on a glass slide and excess liquid was removed. The sample was observed with the EIM and the CCD camera. After observation, the sample was placed in NaOH ([NaOH] = 0.03) and then allowed to equilibrate overnight at room temperature. This sample was observed by the EIM with the CCD.
camera for a second time. The process was repeated with increasing NaOH concentration for [NaOH] ranging from 0.00 to 0.20. In this experiment, the immersion time increased with exposure to higher concentrations because the same sample had been exposed consecutively in solutions of increasing concentration.

Two other experiments (Experiments II and III) were conducted to observe the dependence of the morphology of the ramie fiber on NaOH concentration. In Experiment II, the sample was placed in NaOH-water solution at various concentration fractions ranging from 0.00 to 0.20 and was then allowed to stand for 1 week at room temperature. This sample was observed by EIM. After observation, the sample was rinsed for 1 week with distilled water and then observed again. In Experiment III, after the above NaOH treatment, the sample was held at −5°C for 1 day and then rinsed with distilled water for 1 week. Observation by EIM in Experiment III was done before and after the −5°C cooling treatment and after rinsing.

Overall, 15 conditions with 8 to 10 samples per [NaOH] condition were studied.

Measurement of morphological changes

Digital EIM images were transferred to a computer where Photostitch (Canon Co., Ltd.) and ImageJ (freeware) image analysis software were used to measure the lengths and widths of the ramie fibers. The length of a ramie fiber was calculated as the sum of the distances between points along its length. The width was calculated as the average of five locations where the fiber was not twisted.
Crystallinity

Samples that were cut to shorter lengths were treated with NaOH-water solutions at various concentrations by the above procedures, then rinsed with distilled water for 1 week, and oven-dried at 50°C under vacuum for 1 day. Pellets of approximately constant density were made from these samples using a molding machine. Diffraction patterns were obtained for these pellets at room temperature using an X-ray diffractometer (Rigaku Ultima IV) operating at 40 kV and 40 mA over a scanning range of 5–35° and at a scanning speed of 2°/min.

The crystallinity based on the X-ray diffraction measurement is generally calculated as the ratio of the intensity of crystalline cellulose to the total intensity or their area ratio. However, it is difficult to define the extent of conversion in crystalline region for both cellulose I and II using the same procedure because there is remarkable change in the profile and the effect of crystallite size on crystallinity index. Thus, some methods have been proposed. Revol et al. reported the effect of mercerization on crystallite size and crystallinity index. French and Cintron also pointed out the effect of crystallite size on the Segal crystallinity index. The effect appears to be remarkable in the lower crystallinity estimated by the Segal method.

We examined some X-ray methods containing the Segal method and compared them with 13C CP/MAS NMR method where the crystallinity is calculated by expressing the area of the peak at 89 ppm as a ratio of the total area assigned to cellulose-C4. The X-ray method highly correlated with the NMR method was adopted, which had good agreement in the whole [NaOH] region containing the transformation region from cellulose I to cellulose II: the coefficient of
determination was 0.869. The method estimates the crystallinity as below. The total intensity \(I_t \) and the amorphous intensity \(I_a \) were confirmed from the peak height of the diffraction (200) and the height of an intersection point where the perpendicular line through the peak (200) crosses the straight line passing the specified point and \(2\theta = 30^\circ \), respectively: the specified point is the minimum \(2\theta \) between (1-10) and (200) for cellulose I and between (110) and (1-10) for transformation from cellulose I to II and cellulose II. Then, the crystallinity was calculated using equation \((I_t - I_a)/I_t \).

Results and discussion

Morphological changes for non-cooled samples

Figure 1(a) shows the changes in the morphology of the ramie fiber as a function of NaOH concentration. Few changes were observed for \([\text{NaOH}] \leq 0.05\). A slight twist and contraction was observed near \([\text{NaOH}] = 0.10\), while the width remained unchanged. However, significant changes in length, width, and twist occurred for \([\text{NaOH}] > 0.10\).

