J. reine angew. Math. 677 (2013), 15—70 Journal fiir die reine und
DOI 10.1515/crelle.2012.009 angewandte Mathematik
© Walter de Gruyter
Berlin - Boston 2013

K3 surfaces with involution, equivariant analytic
torsion, and automorphic forms on the moduli
space, II: A structure theorem for r(M) > 10

By Ken-Ichi Yoshikawa at Kyoto and Seoul

Abstract. We study the structure of the invariant of K3 surfaces with involution,
which we obtained using equivariant analytic torsion. It was known before that the invari-
ant is expressed as the Petersson norm of an automorphic form on the moduli space. When
the rank of the invariant sublattice of the K3 lattice with respect to the involution is strictly
bigger than 10, we prove that this automorphic form is expressed as the tensor product of
an explicit Borcherds lift and Igusa’s Siegel modular form.
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Introduction

In this paper, we study the structure of the invariant of K3 surfaces with involution
introduced in [62]. Let us recall briefly this invariant.

A K3 surface with holomorphic involution (X,:) is called a 2-elementary K3
surface if 1 acts non-trivially on the holomorphic 2-forms on X. Let Lg; be the K3 lattice,
i.e., an even unimodular lattice of signature (3,19), which is isometric to H?(X,Z)
endowed with the cup-product pairing. Let M be a sublattice of g3 with rank r(M). A
2-elementary K3 surface (X,1) is of type M if the invariant sublattice of H?(X,Z) with
respect to the z-action is isometric to M. By [46], M < [g3 must be a primitive 2-elementary
Lorentzian sublattice. The rank of the discriminant group of M is denoted by /(M)
and the parity of the 2-elementary lattice M is denoted by o(M) € {0,1} (cf. [48] and
Section 1.2).

Let M+ be the orthogonal complement of M in Lg3. Let Q,,. be the period domain
for 2-elementary K3 surfaces of type M, which is an open subset of a quadric hypersur-
face of P(M*+ ® C). We fix a connected component Q7 . of Q,,., which is isomorphic
to a bounded symmetric domain of type IV of dimension 20 — r(M). Let Z,,. be the dis-
criminant locus of Q},., which is a reduced divisor on Qj,.. Let O(M*) be the group
of isometries of M*. Then O(M™) acts properly discontinuously on Q1 and Z;..
Let OT(M*) be the subgroup of O(M*) with index 2 that preserves Q. The coarse
moduli space of 2-elementary K3 surfaces of type M is isomorphic to the analytic
space My, = (Q4;.\Zy1)/ Ot (M™*) via the period map by the global Torelli theorem
[51], [15]. The period of a 2-elementary K3 surface (X,:) of type M is denoted by
om(X,1) € My, .

Let (X, 1) be a 2-elementary K3 surface of type M. Let k be a i-invariant Kéhler form
on X. Let X’ be the set of fixed points of 7 and let X' =" C; be the decomposition

into the connected components. Let 7 € H°(X,Q%)\{0}. In [62], we introduced a real-
valued invariant
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where 77, (X, x)(1) is the equivariant analytic torsion of (X, x) with respect to the Z,-action
induced by 1, 7(Ci,x|¢,) is the analytic torsion of (Ci,x|c), and ¢ (X', x[y.) is the first
Chern form of (X', k|.) (see [5], [6], [52] and Section 5). Since 7)/(X,7) depends only on
the isomorphism class of (X, 1), we get the function

™ : ‘%]&L SﬁM(X,l) — ‘L'M(X,l) € R.y.

By [62], [66], there exists an automorphic form @, on Q  with values in a certain
O™ (M~)-equivariant holomorphic line bundle on Q;,., such that

1
vy = ||Ou| 7>, div@y =vZy1, veEZs.

Here || - || denotes the Petersson norm. By [62], @, is given by the Borcherds ®-function
[8], [9] when M is one of the two exceptional lattices in Proposition 2.1. For an arithmetic
counterpart of the invariant 7,,, we refer the reader to [39].

In this paper, we give an explicit formula for 7, for a class of non-exceptional M. We
use two kinds of automorphic forms to express 7,y, i.e., the Borcherds lift W,,. (-, F3;) and
Igusa’s Siegel modular form y,, which we explain briefly.

In [8], [10], Borcherds developed the theory of automorphic forms with infinite prod-
uct expansion over domains of type IV. For an even 2-elementary lattice A of signature
(2,r(A) — 2), we define the Borcherds lift WA (-, Fp) as follows.

Let A, be the discriminant group of A, which is a vector space over Z/2Z. Let C[A44]
be the group ring of A and let p, : Mp,(Z) — GL(C[44]) be the Weil representation,
where Mp,(Z) is the metaplectic double cover of SL»(Z). Let {e, }, . ,, be the standard basis
of C[4,]. Let #(z) be the Dedekind 5-function and set 7, 5,5, s (1) = (1) " n(27)*n(47) ",
Let 04+ (7) be the theta function of the (positive-definite) A;-lattice. Then 7, s554-+(7) and
On+(7) are modular forms for the subgroup MI'y(4) = Mp,(Z) corresponding to the
congruence subgroup I'y(4) = SL,(Z). Following [11] and [55], we define a C[A44]-valued
holomorphic function Fx(7) on the complex upper half-plane $ as

(0.1) Fa(r) = S {50 ™M, (@palg e
geMI4(4)\Mp;(Z) !

b
Here we used the notation ¢|,(7) = ¢<Z:j-_d> (ct+d) " for a modular form ¢(z) for

: . : b
MTI((4) of weight k with certain character and g = <a d> ,Ver+d | e Mpy(Z). By
c

[11] and [55], Fa(7) is an elliptic modular form for Mp,(Z) of type p, with weight
r(A)
2 _

. Then WA (-, Fa) is defined as the Borcherds lift of Fx (), which is an automorphic
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form on QF for OT(A) by [10] (see (8.5) for an explicit infinite product expression of
WA(-,Fp)). The Petersson norm ||Wy. (-, Fyo)||* is an O (M*)-invariant function on
Q},. and the value HLPML (ﬁM(X, l),FML) H makes sense.

Recall that y,, is the Siegel modular form on the Siegel upper half-space S, of degree
g defined as the product of all even theta constants (cf. [31])

(02) ){g(Z) = H ea-b(z)v Le 697 Jo =1

(a,b) even

Then y, gives rise to another function on .#y; . as follows. For a 2-elementary K3 surface
(X 1) of type M, let X' denote the set of fixed points of 1. By [48], X' is the disjoint
union of (possibly empty) compact Riemann surfaces, whose topological type is deter-
mined by M Let g(M) € Z>( denote the total genus of X'. The period of X' is denoted
by Q(X') € Syu1)/Spagary(Z). By [62], there exist a proper OF(M*)-invariant Zariski
closed subset Z < Dy and an O (M™)-equivariant holomorphic map

that induces the map of moduli spaces
Mypr > Tp (X 1) — QX) € Sya)/SPag(my (Z)-
Then JLHXg(M)HZ is an O"(M*)-invariant C* function on Qf,.
The following structure theorem for 7,, is the main result of this paper:

Theorem 0.1 (cf. Theorem 9.1). Let M be a primitive 2-elementary Lorentzian sub-
lattice of Lgs. If r(M) > 10 or (r(M),6(M)) = (10,1), then there exists a constant Cy
depending only on the lattice M such that the following identity holds for every 2-elementary
K3 surface (X,1) of type M:

,2¢/(AM)+1(2f/<AM)+1) — CMHTML (ﬁM(X, 1)7 FML) ||2‘J(M) H)Cg(M) (Q(Xl)) || 16.

(X, 1)

It may be worth emphasizing that the structure of 7,, becomes transparent by consid-

ering elliptic modular forms for MI'((4) rather than Mp,(Z). After Bruinier [14], Theorem

0.1 may not be surprising. Indeed, if M~ contains an even unimodular lattice of signature

(2,2) as a direct summand and if there is a Siegel modular form S such that div(J},S) is a

Heegner divisor on Q}, ., then @), must be the product of a Borcherds lift and J;,S by [14],

Theorem 0.8. When g(M) = 2, this explains the existence of a factorization of 7, like

Theorem 0.1." It seems to be an interesting problem to understand the geometric origin
of these common structures of the modular forms F and y,.

There are 43 isometry classes of primitive 2-elementary Lorentzian sublattices
M < Lgs such that (M) > 10 or (r(M),6(M)) = (10,1) (cf. Table 1 in Section 9). In
fact, Theorem 0.1 remains valid for a certain primitive 2-elementary Lorentzian sublattice

D However, this does not seem to explain the common structures (0.1), (0.2) of the elliptic modular forms
FA and the Siegel modular forms y, appearing in the expression of 7.
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M c Lg; with r(M) =9 (see Theorem 9.4). By Theorems 0.1 and 9.4 and [62], Theorems
8.2 and 8.7, 1)y and ®,, are determined for 46 isometry classes of M. Since the total num-
ber of the isometry classes of primitive 2-elementary Lorentzian sublattices of g3 is 75 by
Nikulin [48], the structures of 7); and @, are still open for the remaining 29 lattices.

Following [62], Theorem 8.7, we shall prove Theorem 0.1 by comparing the
O+ (M*)-invariant currents dd®logty, ddlog|¥ . (-,Fy)||* and dd“log]j}”,ﬂgs(mﬂz
(see Section 9). The current dd¢logty, was computed in [62]. In Section 8, the weight
and the zero divisor of W .(-, Fy;+) shall be determined, from which a formula for
dd10g||¥ s (-, Fyo)||* follows. In Section 4, the current dd® logJ]T4||)(§<M)||2 shall be
computed, where the irreducibility of certain component of the divisor Z,,. /O (M*) on
Q. /O (M*) plays a crucial role (see Appendix 11.3).

In Proposition 9.3, we shall prove that y,,, vanishes identically on the locus
Ju(Q4; \Zy) when (r(M),6(M)) = (10,0) and M is not exceptional. Hence Theo-
rem 0.1 does not hold in these four cases. This is similar to the exceptional case
(r(M),1(M),6(M)) = (10,8,0), where y, should be replaced by the product of two Jacobi
A-functions [62], Theorem 8.7.

There is an application of the Borcherds lift WA (-, Fo) to the moduli space .#;). .
Theorem 0.2. If r(M) =9 and (r(M),I(M)) =% (9,9), then .4y}, is quasi-affine.

