A TRINITY OF THE BORCHERDS ¢-FUNCTION
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ABSTRACT. We discuss a trinity, i.e., three distinct expressions, of the Borcherds
®-function on the analogy of the trinity of the Dedekind n-function.
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1. INTRODUCTION — A TRINITY OF DEDEKIND 7-FUNCTION

The Dedekind n-function is the holomorphic function on the complex upper half-
plane $) defined as the infinite product

n(r) =g T (1= qM),
n>0
where q := €2™7. It is classical that 7(7)?* is a modular form for SLo(Z) of weight
12 vanishing at +ioco and this property characterizes the Dedekind n-function up
to a constant.

Let us recall the trinity of the Dedekind n-function. Besides the definition as
above, the Dedekind n-function admits at least two other distinct expressions, one
analytic and the other algebro-geometric. Precisely speaking, we consider the Pe-
tersson norm

()]l = (37)4jn(r)|
rather than the Dedekind n-function itself.

Let us explain an analytic counterpart of the Dedekind n-function. For 7 € $),
let E- be the elliptic curve defined by

E,:=C/Z+1Z,
which is equipped with the flat Kdhler metric of normalized volume 1
gr = dz ®dz/ST.

The author is partially supported by JSPS Grants-in-Aid (B) 23340017, (A) 22244003, (S)
22224001.
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The Laplacian of (E;, g,) is the differential operator defined as

H? St [ 02 H?
0, = -9 _ ST (L L9
ST oz0: T 4 (a;ﬁ + ay2>

The set of eigenvalues of O, is given by {m?|m7 + n|?/S7}(mn)ez2 and hence the
spectral zeta function of [, is defined as

ST *
wr= ¥ ()
(m,n)#(0,0)

It is classical that (- (s) converges absolutely when Rs > 1 and extends to a mero-
morphic function on C. Moreover, (;(s) is holomorphic at s = 0. The value

det "0 = exp(—C.(0))

is called the (regularized) determinant of (], on the analogy of the identity for finite
dimensional, non-degenerate, Hermitian matrices

d
logdet H = — — Tr H%.
ds|,_,
By Ray-Singer [26], the classical Kronecker limit formula can be stated as follows
in this setting:
Theorem 1.1. The following equality holds
det *00, = 4||n(7)]|*.

Let us explain an algebro-geometric counterpart of the Dedekind n-function. Let
My, (K) be the set of m x n-matrices with entries in KX C C. Recall that every
elliptic curve is expressed as the complete intersection of two quadrics of P3

2 2 2 2
f (x) = a1y + 1225 + a1323 + a4y = 0 }
)

B =1 [z] € P
4 {[ | fo(x) = aznaf + axal + azsaf + aza] =0

where A = (a;5) = (a1,a2,a3,a4) € M2 4(C). For A€ M 4(C) and 1 <i < j <4,
we define
Aij(A) == det(a;, a;).

Since the value [|n(7)|| depends only on the isomorphism class of the elliptic
curve E;, it makes sense to set ||[n(E;)| = ||n(7)]]-

Theorem 1.2. With the same notation as above, the following equality holds

— 6
BlnE) I = ] Aij<A)|2~<N‘1/E aAAaA).

2
T
1<i<j<4

Here ay € HO(EA,Q}EA) is defined as the residue of fi, fa, i.e.,
as:=Z|g,,

where 2 is a meromorphic 1-form on P3 satisfying the equation

4
dfiy Ndfa N2 = Z(—l)i_lxidiﬂl ANdzi—1 Ndzxip1 A dxy.

i=1
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For A = (a;;) € M2 4(C), one can associate another elliptic curve
OA = {(JC, y) S CQ; y2 = 4((11156 + agl)(algl' + (122)(@131‘ + a23)(a14213 + CL24)}.

Namely, C4 is the double covering of P! with 4 branch points (a11 : —as21), (a2 :
—a92), (a13 : —ag3), (a14 : —agq). If a7 = 0 and a1 = 1, then C4 is an elliptic
curve expressed by the Weierstrass equation. It is not difficult to see Cy = E4 and
— 6
-1 dr dx
2°In(Ca)lI** = |[Ag(A)? - ( " > '
I 12y 212 Je, vy

1<i<j<4

(We shall study an analogue of F4 and C4 for K3 surfaces later.)

Theorem 1.2 is easily verified when E4 is the projective embedding of E. by the
linear system |40|. In this situation, the equations of E4 are the linear relations
between the theta functions 6,(z,7) (a,b € {0,3}). General case of Theorem 1.2
follows from this special case by the invariance of the expression in Theorem 1.2
under the action of GLy(C) x (C*)*. See [13] for the details.

In this survey, we explain a generalization of the trinity of the Dedekind 7-
function as above to that of the Borcherds ®-function. For this, we make the
following replacements:

e elliptic curves = Enriques surfaces
e determinant of Laplacian = analytic torsion
® [[1<icj<sAij(A) = resultant of three quadratic forms in three variables

For the analytic aspect of the Borcherds ®-function, our explanation is based on
[31], [32], while for the algebro-geometric aspect of the Borcherds ®-function, our
explanation is based on [13]. In this survey, we will not give proofs. We refer the
reader to these papers for the details.

2. BORCHERDS ®-FUNCTION
In this section, we recall the Borcherds ®-function.

2.1. Domains of type IV and its realization as a tube domain. A free Z-
module of finite rank equipped with a non-degenerate, integral, symmetric bilinear
form is called a lattice. The automorphism group of a lattice L is denoted by O(L).
For a lattice L = (Z",(-,-)r) and k € Q, we set L(k) := (Z",k(-,-)1). We define
U = (Z2, ((1) (1))) There exists a unique positive-definite, even, unimodular lattice
of rank 8, up to an isometry. This lattice is denoted by Esg.

