
A TRINITY OF THE BORCHERDS Φ-FUNCTION
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Abstract. We discuss a trinity, i.e., three distinct expressions, of the Borcherds

Φ-function on the analogy of the trinity of the Dedekind η-function.
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1. Introduction — a trinity of Dedekind η-function

The Dedekind η-function is the holomorphic function on the complex upper half-
plane H defined as the infinite product

η(τ) := q1/24
∏
n>0

(1 − qn),

where q := e2πiτ . It is classical that η(τ)24 is a modular form for SL2(Z) of weight
12 vanishing at +i∞ and this property characterizes the Dedekind η-function up
to a constant.

Let us recall the trinity of the Dedekind η-function. Besides the definition as
above, the Dedekind η-function admits at least two other distinct expressions, one
analytic and the other algebro-geometric. Precisely speaking, we consider the Pe-
tersson norm

‖η(τ)‖ := (=τ)1/4|η(τ)|
rather than the Dedekind η-function itself.

Let us explain an analytic counterpart of the Dedekind η-function. For τ ∈ H,
let Eτ be the elliptic curve defined by

Eτ := C/Z + τZ,

which is equipped with the flat Kähler metric of normalized volume 1

gτ := dz ⊗ dz̄/=τ.

The author is partially supported by JSPS Grants-in-Aid (B) 23340017, (A) 22244003, (S)
22224001.
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The Laplacian of (Eτ , gτ ) is the differential operator defined as

¤τ := −=τ
∂2

∂z∂z̄
= −=τ

4

(
∂2

∂x2
+

∂2

∂y2

)
.

The set of eigenvalues of ¤τ is given by {π2|mτ + n|2/=τ}(m,n)∈Z2 and hence the
spectral zeta function of ¤τ is defined as

ζτ (s) :=
∑

(m,n)6=(0,0)

(
=τ

π2 |mτ + n|2

)s

.

It is classical that ζτ (s) converges absolutely when <s > 1 and extends to a mero-
morphic function on C. Moreover, ζτ (s) is holomorphic at s = 0. The value

det ∗¤τ := exp(−ζ ′τ (0))

is called the (regularized) determinant of ¤τ on the analogy of the identity for finite
dimensional, non-degenerate, Hermitian matrices

log detH = − d

ds

∣∣∣∣
s=0

TrH−s.

By Ray-Singer [26], the classical Kronecker limit formula can be stated as follows
in this setting:

Theorem 1.1. The following equality holds

det ∗¤τ = 4‖η(τ)‖4.

Let us explain an algebro-geometric counterpart of the Dedekind η-function. Let
Mm,n(K) be the set of m × n-matrices with entries in K ⊂ C. Recall that every
elliptic curve is expressed as the complete intersection of two quadrics of P3

EA :=
{

[x] ∈ P3; f1(x) = a11x
2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 = 0

f2(x) = a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 = 0

}
,

where A = (aij) = (a1,a2,a3,a4) ∈ M2,4(C). For A ∈ M2,4(C) and 1 ≤ i < j ≤ 4,
we define

∆ij(A) := det(ai,aj).

Since the value ‖η(τ)‖ depends only on the isomorphism class of the elliptic
curve Eτ , it makes sense to set ‖η(Eτ )‖ := ‖η(τ)‖.

Theorem 1.2. With the same notation as above, the following equality holds

28‖η(EA)‖24 =
∏

1≤i<j≤4

|∆ij(A)|2 ·
(

2
√
−1

π2

∫
EA

αA ∧ αA

)6

.

Here αA ∈ H0(EA,Ω1
EA

) is defined as the residue of f1, f2, i.e.,

αA := Ξ|EA ,

where Ξ is a meromorphic 1-form on P3 satisfying the equation

df1 ∧ df2 ∧ Ξ =
4∑

i=1

(−1)i−1xidx1 ∧ dxi−1 ∧ dxi+1 ∧ dx4.
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For A = (aij) ∈ M2,4(C), one can associate another elliptic curve

CA := {(x, y) ∈ C2; y2 = 4(a11x + a21)(a12x + a22)(a13x + a23)(a14x + a24)}.
Namely, CA is the double covering of P1 with 4 branch points (a11 : −a21), (a12 :
−a22), (a13 : −a23), (a14 : −a24). If a11 = 0 and a12 = 1, then CA is an elliptic
curve expressed by the Weierstrass equation. It is not difficult to see CA

∼= EA and

28‖η(CA)‖24 =
∏

1≤i<j≤4

|∆ij(A)|2 ·
(√

−1
2π2

∫
CA

dx

y
∧ dx

y

)6

.

(We shall study an analogue of EA and CA for K3 surfaces later.)
Theorem 1.2 is easily verified when EA is the projective embedding of Eτ by the

linear system |4Θ|. In this situation, the equations of EA are the linear relations
between the theta functions θa,b(z, τ) (a, b ∈ {0, 1

2}). General case of Theorem 1.2
follows from this special case by the invariance of the expression in Theorem 1.2
under the action of GL2(C) × (C∗)4. See [13] for the details.

In this survey, we explain a generalization of the trinity of the Dedekind η-
function as above to that of the Borcherds Φ-function. For this, we make the
following replacements:

• elliptic curves =⇒ Enriques surfaces
• determinant of Laplacian =⇒ analytic torsion
•

∏
1≤i<j≤4 ∆ij(A) =⇒ resultant of three quadratic forms in three variables

For the analytic aspect of the Borcherds Φ-function, our explanation is based on
[31], [32], while for the algebro-geometric aspect of the Borcherds Φ-function, our
explanation is based on [13]. In this survey, we will not give proofs. We refer the
reader to these papers for the details.

2. Borcherds Φ-function

In this section, we recall the Borcherds Φ-function.

2.1. Domains of type IV and its realization as a tube domain. A free Z-
module of finite rank equipped with a non-degenerate, integral, symmetric bilinear
form is called a lattice. The automorphism group of a lattice L is denoted by O(L).
For a lattice L = (Zr, 〈·, ·〉L) and k ∈ Q, we set L(k) := (Zr, k〈·, ·〉L). We define
U := (Z2,

(
0 1
1 0

)
). There exists a unique positive-definite, even, unimodular lattice

of rank 8, up to an isometry. This lattice is denoted by E8.
Let Λ be a lattice of signature (2, b−). We define an open manifold ΩΛ of dimen-

sion b− as

ΩΛ := {[Z] ∈ P(Λ ⊗ C); 〈Z,Z〉Λ = 0, 〈Z, Z̄〉Λ > 0}.
Then ΩΛ is the set of maximal positive-definite subspaces of Λ ⊗R and is isomor-
phic to SO(2, b−)/SO(2) × SO(b−). Hence each connected component of ΩΛ is
isomorphic to a symmetric bounded domain of type IV of dimension b−.