When .#;;. is the coarse moduli space of Enriques surfaces, this was proved by
Borcherds [9]. Since the coarse moduli space of ample M-polarized K3 surfaces (cf. [1],
[18], [47]) is a finite covering of .#;;., its quasi-affinity follows from that of .#,;.. The
quasi-affinity of ./}, is a consequence of the fact that W,,. (-, F);.) vanishes only on the
discriminant locus Z,,. when r(M*) <13 and (r(M*),[(M™)) % (13,9). By [48], there
are 53 isometry classes of primitive 2-elementary Lorentzian sublattices M < g3 with
r(M) 29 and (r(M),I[(M)) * (9,9). In general, it is not easy to find a primitive sublattice
A < g3 of signature (2, r(A) — 2) admitting an automorphic form on Q vanishing only
on Z. For example, there is no automorphic form on the coarse moduli space of polarized
K3 surfaces of degree 2d vanishing only on the discriminant locus, if the discriminant locus
is irreducible, [36], Section 3.3, [49] (see, e.g., [8], [9], [11], [12], [28], I, [34], [55], [26]
for affirmative examples). For another application of Wx(-, Fa) to the negativity of the
Kodaira dimension of .#,. = Q},. /0" (M™), see [37]. In fact, .4, is always unirational
and hence x(.#y;.) = —oo by S. Ma [37].

This paper is organized as follows. In Section 1, we recall lattices and orthogonal
modular varieties. In Section 2, we recall 2-elementary K3 surfaces and their moduli
spaces, and we study the singular fiber of an ordinary singular family of 2-elementary K3
surfaces. In Section 3, we recall log del Pezzo surfaces of index < 2 and their relation with
2-elementary K3 surfaces. In Section 4, we study the current dd“J},|| )(;g( M)H2 and we recall
the notion of automorphic forms on QLL. In Section 5, we recall the invariant Ty. In
Section 6, we recall Borcherds products. In Section 7, we construct the elliptic modular
form Fa (7). In Section 8, we study the Borcherds lift Wi (-, Fa). In Section 9, we prove
Theorem 0.1. In Section 10, we interpret Theorem 0.1 as a statement about the equivariant
determinant of the Laplacian on real K3 surfaces. In the Appendix, we prove some techni-
cal results about lattices.
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Nota bene: In [62], we used the notation Qy, .#y, Dy etc. in stead of Qye, My,
Dy etc.
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1. Lattices

A free Z-module of finite rank endowed with a non-degenerate, integral, symmetric
bilinear form is called a lattice. The rank of a lattice L is denoted by r(L). The signa-
ture of L is denoted by sign(L) = (b™(L),b~(L)). We define o(L) :=b* (L) —b~(L). A
lattice L is Lorentzian if sign(L) = (1,r(L) — 1). For a lattice L = (Z',<-,->), we define
L(k):=(Z",k{ ,-)). The dual lattice of L is denoted by LY < L® Q. The finite
abelian group A, := LY/L is called the discriminant group of L. For A€ LY, we write
J:=Jl+LeA;. A lattice L is even if {(x,x> e 2Z for all xe L. A sublattice M c L is
primitive if L/ M has no torsion elements. The level of an even lattice L is the smallest
positive integer / such that /4?/2 € Z for all /. € L". The group of isometries of L is denoted
by O(L). We set Ap :={d € L;<{d,d) = —2} and define

Ay ={deAr;d/2¢ LV}, A} :={deAr;d/2eL"}.

Then Ay, A}, A} are preserved by O(L). For d € Ay, the corresponding reflection s, € O(L)
is defined as s;(x) := x + {x,d)d for x € L.

1.1. Discriminant forms. For an even lattice L, the discriminant form q; of Ay is
the quadratic form on 4; with values in Q/2Z defined as ¢, (I) := I?> +2Z for [ € A4;.
The corresponding bilinear form on A; with values in Q/Z is denoted by b,. Then
br(1,I'y = <I,I"y +Z for I,I' € Ar. Since A e LY lies in L if and only if <1,/ € Z for all
[ € LV, the bilinear form b; is non-degenerate, i.e., if by (y,x) =0 modZ for all xe 4,
then y = 0 in 4;. We often write y* (resp. {y,6)) for qr(y) (resp. br(y,6)). The automor-
phism group of (A4, q.) is denoted by O(g.). See [46] for more details.

1.2. 2-elementary lattices. Set Z, := Z./2Z. An even lattice L is 2-elementary if there
is an integer / € Zxo with A; =~ Zé. For a 2-elementary lattice L, we set /(L) := dimg, A;.
Then (L) = /(L) and (L) = /(L) mod 2 by [46], Theorem 3.6.2(2). We define

0 if x?eZforall xe L,
1 if x> ¢ Z for some x e L".

S(L) = {
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The triplet (sign(L),/(L),6(L)) determines the isometry class of an indefinite even
2-elementary lattice L by [46], Theorem 3.6.2.

. . 1 . . . .
Since the mapping A4; 3y — y* € EZ/Z ~ 7, is Zy-linear and since by is non-

degenerate, there exists a unique element 1; € A; such that {y,1;> = y> mod Z for all
y € Ar. By the uniqueness of 1,, we have g(1,) =1, for all g€ O(g.). By definition,
1, =0ifand only if 6(L) =0. f L=L" @ L", then 1, =1, ® 1.

0 1
Let U = < ) 0> and let A, Dy, E;7, Eg be the negative-definite Cartan matrix of

type A1, Do, E7, Eg respectively, which are identified with the corresponding even lattices.
Then U and Fg are unimodular, and A, Dy, and E; are 2-elementary. Set

lxs:=UUD U Es @ Es.
For a sublattice A = lg;, we define A :={/elg3;<{/,A>)=0}. When A c lg; is
primitive, then (Ax,—qa) = (Apr,q,r) by [46], Corollary 1.6.2. In particular, one has
[(A) < min{r(A),22 — r(A)} for a primitive 2-elementary sublattice A < Lg3.
1.3. Lorentzian lattices. Let L be a Lorentzian lattice. The set
%, = {ve LQR;v* > 0}

is called the positive cone of L. Since L is Lorentzian, %, consists of two connected compo-
nents, which are written as 4,7, %, . For l e L® R, we set i := {v e 4, ;<{v,Iy = 0}. Then
hy # 0 if and only if /2 < 0. We define (%,")° := %,"\ |J ha. Any connected component of
(%,")° is called a Weyl chamber of L. deh,

Let M < g3 be a primitive 2-elementary Lorentzian sublattice. Let I, be the invo-
lution on M @ M+ defined as

Iu(x,p) = (x,~y), (x,y)eM®M".
Then I,; extends uniquely to an involution on L3 by [46], Corollary 1.5.2. We define
g(M) :=A{22 = r(M) = I(M)}/2, k(M) :={r(M) - [(M)}/2.
For d € Ay ., the smallest sublattice of g3 containing M and Zd is given by
M Ld):=(M*ndH)*.
By Lemma 11.3 below, [M L d] is again a 2-elementary Lorentzian lattice such that
(1.1) I =saoly=1Iyoss, [MLd"=M"nd"

By, e.g., [21], Appendix, Tables 1-3, M and M~ are expressed as direct sums of the
2-elementary lattices A := A (—1), A, U, U(2), Dy, E, Es, Es(2).
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1.4. Lattices of signature (2, n) and orthogonal modular varieties. Let A be a lattice
with sign(A) = (2,n). Define

Qp ={[x] e P(A® C);<{x,x) =0,{x,X) > 0},

which has two connected components QF and Q. Each of Qj is isomorphic to a bounded
symmetric domain of type IV of dimension n. O(A) acts projectively on Qx. Set

0" (A) :={g € O(A); g(Q}) = Q3 },

which is a subgroup of O(A) of index 2 such that Qz/O(A) = Qf/O*(A). Since OF(A)
is an arithmetic subgroup of Aut(Qy), O™ (A) acts properly discontinuously on Q5. In
particular, the stabilizer 0" (A), := {g € O"(A);g - [n] = [#]} is finite for all [7] QF, and
the quotient

My = QpJO(A) = QL /O (A)

is an analytic space. There exists a compactification .#, of .Zx, called the Baily—Borel—-
Satake compactification [3], such that .#4 is an irreducible normal projective variety of
dimension n with dim(.Z\.#x) < 1.

For e A®R, set H; := {[x] € Qx;{x,4) = 0}. Then H; + 0 if and only if 22 <0.
We define the discriminant locus of Q, by

9Ip = >, Hy,
dEAA/il

which is a reduced divisor on Q4. We define the reduced divisors ) and & by

9= > Hy 2= 5 Ha.
deN,/+1 deAy/+1

Since Ay = A\ T A}, we have 9 = I}, + .
Assume that A is a primitive 2-elementary sublattice of L g3. We set
QR = Q\\Za, M} :=QL/O(A).
For d € A, we have the relation
Hyn QA = Qpngr = Qe g0
We define the subsets Hj = H; (d € Ap) and 235 < 2 by

Hi = {ln] e Q; O"(A)y ={£L, £sa}}, Z%:= > Hj
dEAA/il

If H; # 0 (resp. Za + 0), then HY (resp. 24) is a non-empty Zariski open subset of Qx - -
(resp. Za) unless M+ = (Af)eaz @ A (cf. [66], proof of Theorem 4.1 and Section 5). Since
O(A) preserves Z and 74, we define

Dn:=9AJON), D :=D/O(A) = D.
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Then 2% N Sing .45 = 0 by [62], Proposition 1.9 (5). For the irreducibility of 2} /O(A),
see Proposition 11.6 (5) below.

When A = U(N) @ L, a vector of A ® C is denoted by (m,n,v), where m,n € C and
ve L ® C. The tube domain L ® R + i%; is identified with Q4 via the map

(12)  L®R+i% 35z— [(—2*/2,1/N,z2)]eQa cP(A®C), zeL®C

by [10], p. 542. The component of Q4 corresponding to L ® R + i%," via the isomorphism
(1.2) is written as Q3.

2. K3 surfaces with involution

2.1. K3 surfaces with involution and their moduli space. A compact, connected,
smooth complex surface X is called a K3 surface if it is simply connected and has a
trivial canonical line bundle Q%. Let X be a K3 surface. Then H?(X,Z) endowed
with the cup-product pairing is isometric to the K3 lattice Lg3. An isometry of lattices
a: H*(X,Z) = Lk is called a marking of X. The pair (X, a) is called a marked K3 surface,
whose period is defined as

(X, 0) = [u(n)] e P(Lxs ® C), 5 e H'(X,Q4)\{0}.

Let M < g3 be a primitive 2-elementary Lorentzian sublattice. A K3 surface
equipped with a holomorphic involution 7 : X' — X is called a 2-elementary K3 surface of
type M if there exists a marking o of X satisfying

* _ * o —1
Z|H0(X7Q)2()——1, =o' olyoa.

Then «(H2(X,Z)) = M, where H{(X,Z) := {l € H*(X,Z);1*] = +l}.

Let (X,7) be a 2-elementary K3 surface of type M and let o be a marking with
0* =a'olyoa Since H**(X,C) = H?(X,Z) ® C, we have n(X,x) € Qf,. by [45],
Theorem 3.10. By [62], Theorem 1.8, and Proposition 11.2 below, the O(M*)-orbit of
n(X,1) is independent of the choice of a marking « with 1* = «~!I,0. The Griffiths period
of (X,1) is defined as the O(M*)-orbit

Tu(X,1) = O(M™*) - n(X,0) € M.
By [51], [15], [48], [18], as well as [62], Theorem 1.8, and by Proposition 11.2 below, the
coarse moduli space of 2-elementary K3 surfaces of type M is isomorphic to .#;;. via the
map @y In the rest of this paper, we identify the point @y (X, 1) € .#y,. with the isomor-
phism class of (X, 1).
For a 2-elementary K3 surface (X,1), set X' := {x € X;1(x) = x}.