The changes in length and width averaged over 8–10 samples are indicated by open circles in Figure 2(a) and (b), respectively. Their dimensions were accurately determined using image analysis. Changes in the ramie fiber morphology, i.e., decreasing length and increasing width, occurred over a narrow range of NaOH concentrations, i.e., \(0.08 \leq [\text{NaOH}] \leq 0.12\). These changes corresponded to changes in the crystallinity (open circles in Figure 3). This [NaOH] range is similar to that reported by Kamide et al. \[38\] and Yamane et al. \[39\]. No changes were observed at \([\text{NaOH}] < 0.08\).
Although the concentration dependence (Figure 2(a)) was similar to those reported for dimensional changes in the longitudinal direction of wood samples \[25, 40, 41\], the onset of the changes was different. Contraction of a ramie fiber started at \([\text{NaOH}] = 0.08\), while for wood, it began at a higher concentration of \([\text{NaOH}] = 0.10\). Additionally, changes in the ramie fiber leveled off at \([\text{NaOH}] > 0.12\); this was not observed with wood.

In this study, the contraction of a ramie fiber treated with NaOH-water solution reached nearly 0.30 point (Figure 2(a)), much greater than the reported 0.07 for wood \[36, 40\]. This substantial difference is attributed to large structural differences. Microfibrils of ramie fiber are almost free in the sense that they are not strongly restricted by other components, while microfibrils of wood are embedded in a matrix such as hemicellulose and lignin. Moreover, the latter forms a helical structure in the cell wall. In this connection, contraction of fibrillated cells reached 0.20 point after treatment with NaOH-water solutions \[42\]. Revol and Goring \[2\] and Murase et al. \[3\] noted that lignin, which is layered between microfibrils, limits the flexibility of cellulose chains and thereby the transformation of cellulose I to cellulose II. The results shown as open circles in Figure 2(a) and Figure 3 suggested that the remarkable changes in morphology with NaOH treatment were closely related to crystallinity.

The concentration dependence of the morphological changes in fiber length and width after rinsing is shown as closed circles in Figures 2(a) and (b). After rinsing, the length barely changed, while the width decreased markedly. However, the swelling in width remained at 0.30 point with \([\text{NaOH}] \geq 0.12\) even after rinsing. Both the induced contraction and residual swelling at the same
[NaOH] are attributed to the effect of an amorphous region created by the NaOH treatment. The mechanism is discussed below.

Effect of cooling on morphological changes

The effect of cooling on morphological changes was examined in Experiment III. The effect of cooling on the cellulose structure in cellulose-NaOH-water solution has been described by others. Davidson and Sobue et al. observed the morphological changes and temperature dependence. Roy et al. examined in detail the structure in solution using various methods, such as small-angle X-ray diffraction, viscosity, and differential scanning calorimetry (DSC) at low temperatures (−60 to 0°C). They proposed a model in which the cellulose-NaOH-water solution was composed of soda hydrates bound to cellulose, with a “core” of nine free soda hydrates and free water. The solubility and swelling of alkali-treated cellulose (e.g., by NaOH or LiOH) and NaOH/urea-water solutions are temperature dependent, especially at low temperatures. Qi et al. reported that the solubility of cellulose in such solutions is strongly temperature dependent and that cellulose with a molecular weight of 10.0 × 10^4 dissolved completely in a solution pre-cooled to −12.6°C. Cai et al. studied the rapid dissolution of cellulose in aqueous LiOH/urea pre-cooled to −12°C and proposed a mechanism involving cleavage of the chain packing of cellulose by LiOH hydrates through the formation of new hydrogen bonds. These findings indicated that conformational changes of cellulose occurred in alkali solutions, even at low temperatures. However, the effect of cooling on the morphological changes and solubility has not been examined in detail.
Experiment III examined the effect of a low-temperature treatment on the morphological changes in ramie. Figure 1(b) shows the changes that occurred during such treatment; cooling caused a remarkable contraction in length and swelling in width.

Figure 4 shows the changes in morphology found from Experiment III. The morphological changes (open circles in Figures 4(a) and (b)) are similar to those found with Experiment II. This is because the treatment before cooling in Experiment III was the same as that in Experiment II. The morphological changes evident after cooling (crosses in Figures 4(a) and (b)) were quite different from those found before cooling (open circles in Figures 4(a) and (b)). The concentration at which the morphology changed shifted to lower concentration, i.e., the changes in length and width appeared at $0.06 \leq [\text{NaOH}] \leq 0.12$. These morphological changes corresponded to changes in crystallinity (closed circles in Figure 3). This suggested that the reduction in crystallinity caused the changes in morphology, even under the conditions of Experiment III.

The morphological changes after rinsing were observed only in width, as in Experiment II. The residual swelling under the cooling condition was greater than that in the absence of cooling, probably because the former swelled more than the latter at the same NaOH concentration.