Assume that there exists k ∈ Z>0 and a lattice of signature (1, b−− 1) such that
Λ = U(k) ⊕ L. Let {e, f} be a basis of U(k) with e2 = f2 = 0, e · f = k. We set
v := e ∈ U(k) and v′ := f/k ∈ U(k)∨. Then we have an isomorphism of complex
manifolds L ⊗ R + iCL

∼= ΩΛ given by the map

L ⊗ R + iCL 3 z → Z =
[
v − 〈z, z〉L

2
v′ + z

]
∈ ΩΛ.
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Here CL := {x ∈ L⊗R; 〈x, x〉L > 0} is the positive cone of L. Since L is Lorentzian
and hence CL consists of two connected components, we choose one of them, say
C+

L . Write Ω+
Λ for the component of ΩΛ corresponding to L ⊗ R + iC+

L . Then we
have the decomposition ΩΛ = Ω+

Λ q Ω+
Λ . The subgroup of O(Λ) preserving the

connected components Ω+
Λ , Ω+

Λ is denoted by O+(Λ). Clearly, [O(Λ) : O+(Λ)] = 2.

2.2. Automorphic forms over domains of type IV. Let us recall the notion
of automorphic forms over Ω+

Λ . There are several mutually equivalent definitions.

2.2.1. Automorphic form as a multicanonical form on Ω+
Λ . Let L be the tautological

line bundle on Ω+
Λ :

L := OP(Λ⊗C)(−1)|Ω+
Λ
⊂ Ω+

Λ × (Λ ⊗ C).

The natural action of O+(Λ) on Ω+
Λ × (Λ ⊗ C) induces the O+(Λ)-action on L. A

holomorphic section f ∈ H0(Ω+
Λ ,Lk) is called an automorphic form for Γ ⊂ O+(Λ)

of weight k with character χ if

f(γZ) = χ(γ) γf(Z)

for all Z ∈ Ω+
Λ and γ ∈ Γ, where χ : Γ → C∗ is a finite character.

2.2.2. Automorphic form as a homogeneous function on the cone over Ω+
Λ . Let

CΩ+
Λ

be the cone over Ω+
Λ obtained from L by contracting the zero section. Then

a holomorphic function F ∈ O(CΩ+
Λ
) is called an automorphic form on Ω+

Λ for
Γ ⊂ O+(Λ) of weight k with character χ if

F (γ(ζ)) = χ(γ)F (ζ), F (λ ζ) = λ−k F (ζ)

for all ζ ∈ CΩ+
Λ
, γ ∈ Γ and λ ∈ C∗.

2.2.3. Automorphic form as a function on Ω+
Λ . Let ` ∈ Λ⊗R be such that 〈`, `〉 ≥ 0.

Observe that
σ`(Z) :=

Z

〈`, Z〉
, Z ∈ Ω+

Λ

is a nowhere vanishing holomorphic section of L. Via the assignment f 7→ f/σk
` , we

can define automorphic forms as follows: A holomorphic function F (Z) ∈ O(Ω+
Λ)

is an automorphic form for Γ of weight k with character χ if for all Z ∈ Ω+
Λ and

γ ∈ Γ,

F (γZ) = χ(γ)
(
〈`, γZ〉
〈`, Z〉

)k

F (Z).

The choice of ` corresponds to the choice of a hyperplane at infinity of P(Λ ⊗ C).

2.2.4. Automorphic form as a function on L⊗R+ iC+
L . We have the O+(Λ)-action

on the tube domain L ⊗ R + iC+
L via the identification Ω+

Λ
∼= L ⊗ R + iC+

L . Write
J(γ, y) for the Jacobian determinant of γ ∈ O+(Λ) ⊂ Aut(L ⊗ R + iC+

L ). By the
relation between the canonical line bundle of Ω+

Λ and L, there is a holomorphic
function j(γ, z) with

j(γ, z)dim ΩΛ = J(γ, z).
A holomorphic function F (z) ∈ O(L ⊗ R + iC+

L ) is an automorphic form for Γ of
weight k with character χ if for all z ∈ L ⊗ R + iC+

L and γ ∈ Γ,

F (γ · z) = χ(γ) j(γ, z)k F (z).
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2.3. Borcherds Φ-function. Define the Enriques lattice Λ as

Λ := U ⊕ U(2) ⊕ E8(−2).

Then Λ is an even lattice of signature (2, 10). We define the discriminant divisor
of ΩΛ by

DΛ :=
∑

d∈Λ/±1, d2=−2

d⊥,

where d⊥ := {[Z] ∈ Ω+
Λ; 〈d, Z〉 = 0}. Define {c(n)} by the generating series:∑

n∈Z

c(n) qn = η(τ)−8η(2τ)8η(4τ)−8.

2.3.1. Borcherds Φ-function at the level 1 cusp. Let v be a primitive isotropic vector
of U ⊂ Λ and set L1 := v⊥/v ∼= U(2) ⊕ E8(2). Then L1 ⊗ R + i C+

L1
∼= Ω+

Λ.

Definition 2.1. The Borcherds Φ-function is the formal Fourier series on the tube
domain L1 ⊗ R + iC+

L1
defined as

Φ1(z) :=
∏

λ∈L1∩C+
L1

\{0}

(
1 − eπi〈λ,z〉

1 + eπi〈λ,z〉

)c(λ2/2)

.

2.3.2. Borcherds Φ-function at the level 2 cusp. Let v be a primitive isotropic vector
of U(2) ⊂ Λ and set L2 = v⊥/v ∼= U ⊕ E8(2). Then L2 ⊗ R + i C+

L2
∼= Ω+

Λ.

Definition 2.2. The Borcherds Φ-function is the formal Fourier series on the tube
domain L2 ⊗ R + i C+

L2
defined as

Φ2(z) := 28e2πi〈ρ,z〉
∏

λ∈L2, 〈λ,ρ〉>0 or λ∈Nρ

(
1 − e2πi〈λ,z〉

)(−1)〈ρ−ρ′,λ〉c(λ2/2)

,

where ρ = ((0, 1), 0), ρ′ = ((1, 0), 0) ∈ L2.

Theorem 2.3 (Borcherds [6], [7]). For j = 1, 2, the formal Fourier series Φj(z)
as above converges absolutely for z ∈ Lj ⊗ R + i C+

Lj
with =z À 0 and extends

to an automorphic form on Lj ⊗ R + i C+
Lj

for O+(Λ) of weight 4. Regarded as
holomorphic functions on Ω+

Λ, one has the equality up to a constant of modulus 1

Φ1 = Φ2.