Proposition 2.1. Let (X,1) be a 2-elementary K3 surface of type M.
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(1) If M =~ U(2) ® Es(2), then X' = 0.
(2) If M = U @ E3(2), then X" is the disjoint union of two elliptic curves.

B) If M £ UQ2) ®Es(2), U @ Eg(2), then there exist a smooth irreducible curve C of
genus g(M) and smooth rational curves Ey, . .., Exy such that

— CHLE 111 Ey

Proof.  See [48], Theorem 4.2.2. []

After Proposition 2.1, a primitive 2-elementary Lorentzian sublattice M < Lgs3 is said
to be non-exceptional if M % U(2) @ Es(2), U @ Es(2). Let (X, 1) be a 2-elementary K3 sur-
face of type M. When M is non-exceptional and when g(M) > 0, the component of X'
with genus g(M) is called the main component of X'.

For g =2 0, let S, be the Siegel upper half-space of degree g. When g = 1, &; is the
complex upper half-plane. We write $ for S;. Let Sp,,(Z) be the symplectic group of
degree 2g over Z and let .o/, := S,/Sp,,(Z) be the Siegel modular variety of degree g.
Then .7, 1s a coarse moduli space of principally polarized Abelian varieties of dimension g.
The Satake compactification of </, is denoted by .<7;. Then </, has the stratification
) = dy Wy | 111ty

For a 2-elementary K3 surface (X,1) of type M, the period of X, i.e., the period of

Jac(X") := H' (X', Ox.)/H' (X", Z), is denoted by Q(X") € .7, ss). For a 2-clementary K3
surface (X, 1) of type M, we define

To(X,1) = T4 (@0 (X, 1)) = Q(X') € Lyap).

Let Iy . : Qp0 — My be the projection and set J{, := J{ o Iy, Q. . Then Jj, is an
O(M~)-equivariant holomorphic map from Qf,, to .o/, with respect to the trivial
O(M~)-action on ;. By [62], Theorem 3.3, J§, extends to an O(M*)-equivariant
holomorphic map Jy : Qy,0 U 2y, — A (M) The corresponding holomorphic extension
of Jy, is denoted by Jys : Ay, u@Mi — M M)

Proposition 2.2. The map Jy; extends to a meromorphic map from My, to o, *< M)
When r(M) = 19, Jy extends to a holomorphic map from ;. to Ay m

Proof. By [13], Jys extends to a holomorphic map from
My \(Sing Ay U Sing D)

to ./, Since .4y, is normal, we get dim(Sing.#;. U Sing 7)) < dim .4;, — 2 when
r(M ) < 18, so that Jy, extends to a meromorphic map from .#,;. to L) bY [57] in this
case. If r(M) = 19, the result follows from [13] because .#};, is a compact R1emann surface
and .4y, \./y;, is a finite subset of .#,;.. If r(M) = 20, the result is trivial because .#,;. is
a point. []
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2.2. Degenerations of 2-elementary K3 surfaces. Let A — C be the unit disc and set
A" := A\{0}. Let Z be a smooth complex threefold. Let p : Z — A be a proper surjective
holomorphic function without critical points on Z\p~!(0). Let 1 : Z — % be a holomor-
phic involution preserving the fibers of p. We set Z, = p~'(¢) and 1, = 1|, for 1 € A. Then
p: (Z,1) — Ais called an ordinary singular family of 2-elementary K3 surfaces of type M
if p has a unique, non-degenerate critical point on Z, and if (Z,,1,) is a 2-elementary K3
surface of type M for all t € A*. Since Z is a singular K3 surface, 1) € Aut(Z)) extends to
an anti-symplectic holomorphic involution 7, on the minimal resolution Z, of Zj, i.e.,
(l)"=—-1on H O(ZO,Q%O). Let 0 € Z be the unique critical point of p. There exists a
system of coordinates (%, (z1,z2,z3)) centered at o such that

(z) = (—z1,—2z2,—23) Or (21,22, —23), ZEU.

Ifi(z) = (—z1, —z2, —z3) on %, 1 is said to be of type (0,3). If i(z) = (21,22, —z3) On %, 1 is
said to be of type (2,1).

Theorem 2.3. Let d € Ay: and let HS := 11y, (H?) be the image of HS by the natu-
ral projection Ty - Qe — My Let y: A — My be a holomorphic curve intersecting
HY transversally at y(0). Then there exists an ordinary singular family of 2-elementary K3
surfaces py : (Z,1) — A of type M with Griffiths period map y satisfying the following
properties:

(1) px is a projective morphism and the minimal resolution (Z, i) is a 2-elementary
K3 surface of type [M L d| with Griffiths period y(0).

() IfdeN,, ., then 1 is of type (2,1) and (Zo)" is the normalization of Z; with total
genus g(M) — 1.

Proof. By [62], Theorem 2.6, there exists an ordinary singular family of
2-elementary K3 surfaces py : (2,1) — A of type M with Griffiths period map y such
that py is projective. We prove that (Z, 1) is a 2-elementary K3 surface of type [M L d].

Let oy € Zy be the unique critical point of px. Let py: (#,15) — A be the
family induced from py : (Z,1) — A by the map As¢— t>€ A. Then % = Z x4 A and
pw = pry. The projection pr; induces an identification between (Y;,1x|y) and (Zp,1,)
for all ¢t € A. Since the Picard—Lefschetz transformation for the family of K3 surfaces
Pulpr : #|p — A" is trivial, there exists a marking f: R*(pyl-),Z = Lgs a-. Let 0y be
the unique singular point of % with pr,(os) = 0. Since (#,04) is a three-dimensional
ordinary double point, there exist two different resolutions 7 : (%, E) — (%,04) and
7' (2 E") — (#,04), which satisfy the following properties (cf. [62], Theorem 2.1, proof
of Theorem 2.6 and the references therein):

(i) Set p:=pyomand p’:=pyonr'. Then p: Z — A and p': Z' — A are simulta-
neous resolutions of ps : % — A, and they are smooth families of K3 surfaces. The
marking 8 induces a marking o for p : Z — A and a marking o' for p’: 27 — A.

(ii) E =7n'(0y) is a smooth rational curve on Xy, and E' = (') "' (04) is a smooth
rational curve on Xj. The marked family (p': 2" — A,a’) is the elementary modifi-
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cation of (p:2Z — A,a) with center E (cf. [62], Section 2.1). Replacing f by gop,
ge T (M) :={g € O(Lk3); Iy = Ing} if necessary, one has d = a(c([E])).

(iii) Let e: Z\E — Z'\E’ be the isomorphism defined as
€= (n/|X/\E’)7l © (n’X\E)‘
Then e is an isomorphism of fiber spaces over A* and the isomorphism
o Xo\E — X \E'
extends to an isomorphism &, : Xo — X with
(2.1) 20 (8)" o (o) ™" = sa.

(iv) There exists an isomorphism ¢g+(Iy) : & — 2 of fiber spaces over A such that
the following diagrams are commutative (cf. [62], Egs. (1.6), (2.8)):

(Z,E) —2 (#,0) 2 (Z,0) Rp'Z SN R*p.Z

22) mml | l l l 1 J

(2’ E") —Z— ¥,0) 2 (Z,0), Lks,a ——— Lgsa.
We define 0 := (&) ' o Oxs Iy e Aut(Xj). Since ' 0 &y = x|, by (iii) and hence
K3 Xo Xo
7z’|XO,\E, = (nly,\£) © (éo)_1|X0/\E,, we get by the first diagram of (2.2)

(n’XO\E) ° (9|XO\E) = (n’XO\E> ° (éo)_1|XO’\E’ ° ¢K3(IM)‘X0\E

= (n/|XO’\E’) o (PK3(IM)|XO\E

= (1%|Yo\{o}) © n|XO\E7

which implies (z|y,) o 0 = (iz]y,) o (7| y,). Since Xj is the minimal resolution of Z, i.e.,
Xo = Zy and since (Yo,1|y,) = (Zo,10), the equality (z|y ) o 0 = (1#|y,) o (n|y,) implies
that @ is the involution on X, induced from 1. Thus 0 = 1.

By (1.1), (2.1) and the second diagram of (2.2), we get

(23) 0% = oopgs(Tn) (%) 0 (&) %" = I 050 = Tuara)-
By (2.3), 0 =iy is an anti-symplectic involution of type [M L d]. This proves (1).

Let d e A),.. If 1 is of type (0, 3), then g([M L d]) = g(M) by [62], Proposition 2.5.
Since d € A, implies g([M L d]) = g(M) — 1 by Lemma 11.5 below, we get a contradic-
tion. Hence 7 must be of type (2,1). Since (Zo,7) is a 2-elementary K3 surface of type
[M L d), (Zy)" has total genus g([M L d]) = g(M)— 1 by Lemma 11.5. Since Zy — Z
is the blow-up at the ordinary double point oz, it follows from the local description
1(z) = (21,22, —2z3) near oy that the set of fixed points (Z,)" is the normalization of Z.
This proves (2). [
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Let @ be a (possibly disconnected) smooth complex surface. Let p: % — A be a
proper, surjective holomorphic function without critical points on %\ p~!(0). Then
p € — Ais called an ordinary singular family of curves if p has a unique, non-degenerate
critical point on p~1(0). We set C, := p~!(¢) for t € A.

Lemma 24. Let p:% — A be an ordinary singular family of curves and let
g:dimHO(C,,Qlct) for t+0. Let J: A" — o/, be the holomorphic map defined as
J(1) == Q(C,) for te A*. Then J extends to a holomorphic map from A to </ by setting

—~Z

J(0) := Q(Cy), where Cy is the normalization of Cj.

Proof. Since the result is obvious when g = 0, we assume g > 0. The extendability
of J follows from, e.g., [4], Chapter III, Theorem 16.1. Assume that p has connected fibers.
Either Cj is the join of two smooth curves 4 and B intersecting transversally at Sing Cy or
Cy is irreducible. The result follows from, e.g., [20], Corollaries 3.2 and 3.8.

Assume that € is not connected. Let € = % 11 - - - IT € be the decomposition into the
connected components and set p; := p|, . Since the period matrix of C; is the direct sum of
those of the curves p;!(z), the result follows from the case where p has connected fibers and
(4], Chapter III, Theorem 16.1. []

Theorem 2.5. For d € Ay, the following equality holds:

Ju

_ o
= Jmralmg

Proof. Let pe Hj and let y: A — /. be a holomorphic curve intersecting
H§ transversally at p =(0). Let py : (Z,1) — A be an ordinary singular family of
2-elementary K3 surfaces of type M with Griffiths period map y, such that p» is projec-
tive and such that (Zo,io) is a 2-elementary K3 surface of type [M L d]| with Griffiths
period y(0) (cf. Theorem 2.3). Let 0 € & be the unique critical point of py. Since
Tu(p) =Ty (7(0)) = ltma Ju (7(t)) by the continuity of Jy, and since

Toura)®) = T ia)(Zo,1o) = Q((Zo)")
by Theorem 2.3, it suffices to prove
24) Taa(p) = lim T (1) = R((Z0)*) = Ty (8).
Set ' :={ze Z;1(z) = z}.