Changes in crystallinity line profile

Figure 5(a) shows the X-ray intensity line profiles of the ramie fibers, which corresponded to the crystallinity changes shown in Figure 3. The changes in crystallinity profiles appeared in the same $[\text{NaOH}]$ region where the morphological changes occurred: no changes appeared at $[\text{NaOH}] \leq 0.05$.
and [NaOH] \geq 0.12. Figure 5(a) also demonstrates that structural changes occurred with the transformation from cellulose I to II. The cellulose I pattern was observed for [NaOH] \leq 0.10, while a pattern consistent with a mixture of cellulose I and II was seen for [NaOH] = 0.11. A higher cellulose II content was noted at [NaOH] \geq 0.12. The pattern intensity for crystalline cellulose II at [NaOH] \geq 0.12 was weaker than that for cellulose I at [NaOH] \leq 0.10. This indicated a lower crystallinity.

Comparison of the morphological changes shown in Figures 2(a) and (b) with the line profiles in Figure 5(a) clarified that a structural change of cellulose I to II caused the macroscopic changes in morphology. However, the transformation from cellulose I to II hardly affected the change in ramie length because there is only a slight difference in the length of their unit cells along the c-axis.

The X-ray diffraction profiles after cooling are shown in Figure 5(b). Cellulose I was found at [NaOH] \leq 0.05, cellulose I and II coexisted at [NaOH] = 0.07, and cellulose II was clearly found at [NaOH] \geq 0.08. The intensity decreased significantly in the transition region from cellulose I to II. The results of both Experiments II and III indicated that changing morphology was strongly related to changing crystallinity rather than to the transformation.

Figure 6 shows the relationship between crystallinity before and after cooling. The plots should lie on a linear as a broken line in Figure 6, if the NaOH treatment contributes equally to de-crystallization in both cases. However, it shows clearly that the [NaOH] region that induced the change in crystallinity differed for the two cases, i.e., the trajectory deviated from a straight line in the region of [NaOH], 0.07 \leq [NaOH] \leq 0.12.
Morphological changes and microfibril conformation

Figure 7 shows the relationship between the morphology and crystallinity for samples in Experiments II and III. There were strong linear correlations between the length and crystallinity, and between the width and crystallinity, regardless of cooling or non-cooling and rinsing or non-rinsing. This linearity was clearly evident even for the width after rinsing (closed circles in Figure 7(b)).

The results shown in Figure 7 demonstrate that the morphological changes in ramie fiber were related to crystallinity. There is a possibility that de-crystallization via NaOH treatment caused two conformational changes, i.e., changes to both the cellulose chains and to the microfibrils. Our interest is in the mechanism of the morphological changes, i.e., the cause of the contraction. Nakano et al. [40] and Nakano [41] proposed a mechanism concerning conformational changes induced by NaOH treatments.

The morphological changes in ramie can be understood in terms of Nakano’s mechanism. First, NaOH-water solution attacks the periodic defects along the microfibrils and diffuses into the cross-sections. Periodic defects in microfibrils have been confirmed by a leveling-off of the degree of polymerization (LODP). Nishiyama [31] reported that microfibrils have 4-5 disordered residues for every 300 residues. Diffusing NaOH-water solutions creates amorphous regions. Crystalline and amorphous regions might co-exist in series after some time, even though initially the amorphous region is distributed. A part of the stretched cellulose chains in the crystalline microfibrils transform to random conformations; hence, the dimensions contract along the microfibrils. Thermodynamically,
this is an entropy-increasing process. That is, the driving force for the contraction is the entropic elastic force.

The above explanation, however, is based on the contribution of the conformational change in the cellulose chains alone. Our question was whether or not the conformational changes in the microfibrils alone contributed to the morphological changes. The residual swelling after rinsing provided insight. As shown by the closed circles in Figure 2(b), the width after rinsing did not return to the initial value and the residual swelling increased with increased swelling immediately after NaOH treatment, i.e., with decreased crystallinity. The changes in length and width were highly correlated with crystallinity, even after rinsing (Figure 7). The length was not influenced by rinsing, while the width was strongly affected by rinsing. It should be noted that a residual swelling after rinsing was estimated at most 0.3 point. The answer to our question can be obtained by examination whether or not this value in width after rinsing allows the conformational changes in microfibrils alone.