In what follows, we write Φ(z) for Φ1(z) and Φ2(z).

Definition 2.4. The Petersson norm of Φ is the C∞ function on Lj ⊗ R + i C+
Lj

defined as
‖Φ(z)‖2 := 〈=z,=z〉4|Φj(z)|2.

Since the Petersson norm ‖Φ(z)‖ is O+(Λ)-invariant, we regard ‖Φ(z)‖ as a
function on the orthogonal modular variety Ω+

Λ/O+(Λ).
By [7, Th. 13.3], log ‖Φ‖ is defined as the finite part of the divergent integral:

−4 log ‖Φ(Z)‖ − 8(Γ′(1) + log(2π)) = Pf
∫

SL2(Z)\H

F (τ) · ΘΛ(τ, Z) y
dxdy

y2
,

where F (τ) is a certain vector-valued elliptic modular form for Mp2(Z) (cf. [32,
Def. 7.6] with Λ = Λ) and ΘΛ(τ, Z) is the Siegel theta function [7] of the Enriques
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lattice Λ. Then the expressions Φ1(z) and Φ2(z) are obtained by computing the
above integral at the level 1 cusp and the level 2 cusp, respectively. For the necessity
of the constant 28 in Φ2(z), see [7, Th. 13.3 (5)] and [32, Eq. (7.9)].

Remark 2.5. One can rewrite the expression of Φ(z) using the dual lattice of Λ.
Set L := U ⊕ E8(−1). Since the dual lattice of Λ is given by Λ∨ = U ⊕ L(1/2), we
get

Λ∨(2) = U(2) ⊕ L.

Then the Borcherds Φ-function can be expressed as a function on L ⊗ R + i C+
L

Φ(z) =
∏

λ∈L∩C+
L\{0}

(
1 − e2πi〈λ,z〉

1 + e2πi〈λ,z〉

)c(λ2/2)

=
∑

λ∈L∩C+
L , λ2=0, primitive

η(〈λ, z〉)16

η(2〈λ, z〉)8
.

This identity is known as the denominator identity for the fake monster superalge-
bra. See [7, Example 13.7] and [27] for more details about the denominator identity
for the fake monster superalgebra. See [5], [6] for the Fourier expansion of Φ2(z).

3. Enriques surfaces and their moduli space

In this section, we recall Enriques surfaces.

3.1. K3 surfaces. A compact connected complex surface X is a K3 surface if

H1(X,OX) = 0, Ω2
X

∼= OX .

It is known that the diffeomorphism type underlying a K3 surface is unique. In
particular, the second integral cohomology group of a K3 surface equipped with
the cup-product pairing is isometric to the K3-lattice

LK3 := U ⊕ U ⊕ U ⊕ E8(−1) ⊕ E8(−1).

For a K3 surface X, an isometry of lattices α : H2(X,Z) ∼= LK3 is called a marking.
Let X be a K3 surface and let α : H2(X,Z) ∼= LK3 be a marking. Since Ω2

X

is trivial, there exists a unique nowhere vanishing holomorphic 2-form η on X, up
to a non-zero constant. By the Hodge decomposition, we get the natural inclusion
H0(X, Ω2

X) ⊂ H2(X,Z) ⊗ C, so that the line Cη ∈ P(H2(X,C)) is uniquely
determined by X. The period of (X,α) is defined as the point of P(LK3 ⊗ C)
corresponding to Cη via the marking α:

$(X,α) := [α(η)] ∈ ΩLK3 .

Here we define ΩLK3 = {[Z] ∈ P(LK3 ⊗ C); 〈Z,Z〉 = 0, 〈Z, Z̄〉 > 0} as before.
Notice that [α(η)] ∈ ΩLK3 by the Riemann-Hodge bilinear relations

∫
X

η ∧ η = 0
and

∫
X

η ∧ η > 0. For K3 surfaces and their moduli space, see [1] for more details.

3.2. Enriques surfaces. A compact connected complex surface Y is an Enriques
surface if

H1(Y,OY ) = 0, Ω2
Y 6∼= OY , (Ω2

Y )⊗2 ∼= OY .

It is known that the universal covering of an Enriques surface is a K3 surface
and an Enriques surface is obtained as the quotient of its universal covering by a
fixed-point-free involution. Notice that a single K3 surface can cover many distinct
Enriques surfaces (cf. [22], [23], [24], [25] and Subsection 5.3 below).

Let Y be an Enriques surface and let Ỹ → Y be the universal covering. Let
ι : Y → Y be the non-trivial covering transformation of Ỹ → Y . Write H2(Ỹ ,Z)+
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and H2(Ỹ ,Z)− for the invariant and anti-invariant subspaces of H2(Ỹ ,Z) with
respect to the ι-action, respectively. Let I : LK3 → LK3 be the involution defined
as

I(a, b, c, x, y) := (b, a,−c, y, x), a, b, c ∈ U, x, y ∈ E8(−1).

By [11], there exists a marking α : H2(Ỹ ,Z) ∼= LK3 such that

α ◦ ι∗ ◦ α−1 = I.

Let (LK3)+ and (LK3)− be the invariant and anti-invariant subspaces of LK3 with
respect to the I-action, respectively. Then we have isometries of lattices

α(H2(Ỹ ,Z)+) = (LK3)+ ∼= U(2) ⊕ E8(−2), α(H2(Ỹ ,Z)−) = (LK3)− ∼= Λ.

Since Y has no non-zero holomorphic 2-forms, we get H0(Ỹ ,Ω2
eY
) ⊂ H2(Ỹ ,Z)−⊗C.

Hence $(Ỹ , α) ∈ ΩΛ if α is a marking as above. The period of an Enriques surface
Y = Ỹ /ι is defined as the period of its universal covering Ỹ , i.e.,

$(Y ) := [$(Ỹ , α)] ∈ Ω+
Λ/O+(Λ),

where α is a marking satisfying α ◦ ι∗ ◦α−1 = I and [$(Ỹ , α)] denotes the O+(Λ)-
orbit of $(Ỹ , α). It is known that the isomorphism class of an Enriques surface is
classified by its period:

Theorem 3.1 (Horikawa [11]). There exists a coarse moduli space of Enriques
surfaces, denoted by M. The period mapping induces an isomorphism between the
analytic spaces

$ : M 3 [Y ] → [$(Y )] ∈
Ω+

Λ \ DΛ

O+(Λ)
.