Assume that 1 is of type (0, 3). By [62], Proposition 2.5(1), € := Z"\{o} is a smooth
complex surface and p|, : ¥ — A is a proper holomorphic submersion. Then

(2.5) ling I (Z1) = lirrol Q(C) = Q).
1= —
Since Z = Cy 1T {0}, we get (Z,)" = Cp II P!, which yields that
(2.6) Q(Co) = Q((Zy)").

Equation (2.4) follows from (2.5) and (2.6) in this case.
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Assume that 7 is of type (2, 1). By [62], Proposition 2.5 (2), p|,: : Z' — A is an ordi-
nary singular family of curves. Let W — Z be the normalization. We get

(2.7) lim 75, (Z,,1,) = lim Q(Z!) = Q(W) € /5

by Lemma 2.4. In the same manner as in the proof of Theorem 2.3 (2), we get W = (Z)",
which together with (2.7) yields (2.4) in this case. Since p is an arbitrary point of H, we get
the result. [J
The following propositions shall be used in the proof of Proposition 4.2 (3).
Proposition 2.6. I g(M) =1 and d € A),., then Jy (HY) = </y = o4\ o).

Proof. By Lemma 11.5 below, g([M L d]) = g(M) — 1= 0. By Theorem 2.5, we get
Tu(HY) = Ty g (HY) = o = /{\str. O

Proposition 2.7. If g(M) = 1, then J§,(Q,.) = /"

Proof. By Proposition 2.2, Ju extends to a meromorphic map from .#,;. to </;".
Since J§(Qf.) = Ju(Ay.) and since dim .o/ = 1, we have J{,(Qj,.) = o if Jj; is
non-constant. We see that J ¢, is non-constant.

Since g(M) = 1, we get by [48], p. 1434, Table 1, or [21], Appendix, Table 2,

28) M'~U@®A @A® ' (1<m<10), UQ)@UR @D, U UQ).

By (2.8), A),. £0. Let d € A),.. By Proposition 2.6, we get Jy(HY) = oAy = o2, \oA).
Since Jy,(Q ML) < .o7), this implies that Jj; is non-constant. []

Proposition 2.8. I g(M) =1 and d € A}, then Jy(HY) < /).

Proof. Since d e A'j,., we get g([M L d]) =g(M) =1 by Lemma 11.5 below. By
Theorem 2.5, we get Jy (Hj) = J(y; o (H7) < Iy 4(Q nrigt) €< O
Proposition 2.9. If g(M) =2 and d € A, ., then Jy/(H)) = 5\ <t

Proof. By Lemma 11.5 below, g([M L d]) = 1. By Theorem 2.5, we get

In(HG) = Ty q(H]) = T al (Q[(;\ud}i) = = Ay\ed,

where the third equality follows from Proposition 2.7. []

We define the divisor A5 < .o/, as

N3 :={Q(E| x E,) € o5; E, E, are elliptic curves}.
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Proposition 2.10. Let g(M) =2 and d € A},.. Then Jy(HY) 0 N3 * O if and only
if M=A@ Afag and d/2 =1y mod M*. In particular, if either M £ A @ Afag or
d/2 £ 13 mod M~, then

Proof.  Assume Jy (HY) n A5 # (. By Theorem 2.5,

J[Mid](Q[(;\lLd]l) NN D J[ML({](H[?) NN,y = JM(H;) AN % 0.
Let (X,1) be a 2-elementary K3 surface of type [M L d] such that Jjy (X ,1) € A5 If
M L d £ UG®E(2),U(2) @ Eg(2), there exists an irreducible smooth curve C of genus
g([M L d]) with Jpp 14 (X 1) = Q(C) by Proposition 2.1. By d € A}, and Lemma 11.5 be-
low, we get g([M L d]) = 2. However, the period of an irreducible smooth curve of genus 2
lies in .o/, \.A%. This contradicts the condition Q(C) € A%. Thus [M L d] =~ U @ Eg(2) or
(M Ld=UQ2)®E(2). If [M L d] = U(2) ®E(2), then C =0 by Proposition 2.1(1),
which contradicts the condition Q(C) e A45. We get [M L d] = U @® Eg(2) and hence
M*ndt =M Ld" ~U®@E(_2).

Since d e A}, we get (r(M),I(M))=(r(IM Ld])-1,I(M_Ld)+1)=(9,9)
by Proposition 11.6 below. Since r(M) =9, we get o(M) =1. All together, we get

(r(M),I(M),6(M)) = (9,9,1) and hence M =~A] ®AP®. Set L:=Zd = M*. Then
L = Ay. Since (r(M*),I(M*),6(M*)) = (13,9,1), we get the decomposition

Mt=(M'nd)®L=2UPOK2)OL

by comparing the triplets (r,/,6), which implies 1;,. = 1y;: g @1, =1, =d/21in Ay;..

Conversely, assume M = A ® AP® and d/2 = 1,;1 mod M*. Since d/2 e (M),
we get deA),.. Since (r(M*),[(M*)) = (r(M* nd*)+1,I(M*+nd*)+1) by Prop-
osition 11.6(3), (4) below, we get

r(Mtndt)=r(M*)—1=12 and [(M*nd*")=1(M"*)—-1=38.

Since d(M*) =1, we get M+ =(M+nd+)@®L by comparing (r,[,0). Let us see
that (M- ndt) =0. Let xe (M*+ nd*')" be an arbitrary element and let k € Z. Set

y=x+k(d/2)e (M) =(M*+nd")" ®L". Since 1,1 =d/2mod M+, we get by the
definition of 1,,.

—k/2=<y,d/2) =y, 1y ) =<3, 9> = <x,x) — k2 mod Z.
Hence x? = k(k — 1)/2 = 0 mod Z, which implies 5(M+ ~n d*) = 0. Since
(r,1,6) = (12,8,0) for M+ nd*,
we get M ndt ~U®> @ E(2) and hence [M L d] ~ U @ Eg(2). By Theorem 2.5,

Ju(HY) < Jiva (4 14)) = 2, where the last inclusion follows from Proposition 2.1 (2).
Hence Jy (H)) n A2 0. O
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3. Log del Pezzo surfaces and 2-elementary K3 surfaces

In this section, we recall the notion of log del Pezzo surfaces of index < 2 and DNP
surfaces, for which we refer the reader to [1] and [44]. In Section 3, the canonical divisor
of a normal complex surface S is denoted by K. Hence the canonical line bundle of S is
denoted by Os(Ks) in stead of Qé in this section.

3.1. Log del Pezzo surfaces of index 2 and DNP surfaces. A normal projective sur-
face S is a log del Pezzo surface if it has only log terminal singularities and if its anti-
canonical divisor —Kjy is an ample Q-Cartier divisor. The index of S is the smallest integer
v € Z~ such that —vKj is Cartier, [1], Section 1.

A smooth projective surface Y is a DNP surface if h'(Y) =0, Ky + 0 and if there
exists an effective divisor C € |-2Ky| with only simple singularities, [1], Section 2.1. A
DNP surface Y is rational if |-2Ky| + 0. If Y is a DNP surface and if C € |[-2Ky]| is a
smooth divisor, the pair (Y, C) is called a right DNP pair.

Let S be a log del Pezzo surface of index 2. By [1], Theorem 1.5, |-2Ks| contains a
smooth curve. Let C € |—2Ks| be smooth. To the pair (S, C), one can associate a right
DNP pair and a 2-elementary K3 surface as follows ([1], Section 2.1, [44], Section 6.6).

Let o : S — S be the minimal resolution. Since S has only log terminal singularities of
index 2, we deduce from [1], Section 1.2, the existence of a non-zero o-exceptional simple
normal crossing divisor £ on S such that —2Ks ~ 0*(—2Ks) + E. If D is a connected
component of E, the germ (S, oc(D)) € Sing S is isomorphic to one of the singularities K,
in [1], Section 1.2, [44], Example 4.17.

Let f: ¥ — S be the blowing-up at the nodes of E. By [1], Section 1.2, the proper
transform Ey of E is the disjoint union of (—4)-curves on Y and the total transform f*E
is the disjoint union of the configurations in [1], Section 1.5 (9). Set p := o o . The bira-
tional morphism p : Y — S is called the right resolution of S.

Let Cy := p~!(C) = Y be the total transform of C with respect to the birational mor-
phism p: Y — S. Since C e |-2Kg| is smooth and hence C n Sing S = 0, ple, 1 Cy — C
is an isomorphism. By [1], Section 2.1, [44], p. 415, Eq. (6-1), Y is a DNP surface and the
pair (Y,Cy + Ey) is a right DNP pair. We call (Y, Cy + Ey) the right DNP pair associ-
ated to (S, C).

Since Cy + Ey € |-2Ky]|, there exists a double covering 7 : X — Y with branch
divisor Cy + Ey. Let 1: X — X be the non-trivial covering transformation of 7 : X — Y.
By [1], Section 2.1, [44], Section 6.6, (X,7) is a 2-elementary K3 surface such that
X'~ Cy+ Ey. We call (X,1) the 2-elementary K3 surface associated to (S, C). In this
case, g(C) = g(X"') = 2 by [1], Theorem 4.1.

Conversely, if (X, 1) is a 2-elementary K3 surface with g(X*) = 2, then (X /1, X') isa
right DNP pair. By [1], Theorem 4.1, there exists a unique pair (S, C), where S is a log del
Pezzo surface of index < 2 and C € |-2Kj| is a smooth member, such that (X,:) is associ-
ated to (S, C).



Yoshikawa, K3 surfaces with involution, 11 31

3.2. Some properties of the main component of X’. Let M < lg; be a primitive
2-elementary Lorentzian sublattice. Assume that M is non-exceptional and that g(M) = 1.
Recall that if (X, 1) is a 2-elementary K3 surface of type M and if X' = CI E; II--- 11 E}
denotes the decomposition into the connected components with g(C) =¢g(M) =1 and
E; ~ P! for 1 <i <k, then C is called the main component of X'.

Proposition 3.1.  Assume that r(M) > 10 or (r(M),5(M)) = (10, 1). Then

0=g(M) =<5
and the following hold.

(1) If g(M) = 3, then there exists a 2-elementary K3 surface (X ,1) of type M such that
the main component of X' is non-hyperelliptic.

(2) If g(M) = 4, then there exists a 2-elementary K3 surface (X ,1) of type M such that
the main component of X' is isomorphic to the complete intersection of a smooth quadric and
a (possibly singular) cubic in P>,

(3) If g(M) =5, then there exists a 2-elementary K3 surface (X,1) of type M such
that the main component of X' is the normalization of an irreducible plane quintic with one
node.