Let A be a lattice of signature (2,b~). We define an open manifold Q4 of dimen-

sion b~ as
Qr:={[Z] e P(A®RC); (Z,Z)p =0, (Z,Z)5 >0}

Then €2, is the set of maximal positive-definite subspaces of A ® R and is isomor-
phic to SO(2,b7)/SO(2) x SO(b~). Hence each connected component of Q2 is
isomorphic to a symmetric bounded domain of type IV of dimension b~.

Assume that there exists k € Z~o and a lattice of signature (1,0~ — 1) such that
A =U(k) ® L. Let {e,f} be a basis of U(k) with e> = f2 =0, e -f = k. We set
v:=e € U(k) and v/ := f/k € U(k)V. Then we have an isomorphism of complex
manifolds L ® R + iCy, = Q given by the map

<ZaZ>L

LoR+iC, 22— 2= |v— v +z| € Qa.
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Here Cr, := {x € L&R; (x,x)1, > 0} is the positive cone of L. Since L is Lorentzian
and hence Cp, consists of two connected components, we choose one of them, say
CL+. Write QX for the component of 5 corresponding to L ® R + iCZ‘. Then we
have the decomposition Qy = QF 1I Qij\' The subgroup of O(A) preserving the
connected components Q7 Qix is denoted by O*(A). Clearly, [O(A) : OT(A)] = 2.

2.2. Automorphic forms over domains of type IV. Let us recall the notion
of automorphic forms over Q3. There are several mutually equivalent definitions.

2.2.1. Automorphic form as a multicanonical form on QX Let £ be the tautological
line bundle on QX:

L:=Opmec)(—Dlgt C Q) x (A®C).

The natural action of OF(A) on Qf x (A ® C) induces the O (A)-action on £. A
holomorphic section f € H°(Q, £¥) is called an automorphic form for I' € OF(A)
of weight k& with character y if

f(Z) = x()f(2)
for all Z € QX and v € I', where y: I' — C* is a finite character.

2.2.2. Automorphic form as a homogeneous function on the cone over QX Let
CQX be the cone over QX obtained from L by contracting the zero section. Then

a holomorphic function F € O(CQX) is called an automorphic form on QFf for
' € OT(A) of weight k with character y if

F(Y(Q)=x()FEQ), FOAQ)=A"F«)
for all ¢ € OQX’ v €T and A € C*.

2.2.3. Automorphic form as a function on QX Let £ € A®R be such that (£, ¢) > 0.

Observe that P
Z) = ——r, ZeQf
)=z A
is a nowhere vanishing holomorphic section of £. Via the assignment f — f/ af, we
can define automorphic forms as follows: A holomorphic function F(Z) € O(Q})
is an automorphic form for I' of weight k with character x if for all Z € Q} and

vel,

k
raz)=xt) (G221 Fea)

The choice of ¢ corresponds to the choice of a hyperplane at infinity of P(A ® C).

2.2.4. Automorphic form as a function on L®R+iCZr. We have the O (A)-action
on the tube domain L ® R + iC}f via the identification QX LR+ ng. Write
J(7,y) for the Jacobian determinant of v € OF(A) C Aut(L ® R +iC;). By the
relation between the canonical line bundle of Qf and L, there is a holomorphic
function j(v, z) with
Gy, 2) T = J(y, 2).

A holomorphic function F(z) € O(L ® R +iC}) is an automorphic form for I' of
weight k& with character y if for all z € L® R + iCZr and y €T,

F(y-2)=x(i(y,2)"F(z).
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2.3. Borcherds ®-function. Define the Enriques lattice A as
A =UadU2) ® Es(—2).

Then A is an even lattice of signature (2,10). We define the discriminant divisor

of QA by
Dp = > dh
deA/+1,d2=-2
where dt := {[Z] € QF; (d, Z) = 0}. Define {c¢(n)} by the generating series:
> eln) g = n(r)"*n(2r)*n(4r) .
neZ
2.3.1. Borcherds ®-function at the level 1 cusp. Let v be a primitive isotropic vector

of UC A and set Ly := vt /v 2 U(2) ® Eg(2). Then L; ® R + icjl ~ Of.

Definition 2.1. The Borcherds ®-function is the formal Fourier series on the tube
domain L1 @ R + iCZ‘l defined as

1— ewi()\,z)
q)l(z) = 11 <1 + e7ri<)\7z>>
xeLincf \{o}

c(A\?/2)

2.3.2. Borcherds ®-function at the level 2 cusp. Let v be a primitive isotropic vector
of U(2) C A and set Ly = v*/v=U®Eg(2). Then Ly @ R+iC; = Qf.

Definition 2.2. The Borcherds ®-function is the formal Fourier series on the tube
domain Ly ® R + iCi"2 defined as

)

. oy (DTN e(0?)2)
@2(2) — 28627rz(p,z> H (1 _ e?ﬂ'z(A,z))

AEL3, (X,p)>00r AeENp

where p = ((0,1),0), ' = ((1,0),0) € Lo.

Theorem 2.3 (Borcherds [6], [7]). For j = 1,2, the formal Fourier series ®;(z)
as above converges absolutely for = € L; @ R + iCE‘j with Sz > 0 and extends
to an automorphic form on L; ® R + iCZ'j for OT(A) of weight 4. Regarded as
holomorphic functions on QX, one has the equality up to a constant of modulus 1

D = O,
In what follows, we write ®(z) for ®1(z) and Py(2).

Definition 2.4. The Petersson norm of ® is the C*° function on L; ® R + iC}fj
defined as
1D(2)[|* := (32, $2) @, ().