In what follows, we identify M with (Ω+
Λ \DΛ)/O+(Λ) by the map $. We refer

the reader to [1] for more details about Enriques surfaces and their moduli space.
By Theorem 3.1, the period mapping for Enriques surfaces omit the discriminant
locus. The Borcherds Φ-function characterize exactly the discriminant locus DΛ.

Theorem 3.2 (Borcherds [6]). The Borcherds Φ-function vanishes exactly on DΛ

of order 1. In particular, Φ is a nowhere vanishing holomorphic section of the
Hodge line bundle on M.

Since the line bundle of automorphic forms on an arithmetic quotient of a sym-
metric bounded domain is an ample line bundle by Baily-Borel, the moduli space
of Enriques surfaces is quasi-affine by Theorem 3.2 [6]. In fact, the quasi-affinity of
the moduli space holds for wider classes of K3 surfaces with involution. See [32].

4. Analytic torsion and Borcherds Φ-function: an analytic
counterpart

The notion of holomorphic analytic torsion was introduced by Ray-Singer [26] in
their works extending the classical notion of torsion in algebraic topology to certain
analytic settings; they extended the construction of torsion of finite-dimensional
acyclic complex to the setting of de Rham or Dolbeault complex, in which they
replaced the usual finite-dimensional determinant of the combinatorial Laplacian
to the regularized determinant of the Hodge-Kodaira Laplacian. In this section, we
explain the construction of the Borcherds Φ-function via analytic torsion.
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4.1. Analytic torsion. Let (M,hTM ) be a compact connected Kähler manifold.
Let ¤q = (∂̄ + ∂̄∗)2 be the Hodge-Kodaira Laplacian acting on (0, q)-forms on M .
Since M is compact, the Hilbert space of square integrable (0, q)-forms on M splits
into the direct sum L0,q

M =
⊕

λ∈σ(¤q) E(λ, ¤q), where σ(¤q) ⊂ R≥0 is the spectrum
of ¤q and E(λ, ¤q) is the eigenspace of ¤q with respect to the eigenvalue λ. Then
E(λ,¤q) is of finite-dimensional. The zeta function of ¤q is defined as

ζq(s) :=
∑

λ∈σ(¤q)\{0}

λ−s dimE(λ, ¤q).

By the Weyl law of the asymptotic distribution of the eigenvalues of ¤q, ζq(s)
converges absolutely for s ∈ C with =s > dimM . From the existence of the
asymptotic expansion of the trace of the heat operator e−t¤q as t → 0, it follows
that ζq(s) extends to a meromorphic function on C and that ζq(s) is holomorphic
at s = 0. After Ray-Singer [26], we make the following

Definition 4.1. The analytic torsion of (M,hTM ) is the real number defined as

τ(M,hTM ) := exp[−
∑
q≥0

(−1)qq ζ ′q(0)].

When dimM = 1, τ(M)−1 is exactly the determinant of Laplacian appearing
in the formula for ‖η(τ)‖. After Theorem 1.1, it is natural to expect that the
determinant of Laplacian or analytic torsion may produce a nice function on the
moduli space. This is the main topic of this section.

One natural direction of such a generalization seems to be the study of the
determinant of Laplacian for compact Riemann surfaces of higher genus g > 1.
Among numbers of studies of the determinant of Laplacian for hyperbolic Riemann
surfaces of genus g > 1, it is Zograf [34] and McIntyre-Takhtajan [21] who obtained
a holomorphic function with infinite product expression on the Schottky space by
using the determinant of Laplacian. On the other hand, Kokotov-Korotkin [14]
considered the determinant of Laplacian with respect to the flat (but degenerate)
Kähler metric ω ⊗ ω, where ω is an Abelian differential on a compact Riemann
surface of genus g > 1. They proved that, as a function on the moduli space of
pairs (C,ω), with C being a marked Riemann surfaces of genus g > 1 and ω being
an Abelian differential on C, the determinant of Laplacian is expressed by using
some classical quantities like prime forms, theta function and periods. Hence there
are two different generalizations of Theorem 1.1 in higher genus g > 1.

Another direction of generalization is the study of analytic torsion for higher
dimensional varieties. (For several reasons, in higher dimensions, analytic torsion
seems to be more appropriate than a single determinant of Laplacian in considering
a generalization of Theorem 1.1.) Among those varieties, we are interested in
Enriques surfaces, since they can be regarded as one of the natural generalizations
of elliptic curves in dimension 2. For other directions of generalization, we refer to
[30], [9], where analytic torsion produces the Siegel modular form characterizing the
Andreotti-Mayer locus and the section of certain line bundle on the moduli space
of Calabi-Yau threefolds characterizing the discriminant locus.

4.2. Borcherds Φ-function as the analytic torsion of Enriques surface. As
in the case of elliptic curves, we choose some special Kähler metric to construct an
invariant of an Enriques surface. Since c1(Y )R = 0 for an Enriques surface Y , there
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exists by Yau [28] a unique Ricci-flat Kähler form in each Kähler class on Y . In
contrast to elliptic curves, the condition of Ricci-flatness with normalized volume 1
does not determine a unique Kähler form on Y , because the space of Kähler classes
on Y has real dimension 10. Even though, we get the following:

Theorem 4.2 ([31]). Let Y be an Enriques surface and let γ be a Ricci-flat Kähler
metric on Y with normalized volume 1. Then the analytic torsion τ(Y, γ) is in-
dependent of the choice of such a Kähler metric γ. In particular, τ(Y, γ) is an
invariant of Y .

After Theorem 4.2, we may write τ(Y ) for τ(Y, γ). Then the analytic torsion
gives rise to the function on the moduli space of Enriques surfaces

τ : M 3 [Y ] → τ(Y ) ∈ R.

Recall that the Petersson norm of the Borcherds Φ-function ‖Φ‖ is O+(Λ)-invariant
and hence it descends to a function on M. We write ‖Φ(Y )‖ for ‖Φ($(Ỹ , α))‖.
Theorem 4.3 ([31]). There exists an absolute constant C 6= 0 such that for every
Enriques surface Y , the following equality holds

τ(Y ) = C ‖Φ(Y )‖−1/4.

The proofs of Theorems 4.2 and 4.3 are based on the curvature formula for
(equivariant) Quillen metrics [3], [16] and the immersion formula for (equivariant)
Quillen metrics [2], [4]. We compare the ∂∂̄ of log τ and log ‖Φ‖ as currents on the
Baily-Borel compactification of Ω+

Λ/O+(Λ). For this, the curvature formula and
the immersion formula for (equivariant) Quillen metrics play crucial roles. We refer
the reader to [31] for the details of the proofs of Theorems 4.2 and 4.3.