Proof. By [48], p. 1434, Table 1, and the assumption on M, we get 0 < g(M) < 5.

In what follows, we use Nakayama’s notation [44]|, p. 410, Table 6, and [44],
pp. 494-495, Table 14, for the type of log del Pezzo surfaces of index < 2. See [44],
p. 410, Tables 9, for the relation between the type of a log del Pezzo surface and the type
of the associated 2-elementary K3 surface.

Let S be a log del Pezzo surface and let I € |-2Kg| be a non-singular member. Let
M < [g3 be the type of the 2-elementary K3 surface (X,1) associated to (S,I"). The main
component of X' is isomorphic to I" by construction.

(1) Since g(M) =3, r(M) 2 10 and (r(M),6(M)) * (10,0), the type of S is one of
2],(h) (0 = b = 4) by [44], p. 410, Table 6 and p. 444 Table 9. By [44], pp. 494495, Table
14, S is a hypersurface of P(1, 1, 1,2) defined by the following equation:

Lattice M+ Type of S Equation defining S
U@ Ds @ AP*  [2],(0) xyu =zt + F3(x,2)x + G3(1,2) y,
U2 D@ AI@H’ 2],(b) (1 b <4) xyu=Fip(x,2)x" + G3(y,2)y,

where wt(x) = wt(y) = wt(z) = 1, wt(u) = 2 and Fi(x, y) € C[x, y] is a homogeneous poly-
nomial of degree k and Gs(x, y) € Clx, y| is a homogeneous polynomial of degree 3. Since

OUs(—2Ks) = Op(1,1,1,2)(2)|5 by the adjunction formula and hence

i Ul ,2) € HO(S.5(-2K)
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for a homogeneous polynomial U(x, y, z) € C|x, y, z| of degree 2, a general member of the
linear system |—2Kj| is a hypersurface of P? defined by the following equation:

Type of S Equation defining I
2]..(0) xyU(x, p,2) = 2%+ F3(x,2)x + Ga(1,2) y,
21,(b) (1 £b=4) xpU(x,y,2) = Fap(x,2)x" + G3(y,2) .

In particular, I' € |-2Kjs]| is a smooth plane quartic if Fi(x, y), G3(x, y) and U(x, y, z) are
sufficiently general. Since a smooth plane quartic curve is non-hyperelliptic, we get (1).

(2) Since g(M) =4, r(M) = 10 and (r(M),6(M)) * (10,0), the type of S is one of
[0;1,1],(b) (1 =b < 3) by [44], p. 410, Table 6 and p. 444, Table 9. By [44], pp. 494-495,
Table 14, S is a complete intersection of P(1,1,1,1,2) defined by the following equations:

Lattice M+ Type of S Equations defining S
xXw = yz,
+\@2 @2 .
(AT OE S A, 10;1,1],(1) {xu: (w+cz)zw+ (w+c'y)yw,

xw = yz,
@2 ®3-b .
(AN @L® A, 0;1,1], () (b 2 2) {xu = (w4 cz)zw + w3 tyb,
where wt(x) = wt(y) = wt(z) = wt(w) =1, wt(u) =2 and ¢,¢’ € C are constants. Since
OUs(—2Ks) = Op(1,1,1,1,2)(2)|s by the adjunction formula or by Lemma 3.2 below and hence
u—U(x,y,z,w) € H'(S, Os(—2Ks)) for a homogeneous polynomial

U(x,y,z,w) e Clx, y,z,w)
of degree 2, T' € |-2Kj| is a complete intersection of P* defined by the following equations:

Type of S Equations defining I
[0;1,1],(1) xw=yz, xU(x,pyz,w)=w+cz)zw+ (w+c'y)yw,
0;1,1].(b) 2<b<3) xw=yz, xU(x,p,z,w) = (w+cz)zw+ w3 byl

By choosing ¢, ¢', U(x, y,z,w) sufficiently general, I" is a complete intersection in P* of a
smooth quadric and a (possibly singular) cubic. This proves (2).

(3) Step 1. Since g(M) =5, r(M) 2 10 and (r(M),5(M)) = (10,0), the type of S
is one of [1;1,1],(1,b) (2 < b < 3) by [44], p. 410, Table 6 and p. 444, Table 9. By [44],
pp. 494-495, Table 14, S is a subvariety of the weighted projective space P(1,1,2,2.4)
defined by the following equations:

Lattice M+ Type of S Equations defining S
xw = yz,

USA@E®AP™ [1;1,1,(b) (2<b<3) {z2w = (xu — y*~tw ),

ow? = (xu— y?=w3)y,

where wt(x) = wt(y) = 1, wt(z) = wt(w) = 2, wt(u) = 4. Notice that S is not a complete
intersection in P(1,1,2,2,4).
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Since Os(—2Ks) = Op1,1,2,2.4)(4)|g by Lemma 3.2 below and hence
u—U(x,p,z,w) e H(S, Os(—2Ky))

for a weighted homogeneous polynomial U(x, y,z,w) e C[x, y,z,w| of degree 4, " is a
subvariety of P(1,1,2,2) defined by the following equations:

Type of S Equations defining I
Xw = yz,

11,1, (0) 2<bh<3) {Zw=(xU(x,y,z,w) - y wP)x,
aw? = (xU(x, y,z,w) — y» 3”’)y.

Step 2. Set Zy:={(x:y:z:w)eP(1,1,2,2);xw= yz}. By [44], Lemma 7.6,
2 = P(Up1 @ Opi(1)) is a Hirzebruch surface, which contains I" as an irreducible divisor.
The projection p : ¥; — P! is given by the formula

piXia(x:y:z:iw)— (x:p)=(z:w)ePl
By [44], Lemma 7.6, the negative section ¢ of p : £; — P! is given by
c:Pla(z:w) = (0:0:z:w)eX.

Let / and C be the divisors on X; defined as
={0:y:0:w)eXZ;(y:w)eP(1,2))=p 1(0:1) cX,
C={(x:y:z:w)eZyz?w= (xU(x,y,z,w) — y2b*1w3*b)x} < .

We have the equation of divisors C =T +7. Since Up(1 1,22 (2)l5, = Os,(0+2/) by
[44] Lemma 7.6, and since z?w — {xU(x,y,z,w) — y**"!'w3?}x is an element of
( (17 17272) @)(1,1,2,2)(6)): we get
[+¢=C=div(z?w— {xU(x,y,z,w) — ¥y 'w¥"}x) e |0z, (3(c +20))].
Hence I' = C — / € |05, (30 + 5¢)|. Regard H*(2;,Z) as the Neron—Severi lattice of ;.
Then we have the equations -0 =—1,/-/=0and -/ = 1. Since I is linearly equiv-
alentto3c+ 5/, wegetI'-I'=21,T-0=2.
Step 3. Letnm:X — P? be the blowing-down of the (—1)-curve o and set I' := 7(I").
Let u := mult,,) I' be the multiplicity of I" at n(a) Then u =T -0 =2, so that n(o) is
a double pomt of [. Since T is smooth and since 7:I'\a — I'\{z(0)} is an isomor-
phism, F has a unique smgular point at z(¢) and z| : T — T is the normalization. Since
(degF) =[.-T=T-T+u>=25 wegetdegll = 5.

Since 7 : £; — P? is the blowing-down of ¢ and since T’ = 7(T), n(o) is a node of T

if and only if I intersects o transversally at two different points. Since I" -0 = 2, (o) is a
node of I' if and only if #(I' " ¢) = 2. By the definitions of I" and o,
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#Tno)=#{(x:y:z:w)elx=y=0}
=#{(0:0:z:w)eP(1,1,2,2);zw =0} =2.

Hence I' = P? is a quintic with one node, and I is the normalization of T. [

3.3. Some log del Pezzo surfaces of index 2. Let » be an integer with 0 < n < 3. Let
(x:y:z:w:u) be the system of homogeneous coordinates of the weighted projective
space P(l, Ln+1,n+1,2(n+ 1)) with weights

wt(x) =wt(y) =1, wt(z)=wtiw)=n+1, wt(u) =2(n+1).
Set

W = {(x:y:z:w:u) eP(l,l,n+1,n+ 1,2(n+ l));xw:yz}.

In [44], Proposition 7.13, Nakayama gave a system of homogeneous polynomials that
defines a log del Pezzo surface of index 2 as a subvariety of .

Lemma 3.2. Let S < W be a log del Pezzo surface of index 2 as in [44], Prop-
osition 7.13. Then the following isomorphism of holomorphic line bundles on S holds:

Op(1 1 nr1ni1,201)) (2( 4+ 1)) g = Os(—2Ks).
Proof. Let # be the vector bundle of rank 2 over P(1,1,n+ 1,n+ 1) defined as
F = @P(l,l,ll+1,n+l) S @P(l,l,n+l,n+l)(2(n + 1))

Let P(#)—P(l,1,n+1,n+1) be the Pl'-bundle associated with % and let
Op(#)(1) — P(F) be the tautological quotient line bundle. Let

VY:P(7)—P(l,1,n+1,n+1,2(n+1))
be the birational morphism as in [44], Lemma 7.5.

Set X, :={(x:y:z:w)eP(1,l,n+1,n+1);xw=yz}. By [44], Lemma 7.6,
%, = P(Op1 @ Opi(n+ 1)) is a Hirzebruch surface. We set

& =F

s, P(&):=P(F)

5 Ope)(1) = O (1) ]ps)-

Then P(&) — X, is the P'-bundle associated with &, and Op(s)(1) — P(&) is the tautolog-
ical quotient line bundle. Set ® :=P[p,). Then ®(P(&)) = W by [44], Proposition 7.13.
By [44], Proposition 7.8, ® : P(§) — W is a birational morphism. By [44], p. 461, 1. 10,
we have W Op 1 1 i1, n41,2(0+1) (2(n + 1)) = Up(#)(1) and hence

(3.1) O Op(1,1 1,011,201 (202 + 1)y = Opry (D psy = Cpiey (1)
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Let V' < P(&) be the proper transform of S with respect to the birational morphism
D:P(&) — W. We set ¢ :=®|,, (cf. [44], p. 465, 1. 15). Then ¢ : V' — S is a birational
morphism. By [44], p. 464, 1. 1-11, we have

(32) (0*(95(—2[(5) = (OP(J)(INV
By (3.1) and (3.2), we have an isomorphism of holomorphic line bundles on V:

(3.3) 9 Ot st et 21y (2(n + 1)) g = 9" Os(—2Ks).

Since ¢l -1 (sings) * ¥\~ (Sing S) — S\Sing S is an isomorphism by [44], p. 464, 11. 910,
and since S is normal, the desired isomorphism follows from (3.3). [

3.4. Even theta-characteristics on the main component of X'. Recall that a theta-
characteristic on a compact Riemann surface C is a half canonical line bundle on C,
i.e., a holomorphic line bundle on C whose square is the canonical line bundle of C. A
theta-characteristic L is even if h°(L) = 0 mod2. A theta-characteristic L is effective if
h°(L) > 0. If g(C) denotes the genus of C, there are exactly 29()=1(29(€) + 1) even theta-
characteristics on C.