Since the Petersson norm ||®(2)|| is O (A)-invariant, we regard ||®(z)| as a
function on the orthogonal modular variety Q4 /O (A).
By [7, Th.13.3], log||®|| is defined as the finite part of the divergent integral:

——— dxd
~alog [$(2)] - 8(T'(1) + log(2m) =P [ F(r)-Baln 2]y g
SL2(Z)\$ Y
where F(7) is a certain vector-valued elliptic modular form for Mp.(Z) (cf. [32,
Def. 7.6] with A = A) and ©A(7, Z) is the Siegel theta function [7] of the Enriques
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lattice A. Then the expressions ®q(z) and ®2(z) are obtained by computing the
above integral at the level 1 cusp and the level 2 cusp, respectively. For the necessity
of the constant 28 in ®4(z), see [7, Th.13.3 (5)] and [32, Eq. (7.9)].

Remark 2.5. One can rewrite the expression of ®(z) using the dual lattice of A.
Set L := U@ Eg(—1). Since the dual lattice of A is given by AY = U & L(1/2), we
get
AY(2)=U(2)® L.
Then the Borcherds ®-function can be expressed as a function on L @ R + ¢ Cj
1— e27ri(/\,z> c(A?/2) n )\,Z 16
®(2) = H 2mi(n2) = Z (2] 8"
L 1+e ; _ n(2(\, z))
AeLnci\{0} AELNC, A2=0, primitive

This identity is known as the denominator identity for the fake monster superalge-

bra. See [7, Example 13.7] and [27] for more details about the denominator identity
for the fake monster superalgebra. See [5], [6] for the Fourier expansion of ®5(z).

3. ENRIQUES SURFACES AND THEIR MODULI SPACE
In this section, we recall Enriques surfaces.

3.1. K3 surfaces. A compact connected complex surface X is a K3 surface if
HY(X,0x)=0, Q% =O0x.

It is known that the diffeomorphism type underlying a K3 surface is unique. In
particular, the second integral cohomology group of a K3 surface equipped with
the cup-product pairing is isometric to the K 3-lattice
]LKg =U ©® U ) U S Eg(—l) D Eg(—l)

For a K3 surface X, an isometry of lattices a: H?(X,Z) = L3 is called a marking.

Let X be a K3 surface and let a: H?*(X,Z) = Lgs be a marking. Since Q%
is trivial, there exists a unique nowhere vanishing holomorphic 2-form n on X, up
to a non-zero constant. By the Hodge decomposition, we get the natural inclusion
HY(X,0%) C H*(X,Z) ® C, so that the line Cn € P(H?*(X,C)) is uniquely
determined by X. The period of (X, «) is defined as the point of P(Lgs ® C)
corresponding to Cn via the marking «:

@(X,a) :=[an)] € Qry,-
Here we define Qp,,., = {[Z] € P(Lgs ® C); (Z,Z) =0, (Z,Z) > 0} as before.
Notice that [a(n)] € QL,, by the Riemann-Hodge bilinear relations [, n An =0
and fX n AT > 0. For K3 surfaces and their moduli space, see [1] for more details.

3.2. Enriques surfaces. A compact connected complex surface Y is an Enriques
surface if
H'(Y,0y) =0, O} 20y,  (93)*=0y.

It is known that the universal covering of an Enriques surface is a K3 surface
and an Enriques surface is obtained as the quotient of its universal covering by a
fixed-point-free involution. Notice that a single K3 surface can cover many distinct
Enriques surfaces (cf. [22], [23], [24], [25] and Subsection 5.3 below).

Let Y be an Enriques surface and let ¥ — Y be the universal covering. Let
t:'Y — Y be the non-trivial covering transformation of Y — Y. Write Hz(?, Z),
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and H2(Y,Z)_ for the invariant and anti-invariant subspaces of H2(Y,Z) with
respect to the t-action, respectively. Let I: Lx3 — Lis be the involution defined
as
I(a,b,c,z,y) := (b,a, —c,y, x), a,byce U, z,y € Eg(-1).
By [11], there exists a marking a: H2(Y,Z) = Lgs such that
aofoal=1.

Let (Lks)+ and (Lks)— be the invariant and anti-invariant subspaces of L3 with
respect to the I-action, respectively. Then we have isometries of lattices

o(*(V,2),) = (Lics)s 2UQ) ©Es(-2),  a(H(V,2)) = (Lis)_ = A.
Since Y has no non-zero holomorphic 2-forms, we get HO(Y/, Q%) C H2(Y,Z)_®C.

Hence w(f/, a) € Q4 if « is a marking as above. The period of an Enriques surface
Y =Y /i is defined as the period of its universal covering Y, i.e.,

w(Y) = [@(Y,a)] € 2/0*(A),

where « is a marking satisfying a0 * oa™! = I and [@(Y, @)] denotes the OF(A)-
orbit of w(Y,a). It is known that the isomorphism class of an Enriques surface is
classified by its period:

Theorem 3.1 (Horikawa [11]). There exists a coarse moduli space of Enriques
surfaces, denoted by M. The period mapping induces an isomorphism between the
analytic spaces
Q3 \ Da

In what follows, we identify M with (4 \ Da)/O%(A) by the map w. We refer
the reader to [1] for more details about Enriques surfaces and their moduli space.
By Theorem 3.1, the period mapping for Enriques surfaces omit the discriminant
locus. The Borcherds ®-function characterize exactly the discriminant locus Da.

Theorem 3.2 (Borcherds [6]). The Borcherds ®-function vanishes exactly on D
of order 1. In particular, ® is a nowhere vanishing holomorphic section of the

Hodge line bundle on M.

Since the line bundle of automorphic forms on an arithmetic quotient of a sym-
metric bounded domain is an ample line bundle by Baily-Borel, the moduli space
of Enriques surfaces is quasi-affine by Theorem 3.2 [6]. In fact, the quasi-affinity of
the moduli space holds for wider classes of K3 surfaces with involution. See [32].