As in the case of elliptic curves, we get an analytic expression of the Borcherds
Φ-function by using analytic torsion. In fact, we can extend this result to arbitrary
K3 surfaces with anti-symplectic involution. Namely, for a K3 surface X equipped
with an involution ι : X → X acting non-trivially on H0(X, Ω2

X), we can construct
an invariant τM (X, ι) by using the equivariant analytic torsion of (X, ι), the analytic
torsion of the fixed-point-set of ι and a certain Bott-Chern secondary class. Here M
refers to the isometry class of the invariant sublattice of H2(X,Z) with respect to
the ι-action, which determines the topological type of ι. When M = U(2)⊕E8(−2),
we get the analytic torsion of Enriques surface τ as above. It is worth remarking
that we can construct the invariant τM (X, ι) without assuming the existence of
Ricci-flat Kähler metrics on X. After fixing M , i.e., the topological type of the
involution, the invariant τM (X, ι) gives rise to a function on the moduli space of K3
surfaces with involution, which is again a certain arithmetic quotient of a symmetric
bounded domain of type IV, with the discriminant divisor removed. As before in
Theorem 4.3, the resulting function τM is the Petersson norm of an automorphic
form on the moduli space of K3 surfaces with involution. It is remarkable that the
corresponding automorphic form on the moduli space of K3 surfaces with involution
thus obtained, is very often expressed as the product of a certain Borcherds lift and
Igusa’s Siegel modular form. We refer the reader to [31], [32] for more details about
the analytic torsion invariant τM of K3 surfaces with involution.

5. Resultants and Borcherds Φ-function: an algebraic counter part

In this section, we explain an algebro-geometric counterpart of the Borcherds
Φ-function.
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5.1. (2, 2, 2)-model of an Enriques surface. Let

f1(x), g1(x), h1(x) ∈ C[x1, x2, x3], f2(x), g2(x), h2(x) ∈ C[x4, x5, x6]

be homogeneous polynomials of degree 2. We define f, g, h ∈ C[x1, x2, x3, x4, x5, x6]
by

f(x) := f1(x) + f2(x), g(x) := g1(x) + g2(x), h(x) := h1(x) + h2(x)

and the corresponding surface X(f,g,h) by

X(f,g,h) := {[x] ∈ P5; f(x) = g(x) = h(x) = 0}.

If the quadratic forms f1, g1, h1, f2, g2, h2 are generic enough, then X(f,g,h)

equipped with the line bundle OP5(1) is a K3 surface of degree 8 by the adjunction
formula. Let ι be the involution on C6 defined as

ι(x1, x2, x3, x4, x5, x6) := (x1, x2, x3,−x4,−x5,−x6).

The involution on P5 induced by ι is again denoted by the same symbol ι. Since
the set of fixed points of the ι-action on P5 is the disjoint union of two projective
planes P1 := {x1 = x2 = x3 = 0} and P2 := {x4 = x5 = x6 = 0}, we see that
Xι

(f,g,h), the set of fixed points of the ι-action on X(f,g,h), is given by

Xι
(f,g,h) = (X(f,g,h) ∩ P1) q (X(f,g,h) ∩ P2).

For three quadratic forms in three variables q1(x, y, z), q2(x, y, z), q3(x, y, z), let
R(q1, q2, q3) be the resultant of q1, q2, q3. Then R(q1, q2, q3) is the polynomial of
degree 12 of the coefficients of q1, q2, q3 characterizing the existence of common
intersection points of the three conics of P2 defined by q1 = 0, q2 = 0 and q3 = 0.
Namely,

R(q1, q2, q3) = 0 ⇐⇒ {(x : y : z) ∈ P2; q1 = q2 = q3 = 0} 6= ∅.

If qi(x, y, z) = ai1x
2 + ai2y

2 + ai3z
2 + ai4xy + ai5xz + ai6yz, then R(q1, q2, q3) is

expressed as an explicit integral linear combination of the polynomials of the form

[j1, j2, j3][k1, k2, k3][l1, l2, l3][m1,m2,m3],

where

[j1, j2, j3] :=

∣∣∣∣∣∣
a1,j1 a1,j2 a1,j3

a2,j1 a2,j2 a2,j3

a3,j1 a3,j2 a3,j3

∣∣∣∣∣∣ .

See [12, p.215 Table 1] for an explicit formula for R(q1, q2, q3).
If the quadrics f1, g1, h1, f2, g2, h2 are generic enough, then we may assume

that R(f1, g1, h1)R(f2, g2, h2) 6= 0, so that ι has no fixed points on X(f,g,h) in that
case. Hence, if R(f1, g1, h1)R(f2, g2, h2) 6= 0 and X(f,g,h) is smooth, then

Y(f,g,h) := X(f,g,h)/ι

is an Enriques surface. Let us see that a generic Enriques surface is constructed in
this manner.

Assume that R(f1, g1, h1)R(f2, g2, h2) 6= 0 and that X(f,g,h) is smooth. For sim-

plicity, set X0 := X(f,g,h). Let S := Gr3(Sym2C6) ∼= Gr3(C(7
2)) be the Grassmann

variety of 3-dimensional subspaces in the vector space of quadratic forms in the
variables x1, . . . , x6. Then S is equipped with the ι-action induced from the one
on C6 and with the PGL(C6)-action induced from the standard GL(C6)-action on
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C6. By choosing f1, g1, h1, f2, g2, h2 generic enough, we may assume that sl(C6)
is a subspace of the tangent space of S at the point Span{f, g, h} ∈ S.

For s ∈ S, we define Xs := {[x] ∈ P5; q(x) = 0 (∀ q ∈ s)}. Then we get a flat
family π : X → S with π−1(s) = Xs. Write [X0] ∈ S for Span{f, g, h} ∈ S. We get a
flat deformation π : (X,X0) → (S, [X0]) of K3 surfaces of degree 8. Since ι preserves
X0 and hence ι([X0]) = [X0], we get a subfamily π : (X|Sι , ι,X0) → (Sι, [X0]) of
K3 surfaces with involution, where Sι := {s ∈ S; ι(s) = s} is the fixed-point-set of
the ι-action on S. Since ι has no fixed points on X0 by assumption and since the
set of fixed points of the ι-action on X is a closed subset of X, we see that ι has no
fixed points on Xs if s ∈ Sι is sufficiently close to [X0]. We define Y := (X|Sι)/ι
and Y0 := X0/ι. Let p : Y → S be the projection induced from π : X → S. Since ι
has no fixed points on Xs, Ys is an Enriques surface for s ∈ S sufficiently close to
[X0]. Hence p : (Y, Y0) → (Sι, [X0]) is a flat deformation of Y0.