Proposition 3.3. Let C be a compact Riemann surface of genus g(C).
(1) If g(C) < 2, C has no effective even theta-characteristics.

(2) When g(C) =3, C has no effective even theta-characteristics if and only if C is
non-hyperelliptic.

(3) When g(C) =4, C has no effective even theta-characteristics if and only if C is a
complete intersection of a smooth quadric and a cubic in P>

(4) If C is the normalization of an irreducible plane quintic with one node, then
g(C) =5 and C has no effective even theta-characteristics.

Proof. (1) When g(C) = 0, the result is trivial. When g(C) = 1, 2, the result follows
from, e.g., [43], Chapter Illa, Proposition 6.1 (iv), since C is hyperelliptic.

(2) The result follows from, e.g., [35], p. 58.

(3) We may assume C to be non-hyperelliptic by [25], p. 258, [43], Chapter Illa,
Proposition 6.1 (iv), Corollary 6.7. The result follows from, e.g., 2], p. 196, A-3, p. 206
and p. 232.

(4) The result follows from [58], Lemma 0.18 (i), (ii). [

Proposition 3.4. Let M c g3 be a primitive 2-elementary Lorentzian sublattice. If
r(M) > 10 or (r(M),6(M)) = (10,1), then there exists a 2-elementary K3 surface (X,1) of

type M such that X' has no effective even theta-characteristics.

Proof. The result follows from Propositions 3.1 and 3.3. []
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4. Automorphic forms on the period domain

4.1. Igusa’s Siegel modular form and its pull-back on Q,,.. Let %, be the Hodge line
bundle on .2Z,. Then %, is an ample line bundle on .27, in the sense of orbifolds. There is an
integer v € N such that # is a line bundle on ¢/, in the ordinary sense and such that 7™
extends to a very ample line bundle on ./, for m > 0. In this case, let 7™ denote the
holomorphic extension of #™" to /. An element of H (<, 7, k) is identified with a
Siegel modular form on &, for Spy, (Z ) of weight k. For g > 0, we deﬁne

1, Z) = I 0.5(%), e,

(a,b) even

1Y .

where a,b e {O, 5} and 0,,(X) := > exp{ni'(n+a)Z(n+ a) + 2ni'(n+ a)b} is the
neZ’

corresponding theta constant. Here (a, b) is even if 4’ab = 0 mod 2. When g = 0, we define

%o := 1. By [31], Lemma 10, )(2 is a Siegel modular form of weight 2971(29 + 1). Let Oy 4
be the reduced divisor on .27, defined as

O, = {[Z] € Ay; 7, (%) = 0}
It is classical that Opy,2 = A%. In Section 9, )(S shall play a crucial role.
Define the Petersson metric on %, by
(4.1) I1€]7(2) := (detImE)|E*, (Z,¢) e S, x C.

Since 8 is a Siegel modular form, || %[> = (det ImX)")[,(2)*|?, w(g) = 2971(29 + 1), is
a C* function on .27, in the sense of orbifolds.

Lemma 4.1. Let p: % — A be an ordinary singular family of curves of genus g > 0
such that Cy is irreducible. Let o := Sing Cy.

(1) There exists a holomorphic function h(t) € O(A) such that
log 2, ((C))*||” = 2% 2 1og|1|* + loglh(¢)|* + O(loglog|d| ") (1 — 0).
(2) If g=1o0r g =2, then h(0) 0.

t
Proof. We follow [41], p. 370, Section 3. For e &,, we write ~ = <Z ;),
wherezeSf),wng’l,Ze@y_l. @

(1) Since Cj is an irreducible curve of arithmetic genus g > 0 with one node, the nor-
malization of Cj is a smooth curve of genus g — 1. By [20], Corollary 3.8, there exists a
holomorphic function (¢) on A with values in complex symmetric g x g-matrices such that

(4.2) Q(C,) = F;’gtA + zp(t)} €y A= (01 ’(())2_11 )

g—1

t
Write (0) = (l/jo wO). Then Zy € S,y and lim Q(C,) = [Zo] € oy | = .
wy 2y t—0 *
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1 g
Fora,b e {0,5} , write a = (aj,d’), b = (b,b’), where

1 !
Cl],b] 6{0’5}7 a',b'e{O,E} .

1 . . .
Let a; = X There is a holomorphic function f, »/({, w, Z) such that
(43) 0, b(z) _ Z eni(n1+%)22+2m‘(m+%) ‘w(n'+a")+ri'(n'+a')Z(n'+a")+27i' (n+a)b
’ n=(n,n") e Zx29"!
= e%z{eim‘bl Qa/ﬁb/(—a)/2, Z) + enibl Ha/,b' (a)/2, Z)
+ e2m‘z a/ﬁb/(ehiz’w’ Z)}

= P00 ()2, 7) + (7, 0,2)},

where we used 4‘ab € 2Z and the identity 0, ,(—w/2,Z) = (—1)41”'1’/0“,’17,(@/2,2) to
get the third equality; see [42], p. 167, Proposition 3.14. The number of even (a,b) with
= 1/2is given by 2209~V

Similarly, let a; = 0. Then the pair (a’,b’) must be even. There is a holomorphic
function g, » (¢, w, Z) such that

(44) ga,b(z) _ Z eninfz+27zim’w(n’+a’)+m"(n'+a’)Z(n’+a')+2ni’(n+a)b
n=(ny,n") e Lx2I"!

= (—1)2ta/b/0a/7b/(Z) —|— emhg ’ b/( m',CO’ Z)
By (4.3), (4.4), there is a holomorphic function F({,w, Z) such that

(4.5) 1O = T 0up(2)° = ()" (™, 0,2)
) (a,b) even
= (ezniz)zzysz(e”iZ, w,Z).
Since X? is a Siegel modular form and hence y,(Q + A)® = XQ(Q)S, we have that F({,w, Z)

is an even function in . By (4.2), z = (logt)/2ni + vy, (¢) for some v,(¢) € O(A). Hence
exp(2miz) = texp 2z (1)). By (4.5), there exists A(f) € O(A) such that

2mi

(4.6) x(l"gf e >) 0]
Since

tm(5274 4 91) ) = (=55 logl )4 + Im(0) + O(1)
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Yo ‘oo
with y(0) = <a)z Z )’ Zye S, 1, we get
logt detIm Z;
4, Im( =2 4 _detmZo, 1).
(4.7) det m( = + lp(t)> > oglt| + O(1)

By (4.2), (4.6), (4.7), we get (1).

(2) Let g = 1. Since p : € — A is an ordinary singular family of elliptic curves, (A, 0)
is regarded as a local coordinate of ./ centered at the cusp +ico. Since y3(7) = n(x)*
vanishes of order 1 at the cusp of .Z", we get (2) in this case.

Let g=2. Then wyeC, Zpe  and O, 4 (Zy) £0 in (4.4). Set Ay :=Z + ZyZ.
By (4.3), the assertion (2) follows if 0, ,(wo/2,Z) % 0 for all (a,b) € {0,1/2}. Since

div0, (-, Zy) = [(a —1—%)20 + (b +%>} e C/A¢ by [42], Lemma 4.1, it suffices to prove

2
node of Cy, we can write 17! (o) = {01,02} with by =+ 0,. By [20], p. 53, Corollary 3.8, there
exist a symplectic ba51s {a, 8} of H\(Co,Z) and a holomorphic 1-form v on Cy such that

1 1_ . - . . .
that % ¢ (E Z> Zo+=Z,ie., mwy ¢ Ag. Let1: Cy — Cp be the normalization. Since o is the

Jo=1, J"v = Z, and f v = wy. Since 01 *+ DO,, we get wy ¢ Ag. This proves (2). [

o Dl

Let wg, be the Sp,,(Z)-invariant Kéhler form on S, defined as
wg,(Z) := —dd“logdetImX, Xe&,.
Let ., be the Kihler form on .7, in the sense of orbifolds induced from wg,. Then

g

= a1(Fy, |- 1D)-

Let (M) < Z be the ideal defined as follows: g € #(M) if and only if there exists

a4 1 * * : a4 _ g4
Zyony € H (A, Opr ) With Zian | = Fgiagy-

g(M)

Leti:Qf,. %y, — Q. be the inclusion. For g € (M), we set
Mg =100 o (T o).

By [62], Lemma 3.6, and by Proposition 2.2, the (g, -module 4}, is an invertible sheaf on

Q.. We identify A7, with the corresponding holomorphic line bundle on Q.. By [62],

Lemma 3.7, and by Proposition 2.2, the O(M*)-action on A4|qe ,uge  induced from the
M ML

O(M*)-equivariant map Jj, extends to the one on 4%,. Hence A4, is equipped with the
structure of an O(M*)-equivariant line bundle on 1%,.

Let || - ||+ be the O(M*)-invariant Hermitian metric on A7,|,. defined as
s Mmlo: |

- W, = ()"l - 11
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By (4.1), (J§;) @, is a C* closed semi-positive (1, 1)-form on Qj,. such that

a(T3) @y = 1 (Alae N Ile)-

Since dim Q,,:\(Q},. U Zy,.) < dimQ,,. — 2 when r(M) < 18, we can define the closed
positive (1, 1)-current J3,w. ,, on Q. as the trivial extension of (J§) w.,,, from Qf;
to Q,,. by [56], p. 53, Theorem 1, and [62], Theorem 3.9. When r(M) = 19 (JM) a)%@ ")
extends trivially to a closed positive (1, 1)-current Jy; ., on Q. ., because (J3;) @y,
has Poincaré growth along Z;,: by [62], Proposition 3.8. By [56], p. 53, Theorem 1, and
[62], Theorem 3. 13 the Hermitian metric || - 41 on M, Moo extends to a singular Hermi-

tian metric on A{, with curvature current

(4.8) CIGAE

Let / € Z- be such that 29(M)+1(29(M) 1 1)/ e #(M). Then f%”“;)ﬂ(zq( YD extends

to a, hlolomorphlc llne bundle on .7 ,,. Since XS(/M) is a holomorphu% )s?ctl(o)n of
73 ZM) (2o TSy ( ) is an O(M*)-invariant holomorphic section of /1 @)y
If J 0(Q4,1) & 9nu11 .g(m)» we define

. *
)‘4’4) = qJMw%(M) :

D= diV(J;/I)(E{M)).
Since Jys is O(M*)-equivariant with respect to the trivial O(M+)-action on Ly, Dis an
O(M*)-invariant effective divisor on Q.. By [56], p. 53, Theorem 1, [62], Theorem 3.13,

and (4.8), log||J ;(4)(5( I lies in L} .(Q):) and satisfies the following equation of currents
on Q. ‘

(4.9) —dd“ log|[J x5\ |17 = 29001 290D 4 1) T30y

) 51\"

Recall that the divisor Z;,. was defined in Section 1.4.