4. ANALYTIC TORSION AND BORCHERDS ®-FUNCTION: AN ANALYTIC
COUNTERPART

The notion of holomorphic analytic torsion was introduced by Ray-Singer [26] in
their works extending the classical notion of torsion in algebraic topology to certain
analytic settings; they extended the construction of torsion of finite-dimensional
acyclic complex to the setting of de Rham or Dolbeault complex, in which they
replaced the usual finite-dimensional determinant of the combinatorial Laplacian
to the regularized determinant of the Hodge-Kodaira Laplacian. In this section, we
explain the construction of the Borcherds ®-function via analytic torsion.
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4.1. Analytic torsion. Let (M,hT*) be a compact connected Kihler manifold.
Let O, = (0 + 9*)? be the Hodge-Kodaira Laplacian acting on (0, ¢)-forms on M.
Since M is compact, the Hilbert space of square integrable (0, ¢)-forms on M splits
into the direct sum Ly = Dircoo,) (A Hg), where o(Ly) C R is the spectrum
of O, and E(A,0y) is the eigenspace of O, with respect to the eigenvalue A. Then
E(X,0,) is of finite-dimensional. The zeta function of [, is defined as

Gls)= > A dimE\O,).

Aea(Ug)\{0}

By the Weyl law of the asymptotic distribution of the eigenvalues of O, (4(s)
converges absolutely for s € C with Ss > dim M. From the existence of the
asymptotic expansion of the trace of the heat operator e *He as t — 0, it follows
that 4(s) extends to a meromorphic function on C and that (,(s) is holomorphic
at s = 0. After Ray-Singer [26], we make the following

Definition 4.1. The analytic torsion of (M, hT™) is the real number defined as
(M, ™M) = exp[— Y (~1)1q () (0)].

q>0

When dim M = 1, 7(M)~! is exactly the determinant of Laplacian appearing
in the formula for ||n(7)|. After Theorem 1.1, it is natural to expect that the
determinant of Laplacian or analytic torsion may produce a nice function on the
moduli space. This is the main topic of this section.

One natural direction of such a generalization seems to be the study of the
determinant of Laplacian for compact Riemann surfaces of higher genus g > 1.
Among numbers of studies of the determinant of Laplacian for hyperbolic Riemann
surfaces of genus g > 1, it is Zograf [34] and McIntyre-Takhtajan [21] who obtained
a holomorphic function with infinite product expression on the Schottky space by
using the determinant of Laplacian. On the other hand, Kokotov-Korotkin [14]
considered the determinant of Laplacian with respect to the flat (but degenerate)
Kahler metric w ® w, where w is an Abelian differential on a compact Riemann
surface of genus g > 1. They proved that, as a function on the moduli space of
pairs (C,w), with C being a marked Riemann surfaces of genus g > 1 and w being
an Abelian differential on C, the determinant of Laplacian is expressed by using
some classical quantities like prime forms, theta function and periods. Hence there
are two different generalizations of Theorem 1.1 in higher genus g > 1.

Another direction of generalization is the study of analytic torsion for higher
dimensional varieties. (For several reasons, in higher dimensions, analytic torsion
seems to be more appropriate than a single determinant of Laplacian in considering
a generalization of Theorem 1.1.) Among those varieties, we are interested in
Enriques surfaces, since they can be regarded as one of the natural generalizations
of elliptic curves in dimension 2. For other directions of generalization, we refer to
[30], [9], where analytic torsion produces the Siegel modular form characterizing the
Andreotti-Mayer locus and the section of certain line bundle on the moduli space
of Calabi-Yau threefolds characterizing the discriminant locus.

4.2. Borcherds ®-function as the analytic torsion of Enriques surface. As
in the case of elliptic curves, we choose some special Kahler metric to construct an
invariant of an Enriques surface. Since ¢1(Y)r = 0 for an Enriques surface Y, there
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exists by Yau [28] a unique Ricci-flat Kéhler form in each Kéhler class on Y. In
contrast to elliptic curves, the condition of Ricci-flatness with normalized volume 1
does not determine a unique Kéahler form on Y, because the space of Kahler classes
on Y has real dimension 10. Even though, we get the following:

Theorem 4.2 ([31]). Let Y be an Enriques surface and let vy be a Ricci-flat Kdhler
metric on Y with normalized volume 1. Then the analytic torsion 7(Y,~) is in-
dependent of the choice of such a Kdahler metric ~. In particular, 7(Y,7) is an
mwvariant of Y.

After Theorem 4.2, we may write 7(Y) for 7(Y,~). Then the analytic torsion
gives rise to the function on the moduli space of Enriques surfaces

T-M>3[Y]—-7(Y)€eR.
Recall that the Petersson norm of the Borcherds ®-function ||®|| is O (A)-invariant
and hence it descends to a function on M. We write ||®(Y)|| for | (= (Y, a))]|-

Theorem 4.3 ([31]). There exists an absolute constant C # 0 such that for every
Enriques surface Y, the following equality holds

(¥) = Ce(Y)] /4.

The proofs of Theorems 4.2 and 4.3 are based on the curvature formula for
(equivariant) Quillen metrics [3], [16] and the immersion formula for (equivariant)
Quillen metrics [2], [4]. We compare the 90 of log T and log ||®|| as currents on the
Baily-Borel compactification of Q}/O*(A). For this, the curvature formula and
the immersion formula for (equivariant) Quillen metrics play crucial roles. We refer
the reader to [31] for the details of the proofs of Theorems 4.2 and 4.3.