Let ρX0 : T[X0]S → H1(X0,ΘX0) and ρY0 : T[X0]S
ι → H1(Y0,ΘY0) be the Kodaira-

Spencer maps of the deformations π : (X,X0) → (S, [X0]) and p : (Y, Y0) → (Sι, [X0]),
respectively. Let (T[X0]S)+ and H1(X0,ΘX0)+ be the invariant subspaces of T[X0]S

and H1(X0,ΘX0) with respect to the ι-action, respectively. Since ρX0 commutes
with the ι-action, we set (ρX0)+ := ρX0 |(T[X0]S)+ : (T[X0]S)+ → H1(X0,ΘX0)+.
Since (ρX0)+ can be identified with ρY0 under the identifications (T[X0]S)+ =
T[X0]S

ι and H1(X0,ΘX0)+ = H1(Y0,ΘY0), we get

ker ρY0
∼= ker(ρX0)+ = sl(C6) ∩ ker(ι∗ − 1) ∼= sl(C3) ⊕ sl(C3) ⊕ C ∼= C17.

Here the second equality follows from the equality ker ρX0 = sl(C6), which is a
consequence of the fact that Xs

∼= Xs′ as polarized K3 surfaces of degree 8 if and
only if s and s′ lie on the same PGL(C6)-orbit. (We can also see the equality
ker ρX0 = sl(C6) as follows. Set L0 := OP5(1)|X0 . We consider the semiuniversal
deformation q : ((X,L), (X0,L0)) → (Def(X0,L0), [X0]) of the polarized K3 surface
(X0, L0) of degree 8. Since L0 is very ample on X0, we may assume that L is very
ample on Xt for t ∈ Def(X0,L0). Since degL|Xt = 8, the image of the projective
embedding Φ|L|Xt | : Xt → P5 must be a (2, 2, 2)-complete intersection. Namely,
(Xt,L|Xt) is isomorphic to (Xs,OP5(1)) for some s ∈ S. Hence the deformation
germ of polarized K3 surfaces π : (X,X0) → (S, [X0]) is complete, which implies the
equality dimker ρX0 = dimS − dimDef(X0,L0) = 35 = dim sl(C6). This, together
with the inclusion sl(C6) ⊂ ker ρX0 , yields the equality ker ρX0 = sl(C6).)

Since dimSι = 27 and dimker ρY0 = 17, we get dim Im ρY0 = 27 − 17 = 10 =
dimH1(Y0,ΘY0). Hence the Kodaira-Spencer map ρY0 is surjective and the family
p : (Y, Y0) → (Sι, [X0]) is complete.

Set U := {s ∈ Sι; Sing Xs = Xι
s = ∅}. Then U is a Zariski open subset of Sι.

For s ∈ U , Ys = Xs/ι is an Enriques surface. Let $ : U 3 s → $(Xs/ι) ∈ M
be the period mapping for the family of Enriques surfaces p : Y |U → U . By the
Borel-Kobayashi-Ochiai extension theorem, $ extends to a rational map from Sι

to the Baily-Borel compactification of Ω+
Λ/O+(Λ). By the completeness of the

deformation germ p : (Y, Y0) → (Sι, [X0]), the image of $ contains a dense Zariski
open subset of M, say U . If Y is an Enriques surface with $(Y ) ∈ U , then
Y = Y(F,G,H) for some quadratic forms F,G,H.

5.2. An algebraic expression of Borcherds Φ-function. Since we have a nice
projective model of Enriques surfaces of degree 4, it is natural to expect that the
Borcherds Φ-function may admit an algebraic expression analogous to the one for
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the Dedekind η-function associated to the plane cubic model or the (2, 2)-complete
intersection model. In fact, this is the case.

Theorem 5.1 ([13]). Let Y(f,g,h) be the (2, 2, 2)-model of an Enriques surface
defined by the quadric polynomials f = f1 + f2, g = g1 + g2, h = h1 + h2 ∈
C[x1, x2, x3, x4, x5, x6]. Then the following equality holds

‖Φ(Y(f,g,h))‖2 = |R(f1, g1, h1)R(f2, g2, h2)|

(
2
π4

∫
X(f,g,h)

α(f,g,h) ∧ α(f,g,h)

)4

.

Here α(f,g,h) ∈ H0(X(f,g,h),Ω2
X(f,g,h)

) is defined as the residue of f , g, h, i.e.,

α(f,g,h) := Ξ|X(f,g,h) ,

where Ξ is a meromorphic 2-form on P5 satisfying the equation

df ∧ dg ∧ dh ∧ Ξ =
6∑

i=1

(−1)ixidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dx6.

We remark that a weaker version of this result was obtained by Maillot-Roessler
[17] under a certain arithmeticity assumption on X(f,g,h). In their formula, the con-
tribution from the resultants is understood as the contribution from the bad primes
with respect to the reductions of X(f,g,h). When f , g, h are defined over the ring of
integers of a number field K, Theorem 5.1 implies that the Borcherds Φ-function
detects the degenerations of ι over Spec(OK), since R(f1, g1, h1)R(f2, g2, h2) ∈ p
for a prime ideal p ∈ Spec(OK) if and only if ι has non-empty fixed points on the
reduction X(f,g,h)(OK/p). This picture of the Borcherds Φ-function is quite analo-
gous to the corresponding picture of the Dedekind η-function: For an elliptic curve
E = {y2 = 4x3−g2x−g3} over K, ‖η‖24 is identified with the discriminant of E up
to the L2-norm of dx/y. Hence the algebraic part of ‖η‖ detects the degenerations
of E over Spec(OK). See [8] for more explanation of this view point.

The proof of Theorem 5.1 shall be given in [13]. The strategy is as follows. We
compare the ∂∂̄ of the both hand sides as currents on S. Then it turns out that they
satisfy the same ∂∂̄-equation of currents on S. For this, we use Theorem 4.3 and a
formula for the asymptotic behavior of equivariant analytic torsion for degenerating
family of algebraic manifolds [33]. In this way, we get the desired equality, up to
an absolute constant. To fix the absolute constant, we compare the behavior of the
both hand sides for certain explicit 2-parameter family of Enriques surfaces, whose
universal coverings are Kummer surfaces of product type.

In fact, Theorem 5.1 holds even if Y(f,g,h) has at most rational double points
by the continuity of the both hand sides at those points of Sι corresponding to
Enriques surfaces with rational double points. This continuity is a consequence of
the existence of simultaneous resolution of 2-dimensional rational double points.

By Theorem 5.1, we get a Thomae type formula for the Borcherds Φ-function.