Proposition 4.2. Assume that r(M) > 10 or (r(M),6(M)) = (10,1) and that
g(M) > 0. Hence M is non-exceptional. Let ¢ € Z~ be such that

20+ (29M) 4 1)/ e 7 (M).
Then the following hold:
(1) J](\)l( 3 ) ¢ Hnullg

(2) There exist an integer a € Z=o and an O(M*)-invariant (possibly empty) effective
divisor E on Q. such that dim(E N 2y,.) < dim 2,,. and

D =20%M2 4 )9, +E.
In particular, the following equation of currents on Q1 holds:
—dd“1og|[ T8\ |17 = 29001 290D 1 )00, — 220072 + a)ldg  —Or.

3) If g(M)=10rg(M) =2, thena=0and E =0 in (2).
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Proof. (1) Let (X,1) be a 2-elementary K3 surface of type M and let C be the
main component of X'. By Riemann’s theorem [25], p. 338, and Riemann’s singularities
theorem [40], [25], p. 348, C has an effective even theta-characteristic if and only if
I35 (X 1) € O g(ar). Since (M) > 10 or (r(M),56(M)) = (10,1), there exists by Prop-
osition 3.4 a 2-elementary K3 surface (X,1) of type M such that the main component of
X" has no effective even theta-characteristics, i.e., J§;(X,1) ¢ Oun g(ar)- This proves (1).

(2) Since D is an O(M*)-invariant effective divisor on Q,,., we can write

D= > m(d)H;+E,

!
del) |

where m(d) € Z=( and E is an effective divisor on Q,,. with

Since g(Hy) = Hyy) for all g€ O(M~) and d € A, the O(M*)-invariance of D implies
that m(g(d)) = m(d) for all ge O(M*) and d € A),.. Since O(M*) acts transitively on
A, by [21], Proposition 3.3, and Proposition 11.6 (5) below, there exists o € Zx( with

(4.10) D=0}, +E.

Let d e A}, and p € Hj. Let y : A — .4y be a holomorphic curve intersecting H
transversally at y(0) = p such that y(A\{0}) = .4y \(Zy;: U D). By Theorem 2.3 (1), there
exists an ordinary singular family of 2-elementary K3 surfaces py : (Z,1) — A of type M
with Griffiths period map 7, such that (Zo,7) is a 2-elementary K3 surface of type [M L d]
with Griffiths period y(0).

Since the natural projection Iy, : Q)1 — .4, is doubly ramified along HJ by [62],
Proposition 1.9 (4), there exists a holomorphic curve ¢ : A — Q,,. intersecting H transver-
sally at ¢(0) € HY such that ITy. (¢(¢)) = y(¢*). Hence we have

(4.11) Ju(c(0)) =Q(ZY).

Since d € A,., by Theorem 2.3(2), 1 is of type (2,1). By [62], Proposition 2.5,
Ply + Z' — Ais an ordinary singular family of curves. Let ¢ < 2 be the connected com-
ponent such that C, := % n Z;" is the main component of Z;' for all € A\{0}. Since the
normalization of Z{ is given by (Z)", the normalization of Cy has genus g(M) — 1 by
Theorem 2.3 (2). Hence C is singular and p|, : ¥ — A is an ordinary singular family of
curves. Since the normalization of Cj has genus g(M) — 1 and since Cy has a unique node
as its singular set, C is irreducible.

We apply Lemma 4.1 to the ordinary singular family p|, : € — A with irreducible
Cy. Since Q(C;) = Q(Z;") for all t € A\{0}, there exists /() € O(A) by Lemma 4.1 (1) such
that

8112 _ -
(4.12)  log||xyn (Q(Z1)°||” = 226 2log|t)* + log|h(1)|* + O(logloglf| ™).
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Since y(A\{0}) n D = 0 by the choice of y, h(z) does not vanish identically on A by (4.6).
Let a € Z>( be the multiplicity of A(z) at t = 0. By (4.11), (4.12), we get

(4.13) o (D (@)™ ||> = 22202 4 )/ logle* + O(logloglr| ™),

which yields that H; < supp® for d € A’},.. Comparing (4.9), (4.10) and (4.13), we get
o =2(22M)=2 4 g)/ in (4.10). Since D and Z;,. are O(M*)-invariant, so is E by (4.10).
This proves (2).

(3) Let g(M)=1 or g(M)=2. By Proposition 3.3(1), we get the inclusion
D < Zy:. This, together with (4.10), implies the inclusion E < Zy,.. Since r(M) = 10
and hence M + A @ A8 there exists by Propositions 2.8 and 2.10 a dense Zariski
open subset U of 7y, with Jy(U) = \Qnuu g(m)- By the inclusion E = 2y, we get
Iu(EnU) < Ay \Onui, gm)- IFE + O J X,[y o(M) would not vanish on the non-empty dense
Zariski open subset EnU of E, which contradlcts the fact that E = © = div(J;x¥ ( ))
This proves that E =0. The equality a =0 follows from (4.12), (4.13) and the non-
vanishing /(0) + 0 in Lemma 4.1 (2). This proves the proposition. []

Lemma 4.3. Let p: € — A be an ordinary singular family of curves of genus 2 such
that Cy is the join of two elliptic curves intersecting at one point transversally. Then

12(Q(C))°||* = 8log|t* + O(loglog|s| ™) (1 — 0).

Proof. Since g = 2 and Cj is reducible, we deduce from [20], Corollary 3.8, the exis-
tence of a holomorphic map  : A — &, with

B B Y, 0 ry 0 a
ac) -l vo -t ) vo=(g) wwes axo
The result follows from, e.g., [61], Eq. (A.24). [

Proposition 4.4. Let g(M)=2 and r(M) <10, ie, M=A;®AP Let
gt <1M¢, — %) be the Heegner divisor defined as

1
%ML<1ML,—2 = H, = Z H,.
{/1€1ML+ML; 12=—%}/i1 deAX“/il,dﬂelML—&-Mi

Then the following equation of divisors on Qr. holds:
div(J;3) = 8D}, + 1640 (1Ml, —%>
In particular, the following equations of currents on Q1 holds:
—wﬂbﬂﬁﬂ¥W:4Mﬁﬂm—8%% — 1600, (1, 1)
Proof. Letde A}, andd/2=1y...Since M ~ A @ Aleag, we get

M Ld~U® E(2)
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by the proof of Proposition 2.10. Let pe Hj. Let y:A — .. be a holomorphic
curve intersecting H transversally at y(0) = p such that y(A\{0}) = 4y \(Zy. U D). By
Theorem 2.3 (1), there exists an ordinary singular family of 2-elementary K3 surfaces
p : (Z,1) — A of type M with Griffiths period map 7, such that (Z, i) is a 2-elementary
K3 surface of type [M L d] =~ U @ Eg(2) with Griffiths period y(0). As in the proof of
Proposition 4.2 (2), there exists a holomorphic curve ¢ : A — Q. intersecting HJ transver-
sally at ¢(0) € Hj and satistying (4.11). If 7 is of type (0, 3), then Z; is the disjoint union of
a smooth curve of genus 2 and an isolated point by [62], Proposition 2.5, which implies that
Ju (¢(0)) € )\ A5. By Theorem 2.5, this leads to the contradiction

JM (C(O)) = J[(;\/[Ld] (C(O)) = Jﬂj@[Eg(Z) (C(O)) € </V2,
where the last inclusion follows from Proposition 2.1(2). Hence 1 is of type (2, 1).

By [62], Proposition 2.5, p|,. : Z' — Ais an ordinary singular family of curves. Since
the normalization of (Z,)" is isomorphic to (Z)® by Theorem 2.3 (2) and since (Z, %) is
of type [M L d] =~ U @ Eg(2), we deduce from Proposition 2.1 (2) that (Z,)" is the join of
two elliptic curves intersecting at one point transversally. By Lemma 4.3, we get

(4.14)  log||xn(Q(Z))°|]* = 8log|)* + O(logloglt| ™) (£ — 0).
By (4.11) and (4.14), we get
(4.15) logH)(z(JM(c(t)))gH2 = 161log|t]* + O(loglog|t| ") (1 — 0).

By Proposition 2.1(3), we get Jy(Q4,.)=J5 Q1) < Z\Opn2. By Prop-

osition 2.10, we get J M( U Hfz)) < ./2\Onyii,2- By these two inclusions,
del), d/2%1,,.

JM <Q]0‘4L ) U H;;) < Jy2\0nu11,27

de, /241,

which implies that J},x5 does not vanish on Q. U U H}. Hence
ded! | df2£1,,

(Qyru2y.)NnDc(Qf.u @fll)\<Qj"P U U H;)

deN! | d/2%1,,

=D\ U Hj
ded! | d/2%1,,

1
C@]/MLU%ML (IML,—§>

Since Q1 \(Q4,. U Zj,.) is an analytic subset of codimension 2 in Q,,., we get

1
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Since the proof of Proposition 4.2 (2) works in the case M ~ A @ A?g, (4.13) remains
valid. Moreover, we get @ =0 in (4.13) by Lemma 4.1 (2). The desired formula follows
from (4.10), (4.13) with a = 0, (4.15), (4.16). [

4.2. Automorphic forms on Q. Let A be a lattice of signature (2,r7(A) — 2). We fix
a vector [y € A ® R with {/5,In> = 0, and we set

(), I
<7/a l/\> ’

Since H;, = 0, ja(y,-) is a nowhere vanishing holomorphic function on Q.

Ja(y, [m]) = [ e Qx, yeOT(A).

Let I’ = O (A) be a cofinite subgroup. A holomorphic function f € O(QY) is called
an automorphic form on Q. for T of weight p if

FG-W) =x)ia@, D)2 (), meQx, yel,

where y: T — C* is a unitary character. For an automorphic form f on Qy for I' of
weight p, the Petersson norm || /]| is the function on Q defined as

ity .
AN

If /(A) = 5, then ||f||* is a T-invariant C* function on Q, because the group I'/[T", T is
finite and Abelian and hence y is finite in this case.