As in the case of elliptic curves, we get an analytic expression of the Borcherds
®-function by using analytic torsion. In fact, we can extend this result to arbitrary
K3 surfaces with anti-symplectic involution. Namely, for a K3 surface X equipped
with an involution ¢: X — X acting non-trivially on H%(X, %), we can construct
an invariant 7a7 (X, ¢) by using the equivariant analytic torsion of (X, ¢), the analytic
torsion of the fixed-point-set of ¢ and a certain Bott-Chern secondary class. Here M
refers to the isometry class of the invariant sublattice of H?(X,Z) with respect to
the ¢-action, which determines the topological type of c. When M = U(2)®Eg(—2),
we get the analytic torsion of Enriques surface 7 as above. It is worth remarking
that we can construct the invariant 7p,(X,¢) without assuming the existence of
Ricci-flat Kéahler metrics on X. After fixing M, i.e., the topological type of the
involution, the invariant 7)7 (X, ¢) gives rise to a function on the moduli space of K3
surfaces with involution, which is again a certain arithmetic quotient of a symmetric
bounded domain of type IV, with the discriminant divisor removed. As before in
Theorem 4.3, the resulting function 7, is the Petersson norm of an automorphic
form on the moduli space of K3 surfaces with involution. It is remarkable that the
corresponding automorphic form on the moduli space of K3 surfaces with involution
thus obtained, is very often expressed as the product of a certain Borcherds lift and
Igusa’s Siegel modular form. We refer the reader to [31], [32] for more details about
the analytic torsion invariant 7,; of K3 surfaces with involution.

5. RESULTANTS AND BORCHERDS ®-FUNCTION: AN ALGEBRAIC COUNTER PART

In this section, we explain an algebro-geometric counterpart of the Borcherds
d-function.
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5.1. (2,2,2)-model of an Enriques surface. Let
f1(@), 91(), ha(z) € Cla1, 22, 73], f2(2), g2(), ha(z) € Claa, x5, T6]

be homogeneous polynomials of degree 2. We define f, g, h € C[z1, 22, T3, T4, T5, T¢)
by

f@) = fi(@) + fa(), g(x) = g1(x) + ga(2), h(x) := ha(z) + ha(z)

and the corresponding surface X s 4 ) by

X(s,9m = {[z] € P% f(z) = g(z) = h(z) = 0}.

If the quadratic forms f1, g1, hi1, f2, g2, he are generic enough, then X4 1)
equipped with the line bundle Ops (1) is a K3 surface of degree 8 by the adjunction
formula. Let ¢ be the involution on C® defined as

L(x13$27x37x4) x5ax6) = (xla Z2,X3, —T4, —T5, _xG)'

The involution on P® induced by ¢ is again denoted by the same symbol . Since
the set of fixed points of the t-action on P? is the disjoint union of two projective
planes Py := {x1 = 29 = x5 = 0} and Py := {4 = x5 = z¢ = 0}, we see that
X(Lf,g,hy the set of fixed points of the t-action on Xy 4 ), is given by

Xipgm) = X9 VP I (X (5,9, N Po).

For three quadratic forms in three variables ¢ (z, vy, 2), ¢2(x, y, 2), g3(z,y, ), let
R(q1,q2,q3) be the resultant of ¢1, g2, g3. Then R(q1,¢2,q3) is the polynomial of
degree 12 of the coefficients of g1, g2, q3 characterizing the existence of common
intersection points of the three conics of P? defined by ¢; = 0, ¢z = 0 and ¢3 = 0.
Namely,

R(q1,q2,93) =0 <=  {(@:y:2)ePhqi=q=q3=0} #0.

If gi(z,y,2) = anx® + apy® + ai3z® + auzy + aisez + aeyz, then R(qi, g2, q3) is
expressed as an explicit integral linear combination of the polynomials of the form

[j17j27j3] [kla k27 k3][ll7127 l3][m13 m27m3]7

where

a5, A1y,  Q14s

[J1,J2: 43) := |az,j, azj, Q2]

3,51 43,5, 03,53

See [12, p.215 Table 1] for an explicit formula for R(q1, g2, ¢3)-
If the quadrics fi1, g1, h1, f2, g2, ho are generic enough, then we may assume

that R(f1, 91, h1)R(f2, 92, he) # 0, so that ¢« has no fixed points on X (s 4 5) in that
case. Hence, if R(f1,g1,h1)R(f2,92,h2) # 0 and X (54 5) is smooth, then

Yif.g.n) = X(t,g.n)/t

is an Enriques surface. Let us see that a generic Enriques surface is constructed in

this manner.

Assume that R(f1, g1, h1)R(f2, g2, h2) # 0 and that X, ) is smooth. For sim-
plicity, set Xo := X (s 4. Let § := Grg(Sym2C®) = Grg(C(2)) be the Grassmann
variety of 3-dimensional subspaces in the vector space of quadratic forms in the
variables x1,...,2¢. Then S is equipped with the t-action induced from the one

on C® and with the PG L(C®)-action induced from the standard G L(C®)-action on
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CS. By choosing f1, g1, h1, f2, g2, ho generic enough, we may assume that s[(C®)
is a subspace of the tangent space of S at the point Span{f,g,h} € S.

For s € S, we define X, := {[z] € P%;q(z) = 0(Vq € s)}. Then we get a flat
family 7: X — S with 771(s) = X,. Write [Xo] € S for Span{f,g,h} € S. We get a
flat deformation 7: (X, Xo) — (5, [Xo]) of K3 surfaces of degree 8. Since ¢ preserves
Xo and hence ¢([Xp]) = [Xo], we get a subfamily 7: (X|s.,¢, Xo) — (5%, [Xo]) of
K3 surfaces with involution, where S* := {s € S;i(s) = s} is the fixed-point-set of
the t-action on S. Since ¢ has no fixed points on Xy by assumption and since the
set of fixed points of the t-action on X is a closed subset of X, we see that « has no
fixed points on X if s € S* is sufficiently close to [Xy]. We define Y := (X|s.)/¢
and Yp := Xo/t. Let p: Y — S be the projection induced from 7: X — S. Since ¢
has no fixed points on X, Y is an Enriques surface for s € S sufficiently close to
[Xo]. Hence p: (Y,Yy) — (5%, [Xo]) is a flat deformation of Yj.