Corollary 5.2 ([13]). Let v,v′ ∈ H2(X(f,g,h),Z) be anti-ι-invariant, primitive,
isotropic vectors with 〈v,v′〉 = 1 and let v∨ ∈ H2(X(f,g,h),Z) be the Poincaré dual
of v. Under the identification of lattices (Zv + Zv′)⊥ ∼= U(2) ⊕ E8(−2) =: L, the
vector

z(f,g,h),v,v′ :=
α − 〈α,v′〉v − 〈α,v〉v′

〈α,v〉
∈ L ⊗ R + i C+

L
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is regarded as the period of Y(f,g,h). Then, by a suitable choice of the 2-cocycles
{v,v′}, one has

Φ
(
z(f,g,h),v,v′

)2 = R(f1, g1, h1)R(f2, g2, h2)
(

2
π2

∫
v∨

α(f,g,h)

)8

.

When X(f,g,h) is birational to a Kummer surface of product type, the 2-cycle v∨

can be given explicitly. See [13] for the details.

5.3. A 4-parameter family of Enriques surfaces associated to M3,6(C). For
a non-zero 3 × 6-complex matrix A ∈ M3,6(C), we define

XA :=

[x] ∈ P5;
f(x) = a11x

2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 + a15x

2
5 + a16x

2
6 = 0

g(x) = a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 + a25x

2
5 + a26x

2
6 = 0

h(x) = a31x
2
1 + a32x

2
2 + a33x

2
3 + a34x

2
4 + a35x

2
5 + a36x

2
6 = 0

 .

For A = (a1, . . . , a6) ∈ M(3, 6;C) and i < j < k, we define

∆ijk(A) = det(ai,aj ,ak).

A matrix A ∈ M(3, 6;C) is said to be non-degenerate if
∏

i<j<k ∆ijk(A) 6= 0. Then,
for a non-degenerate A ∈ M3,6(C), XA is a K3 surface. We write αA for α(f,g,h).
As an immediate consequence of Theorem 5.1, we get the following:

Corollary 5.3 ([13]). Let A ∈ M3,6(C) be non-degenerate. For a partition of 6
letters {1, 2, 3, 4, 5, 6}(

ijk

lmn

)
:= {i, j, k} ∪ {l,m, n} = {1, 2, 3, 4, 5, 6},

define an involution ι( ijk
lmn) on P5 by

ι( ijk
lmn)(xi, xj , xk, xl, xm, xn) = (xi, xj , xk,−xl,−xm,−xn).

Then ι( ijk
lmn) is a free involution on XA called a switch such that

‖Φ(XA/ι( ijk
lmn))‖

2 = |∆ijk(A)|4|∆lmn(A)|4
(

2
π4

∫
XA

αA ∧ αA

)4

.

By Corollary 5.3, if A ∈ M3,6(K) with K ⊂ C, then for any partitions
(

ijk
lmn

)
and

(
i′j′k′

l′m′n′

)
, one has

‖Φ(XA/ι( ijk
lmn))‖

2

‖Φ(XA/ι( i′j′k′
l′m′n′))‖

2
=

|∆ijk(A)|4|∆lmn(A)|4

|∆i′j′k′(A)|4|∆l′m′n′(A)|4
∈ K.

Since |∆ijk(A)|4|∆lmn(A)|4/|∆i′j′k′(A)|4|∆l′m′n′(A)|4 6= 1 for all pairs of partitions(
ijk
lmn

)
,
(

i′j′k′

l′m′n′

)
for generic non-degenerate A, we conclude that all of the 10 Enriques

surfaces XA/ι( ijk
lmn) are mutually distinct for a generic choice of A.

6. Theta function and Borcherds Φ-function

In this section, we explain a relation between the Borcherds Φ-function and
Freitag’s theta function.
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6.1. The Matsumoto-Sasaki-Yoshida model. Recall that, for A ∈ M2,4(C), we
could associate two distinct models EA and CA of an elliptic curve. By a similar
construction, we can associate another K3 surface to A ∈ M3,6(C) as follows. For
A ∈ M3,6(C), define a K3 surface

ZA := {((x1 : x2 : x3), y) ∈ OP2(3); y2 =
6∏

i=1

(a1ix1 + a2ix2 + a3ix3)},

which is identified with its minimal resolution. Then ZA is (the minimal resolution
of) the double covering of P2, whose branch divisor is the union of 6 lines in general
position a1ix1+a2ix2+a3ix3 = 0 (i = 1, . . . , 6). The period mapping and its inverse
for the family of K3 surfaces ZA over a certain open subset of M3,6(C) were worked
out by Matsumoto-Sasaki-Yoshida [19] and Matsumoto [18].

We define a holomorphic 2-form ηA on ZA by

ηA :=
x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

y
.

By Matsumoto-Sasaki-Yoshida [19], there are 6 independent transcendental 2-cycles
{γij}1≤i<j≤4 on ZA and 16 independent algebraic 2-cycles on ZA, which form a basis
of H2(ZA,Q).

Following Matsumoto-Sasaki-Yoshida [19], define the period of ZA as the matrix

ΩA :=
1

η34(A)

(
η14(A) −η13(A)−

√
−1η24(A)

1+
√
−1

−η13(A)+
√
−1η24(A)

1−
√
−1

−η23(A)

)
,

where
ηij(A) :=

∫
γij

ηA.

By a suitable choice of the cycles {γij}1≤i<j≤4, one has

ΩA ∈ D :=
{
T ∈ M2,2(C); (T − tT )/2i > 0

}
,

where D is isomorphic to a symmetric bounded domain of type IV of dimension 4.

6.2. Theta function on D. Write e(x) := exp(2πix).

Definition 6.1. For Ω ∈ D and a, b ∈ Z[i]2, define the Freitag theta function as

Θ a
1+i , b

1+i
(Ω) :=

∑
n∈Z[i]2

e

[
1
2

(
n +

a

1 + i

)
Ωt

(
n +

a

1 + i

)
+ <

(
n +

a

1 + i

)
t

(
b

1 + i

)]
.