Consider the probable conformational change in the microfibrils alone after rinsing: crystal and amorphous regions act as bonds and joints, respectively. We take up a symmetric zigzag conformation with 1° bond angle as an example. The size of bond width and joint is not considered to simplify our discussion. This example has a rod-like feature due to a small bond angle. If the width of this conformation is larger than a residual swelling in width, the significant conformational change in the microfibrils alone should hardly occur with NaOH treatment.

According to Nishiyama [31], the residues between periodic defects along ramie microfibrils is 300, and about 250 residues remain in the crystal region even after 0.2 point of the maximum
decrease in crystallinity as shown in Figure 3. The length is approximately 125 nm when the residue
length is 0.52 nm and the bond angle of the β 1-4 ether linkages is not considered. Then, the increase
in width is \(125 \sin 0.5^\circ = 1.09 \) nm after the symmetric zigzag conformation with bond angle 1°. On the
other hand, the maximum residual swelling 0.3 is corresponding to 0.6 to 1.8 nm and the average 1.2
nm, setting the microfibril width before the treatment 2 to 6 nm which is the general value for higher
plant. The calculated value is nearly equal to the maximum residual swelling value, that is, the
change in width of the zigzag conformation is close to the maximum value observed in our experiment,
even if the bond angle is very small 1°. Consequently, significant conformational changes in the
microfibrils are not expected with the NaOH treatment.

This implies that the amorphous regions created along the microfibrils during the NaOH
treatment do not act as joints. Probably, the joints should have much lower flexibilities comparing
with the β 1-4 ether linkages of the cellulose chains which have free rotation around the bonds. Thus,
the conformation of the microfibrils may remain rod-like. Consequently, the morphological change is
mainly attributed to the change in conformation of the cellulose chains de-crystallized via NaOH
treatment. The schematic change is shown in Figure 8.

Conclusion

The morphology of ramie fiber treated with NaOH at various concentrations was observed
by EIM equipped with a CCD camera. The changing crystallinity was documented by X-ray
diffraction. We proposed the following mechanism for the observed changes in morphology. First, the
NaOH-water solution attacks attacked the periodic defects along the microfibrils and diffused into the
cross-sections. Second, diffusing NaOH-water solutions created amorphous regions. Crystalline and
amorphous regions might co-exist in series after sufficient time has passed. The straight cellulose
chains in the crystalline microfibrils partially transforms into random conformations, resulting in
contraction along the microfibrils. However, significant conformational changes in the microfibrils are
not expected because the joints, which are amorphous regions created by the NaOH treatment, are
inflexible. Consequently, the morphological change is mainly attributed to the change in conformation
of the cellulose chains de-crystallized via NaOH treatment.

Acknowledgments

The authors thank Prof. Junji Sugiyama, Research Institute for Sustainable Humanosphere,
Kyoto University for providing the ramie.
References

[34] Revol, J.F., Dietrich, A., Goring, D.A.I. (1987) Effect of mercerization on the crystallite size and
crystallinity index in cellulose from different sources. Can J Chem 65: 1724-1727.

Captions:

Figure 1. Typical morphological changes for ramie fiber treated with various NaOH-water concentrations at room temperature (a) and with [NaOH] = 0.07 at −5°C (b).

Figure 2. Changes in length (L/L₀) and width (W/W₀) of ramie fiber treated with various NaOH-water concentrations at room temperature (○, before rinsing; ●, after rinsing).

Figure 3. Changes in crystallinity of ramie fiber treated with various NaOH-water concentrations at room temperature (○) and −5°C (●).

Figure 4. Changes in length (L/L₀), width (W/W₀) of ramie fiber treated with various NaOH-water concentrations at room temperature followed by cooling and then rinsing (○, before cooling; ×, after cooling; ●, after rinsing).

Figure 5. Dependence of X-ray profiles of treated samples on NaOH concentration for non-cooling and cooling treatments.

Figure 6. Relationship between crystallinity before and after cooling for samples treated with NaOH-water solution.

Figure 7. Crystallinity dependence of changes in length (L/L₀) and width (W/W₀) for samples treated with NaOH-water solution (○, before rinsing; ●, after rinsing).

Figure 8. Schematic diagram showing the morphological changes in microfibrils treated with NaOH-water treatment.
Figure 1.
Figure 2.
Figure 3
Figure 4.
Figure 5.

(a) Non-cooling

(b) After cooling
Figure 6.
Figure 7.
Figure 8.