Let px,: Tix,)S — H*(Xo,Ox,) and py, : Tix,)S* — H* (Y, Oy,) be the Kodaira-
Spencer maps of the deformations 7: (X, Xo) — (5, [Xo]) and p: (Y, Yo) — (S, [Xo]),
respectively. Let (T1x,S)+ and H* (X, ©x,)+ be the invariant subspaces of Tjx,)S
and H'(Xo,Ox,) with respect to the t-action, respectively. Since py, commutes
with the t-action, we set (px,)+ = px,l(1ix,9): 1 (Tixo)S)+ — H'(Xo, Ox,)+-
Since (px,)+ can be identified with py, under the identifications (Tjx,S)+ =
T[XO]SL and Hl(Xo,@XO)+ = Hl(Yo,@YO), we get

ker py, = ker(px, )+ = sI(C%) Nker(r, — 1) = sl(C?) @ sl(C*) & C = C'7.

Here the second equality follows from the equality ker px, = sl(C®), which is a
consequence of the fact that X, =2 X as polarized K3 surfaces of degree 8 if and
only if s and s’ lie on the same PGL(CS)-orbit. (We can also see the equality
ker px, = s[(C%) as follows. Set Ly := Ops(1)|x,. We consider the semiuniversal
deformation ¢: ((%, £), (Xo, Lo)) — (Def(Xo, Lo), [Xo]) of the polarized K3 surface
(Xo, Lo) of degree 8. Since Ly is very ample on Xy, we may assume that £ is very
ample on X; for t € Def(Xy, Lp). Since deg L|x, = 8, the image of the projective
embedding @z, |1 X — P5 must be a (2,2,2)-complete intersection. Namely,
(%4, L|x,) is isomorphic to (X, Ops(1)) for some s € S. Hence the deformation
germ of polarized K3 surfaces 7: (X, Xo) — (.59, [Xo]) is complete, which implies the
equality dim ker px, = dim S — dim Def(Xy, £o) = 35 = dim s[(C®). This, together
with the inclusion s[(C%) C ker px,, yields the equality ker px, = s[(C°).)

Since dim S* = 27 and dim ker py, = 17, we get dimImpy, = 27 - 17 = 10 =
dim H'(Yp, Oy, ). Hence the Kodaira-Spencer map py, is surjective and the family
p: (Y, Y) — (S, [Xo]) is complete.

Set U := {s € S*; Sing X; = X! = 0}. Then U is a Zariski open subset of S*.
For s € U, Yy = X,/u is an Enriques surface. Let w: U 3 s — w(X,/t) € M
be the period mapping for the family of Enriques surfaces p: Y|y — U. By the
Borel-Kobayashi-Ochiai extension theorem, w extends to a rational map from S*
to the Baily-Borel compactification of QX /O1(A). By the completeness of the
deformation germ p: (Y,Yy) — (S, [Xo]), the image of w contains a dense Zariski
open subset of M, say U. If Y is an Enriques surface with w(Y) € U, then
Y =Y(r g, for some quadratic forms F, G, H.

5.2. An algebraic expression of Borcherds ®-function. Since we have a nice
projective model of Enriques surfaces of degree 4, it is natural to expect that the
Borcherds ®-function may admit an algebraic expression analogous to the one for
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the Dedekind n-function associated to the plane cubic model or the (2, 2)-complete
intersection model. In fact, this is the case.

Theorem 5.1 ([13]). Let Y4y be the (2,2,2)-model of an Enriques surface
defined by the quadric polynomials f = f1 + fo, ¢ = g1 + g2, h = h1 + ha €
Clz1, x2, 3, T4, x5, 26). Then the following equality holds

4
2
||<I’(Y(f,g,h))||2 = [R(f1, 91, h1)R(f2, g2, ha)| <7r4 /X Q(f,g,n) N O‘(f,g,h)> :
(£.9.h)

Here ag g1 € HO(X(f,g,h),Qg((f)gﬁh)) is defined as the residue of f, g, h, i.e.,

A(fg.h) = ElX (g
where Z is a meromorphic 2-form on P® satisfying the equation

6
df Ndg Ndh NE =Y (=1) aiday A+ Adai_y Adaigg A A dag.
i=1

We remark that a weaker version of this result was obtained by Maillot-Roessler
[17] under a certain arithmeticity assumption on X (f,g,h)- In their formula, the con-
tribution from the resultants is understood as the contribution from the bad primes
with respect to the reductions of X (¢, ). When f, g, h are defined over the ring of
integers of a number field K, Theorem 5.1 implies that the Borcherds ®-function
detects the degenerations of ¢ over Spec(Ok), since R(f1,91,h1)R(f2,92,h2) € p
for a prime ideal p € Spec(Of) if and only if ¢ has non-empty fixed points on the
reduction X 4 ) (OK /p). This picture of the Borcherds ®-function is quite analo-
gous to the corresponding picture of the Dedekind n-function: For an elliptic curve
E = {y? = 423 — gox — g3} over K, ||n||** is identified with the discriminant of E up
to the L2-norm of dz/y. Hence the algebraic part of ||| detects the degenerations
of E over Spec(Ok). See [8] for more explanation of this view point.