Following [29], we identify the characteristic
(
a
b

)
with the partition

(
ijk
lmn

)
by the

rule:(
a
b

)
=

(
a1 a2
b1 b2

) (
i 0
0 i

) (
i 0
0 0

) (
i i
0 0

) (
i i
i i

) (
0 i
0 0

) (
0 0
0 0

) (
0 0
i i

) (
0 0
0 i

) (
0 0
i 0

) (
0 i
i 0

)
l l l l l l l l l l l(

ijk
lmn

) (
123
456

) (
124
356

) (
125
346

) (
126
345

) (
134
256

) (
135
246

) (
136
245

) (
145
236

) (
146
235

) (
156
234

)
Under this identification, we define

Θ( ijk
lmn)(Ω) := Θ a

1+i , b
1+i

(Ω)

and its Petersson norm by∥∥∥Θ( ijk
lmn)(Ω)

∥∥∥2

:= det
(

Ω − tΩ

2
√
−1

) ∣∣∣Θ( ijk
lmn)(Ω)

∣∣∣2 .
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Theorem 6.2 ([13]). For a non-degenerate A = (A1, A2) ∈ M3,6(C) with A1, A2 ∈
M3(C), define

A∨ := (tA−1
1 , tA−1

2 ).
Then ∥∥∥Φ(XA/ι( ijk

lmn))
∥∥∥ =

∥∥∥Θ( ijk
lmn)(ZA∨)

∥∥∥4

.

The proof of Theorem 6.2 shall be given in [13]. We use Matsumoto-Terasoma’s
Thomae type formula [20] to rewrite the right hand side of Theorem 6.2. Comparing
this with Theorem 5.1, we get the result. See [13] for the details. We remark
that, after Freitag-Salvati-Manni [10, Th. 5.6], Theorem 6.2 is not very surprising,
because they proved that the Borcherds Φ-function itself is expressed as a linear
combination of certain additive Borcherds lifts.

6.3. The case of Jacobian Kummer surfaces. For λ = (λ1, . . . , λ6) ∈ C6 with
λi 6= λj (i 6= j), define a genus 2 curve Cλ by the affine equation

Cλ := {(x, y) ∈ C2; y2 =
6∏

i=1

(x − λi)}.

Define holomorphic differentials ω1 and ω2 on Cλ by

ω1 :=
dx

y
, ω2 :=

xdx

y

Let {A1, A2, B1, B2} be a certain symplectic basis of H1(Cλ,Z) and set

Tλ :=
(∫

B1
ω1

∫
B2

ω1∫
B1

ω2

∫
B2

ω2

)−1 (∫
A1

ω1

∫
A2

ω1∫
A1

ω2

∫
A2

ω2

)
∈ S2.

Then the Kummer surface K(Cλ) of the Jacobian variety Jac(Cλ) is expressed as
follows:

K(Cλ) ∼= XA, A =

 1 1 1 1 1 1
λ1 λ2 λ3 λ4 λ5 λ6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

 ∈ M3,6(C).

By Theorem 6.2, we get the following.

Corollary 6.3 ([13]). If the partition
(
pqr
stu

)
corresponds to the characteristic (a, b),

then ∥∥∥Φ(K(Cλ)/ι(pqr
stu))

∥∥∥ = (det=Tλ)2
∣∣∣θ<( a

1+i ),<( b
1+i )(Tλ) θ=( a

1+i ),=( b
1+i )(Tλ)

∣∣∣4 .

Here θα,β(T ), α, β ∈ {0, 1/2}2, is the Riemann theta constant

θα,β(T ) :=
∑

n∈Z2

e
[
1
2
(n + α)T t(n + α) + (n + α)tβ

]
, T ∈ S2.

Recall that Igusa’s Siegel modular form ∆5 is defined as the product of all even
theta constants

∆5(T ) :=
∏

(α,β) even

θα,β(T ), T ∈ S2.

For a genus 2 curve C with period T ∈ S2, its Petersson norm

‖∆5(C)‖2 := (det=T )5|∆5(T )|2
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is independent of the choice of a symplectic basis of H1(C,Z). Hence ‖∆5(C)‖ is
an invariant of C. Form Corollary 6.3, it follows the following:

Corollary 6.4 ([13]). The Igusa cusp form ∆5 is the average of Φ with respect to
the 10 switches, i.e., ∏

( ijk
lmn)

∥∥∥Φ(K(C))/ι( ijk
lmn)

∥∥∥ = ‖∆5(C)‖8.

7. Some problems

Problem 7.1. For elliptic curves, two distinct models EA and CA yield distinct
algebro-geometric expressions of ‖η‖. For projective models of Enriques surfaces
distinct from the (2, 2, 2)-complete intersection of P5, find the corresponding algebro-
geometric expressions of ‖Φ‖.

Problem 7.2. On a generic Jacobian Kummer surface, there exists 31 conjugacy
classes of free involutions ([23], [25]), which split into three families:

• 10 switches,
• 15 Hutchinson-Göpel involutions,
• 6 Hutchinson-Weber involutions.

Recall that, as the average of the Borcherds Φ-function by 10 switches, we get
Igusa’s Siegel modular form ∆5. Determine the Siegel modular form constructed
as the average of the Borcherds Φ-function by the 15 Hutchinson-Göpel involutions
(resp. 6 Hutchinson-Weber involutions).

Problem 7.3. As mentioned in Section 4.2, there exists an analytic torsion invariant
τM for K3 surfaces with involution [31], which is often expressed as the Petersson
norm of the tensor product of an explicit Borcherds lift and Igusa’s Siegel modular
form [32]. After Theorem 5.1, it is an interesting problem to find an algebro-
geometric expression of τM for general M .

Problem 7.4 (The inverse of the period mapping for Enriques surfaces). For elliptic
curves, the inverse of the period mapping was constructed by Jacobi by using theta
constants. We ask the same problem for the (2, 2, 2)-model of Enriques surfaces:
For 1 ≤ i < j ≤ 3 and 4 ≤ k < l ≤ 6, find a system of automorphic forms

α
(1)
ij (Z), α

(2)
kl (Z), β

(1)
ij (Z), β

(2)
kl (Z), γ

(1)
ij (Z), γ

(2)
kl (Z)

on Ω+
Λ for (a finite index subgroup of) O+(Λ) such that

YZ := XZ/ι, ι(x) = (x1, x2, x3,−x4,−x5,−x6)

is the Enriques surface whose period is the given by Z ∈ Ω+
Λ. Here

XZ =

[x] ∈ P5;

∑
1≤i<j≤3 α

(1)
ij (Z)xixj +

∑
4≤k<l≤6 α

(2)
kl (Z)xkxl = 0∑

1≤i<j≤3 β
(1)
ij (Z)xixj +

∑
4≤k<l≤6 β

(2)
kl (Z)xkxl = 0∑

1≤i<j≤3 γ
(1)
ij (Z)xixj +

∑
4≤k<l≤6 γ

(2)
kl (Z)xkxl = 0

 .

Kondō [15] and Freitag-Salvati-Manni [10] constructed certain (birational) projec-
tive embeddings of the moduli space of Enriques surfaces with some level structure.
Are the system of automorphic forms appearing in their embeddings regarded as
the set of coefficients of the defining equations of appropriately polarized Enriques
surfaces?
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