The proof of Theorem 5.1 shall be given in [13]. The strategy is as follows. We
compare the 99 of the both hand sides as currents on S. Then it turns out that they
satisfy the same d0-equation of currents on S. For this, we use Theorem 4.3 and a
formula for the asymptotic behavior of equivariant analytic torsion for degenerating
family of algebraic manifolds [33]. In this way, we get the desired equality, up to
an absolute constant. To fix the absolute constant, we compare the behavior of the
both hand sides for certain explicit 2-parameter family of Enriques surfaces, whose
universal coverings are Kummer surfaces of product type.

In fact, Theorem 5.1 holds even if Yy, ) has at most rational double points
by the continuity of the both hand sides at those points of S* corresponding to
Enriques surfaces with rational double points. This continuity is a consequence of
the existence of simultaneous resolution of 2-dimensional rational double points.

By Theorem 5.1, we get a Thomae type formula for the Borcherds ®-function.

Corollary 5.2 ([13]). Let v,v' € H*(X(4,4.n),Z) be anti-t-invariant, primitive,
isotropic vectors with (v,v') =1 and let v¥ € Ha(X (s 4 1), Z) be the Poincaré dual
of v. Under the identification of lattices (Zv + Zv')* =2 U(2) © Eg(—2) =: L, the
vector

@ = (Vv —{o V)V’ ceLoR+iCH

Z(f.g:h),v, v T (a, V)
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is regarded as the period of Y(t gn). Then, by a suitable choice of the 2-cocycles
{v,v'}, one has

8
2 2
P (2(£,9.n)viv') = R(f1,91,h1)R(f2, g2, h2) <7T2 /v O‘(ﬁwh)) :

When X ¢ g 5 is birational to a Kummer surface of product type, the 2-cycle v
can be given explicitly. See [13] for the details.

5.3. A 4-parameter family of Enriques surfaces associated to M3 (C). For
a non-zero 3 X 6-complex matrix A € Mz (C), we define

f(x) = aux% + algx% + algmg + a14xi + a15:v§ + algas% =0
— 5, _ 2 2 2 2 2 2 _
Xa:=<[z] €P? g(xr) = ao1x]+ aexs + asxi + aax] + a25%: + agexg =
_ 2 2 2 2 2 2 _
h(z) = as12y + aszoxs + aszzrs + azaxy + assrs + aserg =

For A= (aj,...,as) € M(3,6;C) and i < j < k, we define
Aijk(A) = det(ai,aj,ak).

A matrix A € M(3,6; C) is said to be non-degenerateif [[;_; ) Aiju(A) # 0. Then,
for a non-degenerate A € M3(C), X4 is a K3 surface. We write aa for o g p)-
As an immediate consequence of Theorem 5.1, we get the following:

Corollary 5.3 ([13]). Let A € M34(C) be non-degenerate. For a partition of 6
letters {1,2,3,4,5,6}

ijk\ .. -
(lmn) ={i,7,k} U{l,m,n} ={1,2,3,4,5,6},

define an involution Ljar) on P® by

lmn

L(ijk)(l'i7Ijaxkaxlaxm7xn) = (T4, Tj, Ty =T, —Tin, —Tp)-

lmn

Then L) s a free involution on X s called a switch such that
Imn

4
190 o) = 1850 A B () ( 2 [ annaia)

By Corollary 5.3, if A € M3 ¢(K) with K C C, then for any partitions (lizl];)

and (i/j/k, ), one has

U'm'n’

- 2
IPCXa i)™ A (A At (A)
O/t )P~ iy (B (A

!m'n

e K.

Since |Aijk: (A)|4|Almn (A)|4/|Ai/j/k/ (A)‘4|Al/m/n/(A)‘4 = 1 for all pairs of partitions
(lzl;), (lf;{b,l;,,) for generic non-degenerate A, we conclude that all of the 10 Enriques
surfaces X4/ Lk are mutually distinct for a generic choice of A.

Ilmn

6. THETA FUNCTION AND BORCHERDS ®-FUNCTION

In this section, we explain a relation between the Borcherds ®-function and
Freitag’s theta function.
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6.1. The Matsumoto-Sasaki-Yoshida model. Recall that, for A € M5 4(C), we
could associate two distinct models £4 and C4 of an elliptic curve. By a similar
construction, we can associate another K3 surface to A € M3 6(C) as follows. For
A € M3 6(C), define a K3 surface

6
Zy = {((z1: 221 23),y) € Op2(3); y* = [ [(aniz1 + agswz + asizs)},
=1

which is identified with its minimal resolution. Then Z4 is (the minimal resolution
of) the double covering of P2, whose branch divisor is the union of 6 lines in general
position aq;x1 +agx2+as;x3 =0 (i = 1,...,6). The period mapping and its inverse
for the family of K3 surfaces Z4 over a certain open subset of M3 (C) were worked
out by Matsumoto-Sasaki-Yoshida [19] and Matsumoto [18].
We define a holomorphic 2-form n4 on Z4 by
r1dao A dxg — xodxy A dxs + x3dry A des
” .
By Matsumoto-Sasaki-Yoshida [19], there are 6 independent transcendental 2-cycles

{7ij }1<i<j<a on Z 4 and 16 independent algebraic 2-cycles on Z 4, which form a basis

of HQ(ZA7 Q)
Following Matsumoto-Sasaki-Yoshida [19], define the period of Z4 as the matrix

na ==

1 ma(A) _%\/\/?1{7(14)
A= —— . |
g () \ - ()

where

777,](A) Z:/ ’I7A.
Yij
By a suitable choice of the cycles {7;;}1<i<j<4, one has

24 €D :={T € My»(C); (I —'T)/2i >0},
where D is isomorphic to a symmetric bounded domain of type IV of dimension 4.
6.2. Theta function on D. Write e(z) := exp(2mix).
Definition 6.1. For 2 € D and a, b € Z[i]?, define the Freitag theta function as

1 a (. a\ a \of b
a v (£2) := 5 -Qt '
O b ()= ), elg (n+1+¢> <n+1+i>+%<n+l+i> <1+i)

n€”zi)?

Following [29], we identify the characteristic (Z) with the partition (11731]; ) by the

rule:

() =G 6D o) (o) G G G G () Go) (o)
(o) G30) G3o) Gio) Gi9) Gio) Gie) Gis) (o) (m5) (a59)

Under this identification, we define

(“)(Uk)(Q) 229 a_ b_(Q)

Imn

and its Petersson norm by

H@W)(”)HZ = det (Q 7 m) 1))

lmn
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Theorem 6.2 ([13]). For a non-degenerate A = (A1, As) € M3 6(C) with Ay, Ay €
M3(C), define
AY = (PAT A,
Then .
R

lmn lmn

The proof of Theorem 6.2 shall be given in [13]. We use Matsumoto-Terasoma’s
Thomae type formula [20] to rewrite the right hand side of Theorem 6.2. Comparing
this with Theorem 5.1, we get the result. See [13] for the details. We remark
that, after Freitag-Salvati-Manni [10, Th. 5.6], Theorem 6.2 is not very surprising,
because they proved that the Borcherds ®-function itself is expressed as a linear
combination of certain additive Borcherds lifts.

6.3. The case of Jacobian Kummer surfaces. For A = (\1,..., ) € C® with
Xi # Aj (i # j), define a genus 2 curve C by the affine equation
6
Cri={(z,y) € C " = [[(= = M)}
i=1

Define holomorphic differentials w; and wy on C) by

dzx xdx
Wy = —, Wy = —
Y Y

Let {A;, Ao, By, B2} be a certain symplectic basis of H1(Cy,Z) and set

. (fBl @i g, w) (IAI i [, m) e

fBl w2 fBz w2 fAl w2 fA2 w2

Then the Kummer surface K(C)) of the Jacobian variety Jac(C)) is expressed as
follows:

1 1 1 1 1 1
K(C,\) = Xy, A=A X A3 M X X | € Mg,G(C).
NEBVESVESVESV IR

By Theorem 6.2, we get the following.

Corollary 6.3 ([13]). If the partition (*7") corresponds to the characteristic (a,b),
then

8 () )| = (@6 T2 [ ) (T3 O ()]

1+ 1+ 144/ 1+

Here 0, 5(T), o, 3 € {0,1/2}2, is the Riemann theta constant

00 5(T) = Z e[;(n—l—a)Tt(n—i-a)—i-(n—l—a)tﬁ} , T € Gs.
neZz?

Recall that Igusa’s Siegel modular form Aj is defined as the product of all even
theta constants

As(T) = [ ban(@), Te6,.
(e, 3) even

For a genus 2 curve C with period T' € &9, its Petersson norm

1A5(C)|? := (det ST)°| A5 (T)?
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is independent of the choice of a symplectic basis of Hy(C,Z). Hence ||A5(C)]| is
an invariant of C. Form Corollary 6.3, it follows the following:

Corollary 6.4 ([13]). The Igusa cusp form Aj is the average of ® with respect to
the 10 switches, i.e.,
H H¢ /L zgk

Mnn

|| = nasee.

7. SOME PROBLEMS

Problem 7.1. For elliptic curves, two distinct models E4 and C4 yield distinct
algebro-geometric expressions of ||7||. For projective models of Enriques surfaces
distinct from the (2, 2, 2)-complete intersection of P, find the corresponding algebro-
geometric expressions of ||®|].

Problem 7.2. On a generic Jacobian Kummer surface, there exists 31 conjugacy
classes of free involutions ([23], [25]), which split into three families:

e 10 switches,

e 15 Hutchinson-Gopel involutions,

e 6 Hutchinson-Weber involutions.
Recall that, as the average of the Borcherds ®-function by 10 switches, we get
Igusa’s Siegel modular form Ajs. Determine the Siegel modular form constructed
as the average of the Borcherds ®-function by the 15 Hutchinson-Gépel involutions
(resp. 6 Hutchinson-Weber involutions).

Problem 7.3. As mentioned in Section 4.2, there exists an analytic torsion invariant
7y for K3 surfaces with involution [31], which is often expressed as the Petersson
norm of the tensor product of an explicit Borcherds lift and Igusa’s Siegel modular
form [32]. After Theorem 5.1, it is an interesting problem to find an algebro-
geometric expression of 7, for general M.

Problem 7.4 (The inverse of the period mapping for Enriques surfaces). For elliptic
curves, the inverse of the period mapping was constructed by Jacobi by using theta
constants. We ask the same problem for the (2,2,2)-model of Enriques surfaces:
For1<i<j<3and4<k<l<6, find a system of automorphic forms

oD(2), 2 (2), 8 (2), 82 (2). 7 (2). 42 (2)
on QX for (a finite index subgroup of) O (A) such that
Y7 :=Xz/1, (z) = (z1, 22, T3, — T4, —T5, —Tg)

is the Enriques surface whose period is the given by Z € Q. Here

2
21<z<g<3 (2)x T+ D a<p<i<o al(cl)(Z)xkxl =0
5,
Xz ={lz] € P’ Zl<1<]<3 51] (Z)wizj + Z4<k<l<6 5kl (Z)zrz =0
Zl<z<j<3 %g ( Jriz; + E4<k<l<6 ’ngz)(Z)xkxl =0
Kondd [15] and Freitag-Salvati-Manni [10] constructed certain (birational) projec-
tive embeddings of the moduli space of Enriques surfaces with some level structure.
Are the system of automorphic forms appearing in their embeddings regarded as
the set of coefficients of the defining equations of appropriately polarized Enriques
surfaces?
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