(DI == Ka(la)” 1/ (D)1 Ka(l]) =

We also consider automorphic forms on Q). with values in the sheaf A%, Let
M < g3 be a primitive 2-elementary Lorentzian sublattice. Let y be a character of
O (M*). Let p,ge Z. Then ¥ € H*(Q},.,A4,) is called an automorphic form on Q.
for O+ (M) of weight (p, q) if for all y € OF (M),

Yy W) =2 (0, )Py (D), 1) € Qe

For an automorphic form ¥ on Q},. for O*(M™*) of weight (p,q), the Petersson
norm of W is a C* function on Q7. defined as

(4.17) (I = Kag ()" - ¥ ()

|§X47 [77] € QLL

5. The invariant 7); of 2-elementary K3 surfaces of type M

Let (X,1) be a 2-elementary K3 surface of type M. Identify Z, with the subgroup of
Aut(X) generated by 1. Let x be a Z,-invariant Kdhler form on X. Set

Vol(X,x) := (27)~ j;cz /2L
Let 5 be a nowhere vanishing holomorphic 2-form on X. The L?-norm of # is defined as

7))z = (2m)~ fﬂAn
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Let (o, = (8 + %) be the d-Laplacian acting on C* (0, ¢)-forms on X. Let ([o,,)
be the spectrum of [y ,. For 4 € a([y 4), let Ey 4(4) be the eigenspace of [y , with respect
to the eigenvalue A. Since Z, preserves «, Ey ,(4) is a finite-dimensional representation of
Z,. For s e C, set

Log@s) = > Trllg ;)4

15(7([:‘0-:/)\{0}

Then { ,(2)(s) converges absolutely when Res > dim X, admits a meromorphic continua-
tion to the complex plane C, and is holomorphic at s = 0. The equivariant analytic torsion
of the trivial Hermitian line bundle on (X, x) is defined as

2, (X, 1) (1) :=exp| = 32 (=1)q4; ,()(0) |-

=0

We refer to [52], [6], [7], [24], [5], [38], [32] for more about equivariant and non-equivariant
analytic torsion.
Let X' = > C; be the decomposition of the fixed point set of : into the connected

1
components. Let ¢|(C;, x[c,) be the Chern form of (7Ci,x|c,) and let 7(Ci,k|c,) be the
analytic torsion of the trivial Hermitian line bundle on (Cj, x| ). We define

14—r(M)

(X, 1) := Vol(X,(21) "'k) * 12,(X, K)(z)ri[ Vol(Ci, 27) 'kl ) 1(Cr il )

X exp [1 J 10g<77/\;7 Vol (Zn)_lx)>
8 i

/2! Iz

Cl(Xl>K|X'):| )

XI

which is independent of the choice of k by [62], Theorem 5.7. Hence 74,(X, ) is an invari-
ant of the pair (X, 1), so that 73, descends to a function on ...

Theorem 5.1. There exist an integer v e Z~y and an automorphic form @y on

Qur1 for OF(M™) of weight (v(r(M) — 6),4v) with zero divisor vy such that for every
2-elementary K3 surface (X,1) of type M,

o (X,1) = | ar (Bar(X, 1)) .

Proof.  See [62], Main Theorem, [66], Theorem 1.1, and Proposition 11.2 below. [

6. Borcherds products
6.1. Modular forms for Mp,(Z). Recall that § < C is the complex upper half-plane.

Let Mp,(Z) be the metaplectic double cover of SL,(Z) (cf. [11], Section 2), which is gener-
ated by the two elements

(0 3)) s - (1))
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For y = ((i Z),\/cr+d> € Mp,(Z) and 7 € §, we define

; S g _at+b
J( 1) =Ver+d and yTi=

Let M be an even lattice, C[A4)] be the group ring of the discriminant group 4,,, and
{e)},c 4, be the standard basis of C[4]. The Weil representation

Py Mpy(Z) — GL(C[4])

is defined as follows ([11], Section 2):

j—o(M)/2

Z 6727U<y~5>e()-.

6.1) pu(The, = e e, py(S)e, :=——
( M ) b Y M ) 4 |AM|1/2(56AM

A C[A)y]-valued holomorphic function F(z) on $ is a modular form of type p,, with

weight w € %Z if the following conditions (a) and (b) are satisfied:

(a) ForyeMpy(Z) and te §, F(y-7) = j(y, 1) pu (7) - F(2).

‘ 1
(b) F(r) = 3 e, Y. c,(k)e*™™**, where [ is the level of M, ¢,(k) e Z for all k e 7Z
veAy  kelz
and ¢,(k) =0 for k « 0. '

By the first condition of (6.1), [14], Eq. (1.4), and condition (a), we get
0 if k¢9?/2+7Z,

6.2 (k) =

(62) (k) {c_},(k) if key2/2+Z.

The group O(M) acts on C[4y] by g(e,) := e;,), where g€ O(qy) is the element
induced by g € O(M). For a modular form F of type p,,, we define

Aut(M,F):={ge O(M);g(F) = F}.
Then Aut(M, F) is a cofinite subgroup of O(M), since Aut(M, F) > ker{O(M) — O(qun)}.

6.2. Borcherds products. Let A be an even lattice of signature (2,7(A)—2).
Assume that A = U(N) @ L, for simplicity. A vector of A ® Q is denoted by (m,n,v),
where m,neQ and ve L® Q. We write a vector of 45 in the same manner. If

F(7)= > f,(r)e, is a modular form of type p,, then F(r) induces a modular form
yEAA
F|,(7) of type p; with the same weight as follows ([10], Theorem 5.3):

63 L@ = T fa@e finl®= T fon@

A€eAL n=0
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Write Fl,(t) = Y. e, Y. ¢z ,(k)e*™*. By [10], Section 6, p. 517, F|,(z) induces
ye

Ar 72
kes+Z
a chamber structure of ¢, = *

AeLY,A2<0,¢, 5(27/2) %0 aed

where /; = 21 = {ve LOR;{v,A> = 0} and {#}},. , is the set of connected components
of (6, )2|L. Each component ¥, is called a Weyl chamber of F|, (7). If A€ L ® R satisfies
{A,wy > 0 forall we #,, we write A-#, > 0.

Theorem 6.1. Let F(t) = > e, Y. ¢ (k)™ be a modular form of type p, with

veda keﬁ—&-Z
weight a(A)/2. Then there exists a meromorphic automorphic form ¥a(z, F) on QF for

Aut(A, F) n O (A) of weight ¢y(0)/2 such that

. 1
dlv(‘PA(~,F)) == > 01(12/2>H2 = > cz(ﬁ/z)m.
JeAY, 72 <0 LeAY/+1,22<0

If W is a Weyl chamber of F|,, then there exists a vector o(L,F|,, ") € L ® Q such that
WA(z, F) is expressed as the following infinite product near the cusp under the identification
(1.2): For ze LR+ iW with (Imz)* > 0,

o (z, F) = 2oL FL ) ] [T a —e2""(<iv2>+%))c(ﬁ“~’7)Wz).
AeLY,3W>0neZ/NZ

Proof. See [10], Theorem 13.3, and [14], Theorem 3.22. []

The automorphic form Wx(z, F) is called the Borcherds product or the Borcherds
lift of F(t), and the vector o(L, F|,, ") is called the Weyl vector of W(z, F). See [10],
Theorem 10.4, and [11], p. 321, Correction, for an explicit formula for o(L, F|,, #").

7. 2-elementary lattices and elliptic modular forms

Throughout Section 7, we assume that A is an even, 2-elementary lattice. Set

MIy(4) := { ((Z Z),\/cr+d) e Mp,(Z);c = Om0d4}.

1 . . .
Letwe EZ and let y : MT'y(4) — C” be a character. A holomorphic function f(7) on § is

a modular form for MI'y(4) of weight w with character y if the following conditions are
satisfied:

@) f(7-1)=j(2,7)™2(»)f(z) for all y € MT'x(4) and 7 € $.

(b) f(r) = 3 c(k)e*™** with c(k) = 0 for k « 0.
ke%Z
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o0
Set ¢ = e?™* for t€ §. Let 5(z) = ¢'/** [] (1 — ¢") be the Dedekind 5-function and
n=1

let $2(7), R3(7), J4(7) be the Jacobi theta functions:

1\2 2 n n?
9a() = zzq@*i) 2 9(r) = % " 2 94(r) = > (-1)'q 2,

Notice that we use the notation ¢ = ¢>™* while ¢ = ¢™" in [16], Chapter 4. Recall that A is
the negative-definite one-dimensional A4;-lattice (—2) and A; = (2). For d € {0,1}, let
Oa+ya/2(7) be the theta function of A

9,&1*(7) = 95(27), 9&;+1/2(7) = % (27).

By [11], Lemma 5.2, there exists a character y, : MT'(4) — {£1, +i} such that 05+ (7) is a
modular form for MI'y(4) of weight 1/2 with character y,.

For k € Z, define £”(2), £," (v) € 0($) and {¢}” (!)}1c 7 {et (D} 1cz/a bY

(0) 77(27)80A+(7)k (0) ; _1
S () ::W:;f" (g =q~ +8+2k+ 0(q),
77(4T)80A1++%(T)k

> 2¢ (1)g'

(@) =16 i MR
n(27) lebiz

= 2" + (k +16)g” + O(¢*)}.

We define holomorphic functions g,(f)(r) e 0(9), ieZ/AZ, by

o' @)= "
[ =imod4
By definition,
8 k
() n(t/2) QA]*(T/“) (0)
g, (t) = = f, ' (t/4).
ie%/:4Z 3 ) ’7(7)8’7(7/4)8 el Y

For a modular form ¢(7) of weight / for MI'y(4) and for g € Mp,(Z), we define

#,(0) = plg - (9.0
The following key construction of modular forms of type p, is due to Borcherds.

" Proposition 7.1. Let ¢(t) be a modular form for MI'y(4) of weight | with character
g
o and set

Balgl(z) = #l,(D)palg")eo-
9 ML (4] Mpy(Z)

Then the following hold.
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(1) pa(g)en = 19(9)"Meo for all g € MTo(4).

(2) BA[4](7) is independent of the choice of representatives of MT'y(4)\Mp,(Z). More-
over, Ba[p|(1) is a modular form for Mp,(Z) of type p of weight 1.

Proof. (1) Let x4, be the character of MI'y(4) defined in [11], Theorem 5.4. Let
k e Z-o be such that g(A) + 8k = 0. Since |Ap|- 20N +8k = 222H4k+(A)=(A)/2} e get

-1
<‘ A\) = 1 and y4,2-ns = 1 by the definitions of the character y, and the symbol <2>

in [11], p. 328. Hence we get y,, = Xg(/\) by [11], Theorem 5.4.

d
rem 5.4, we get pa(g)eo = y9(g)"Mey for all g e MI'(4)', because o :)(g(A). Since the
coset MI'y(4)/MTI'(4)" is represented by {1, 7T, T? T3}, any g € MI'y(4) can be expressed
as g = T, where a € Z and gy € MI'(4)". Since p,(T)eo = eo by (6.1) and y,(T) = 1 by
[11], Lemma 5.2, we get

Set MI'(4) := ((Ccl b),\/cr+d eMp,(Z);b=c= Omod4}. By [11], Theo-

) a(A) ) a(A)

pag)er = p(T) p(g0)eo = 75(90)" ™ eo = 1o(T“90) " eo = 19(9)" e
Since g € MI'((4) is an arbitrary element, we get (1).

(2) By (1), the result follows from [55], Theorem 6.2. See also [10], Lemma 2.6, and
[11], proof of Lemma 11.1. [

: . : k
Lemma 7.2. The function fk(o)(r) is a modular form for MI'y(4) of weight —4 +§
with character )((/,‘

Proof.  The result follows from [11], Lemma 5.2 and Theorem 6.2. []

1 1
Set Z .= S? = (—(0 (1)>,i> and V :=S'T%S = ((_2 ?),\/—21—1—1).

Lemma 7.3. The coset MT'o(4)\Mp,(Z) is represented by {1,S,ST,ST? ST?, V}.

Proof. Since none of two elements of {1,S,ST,ST?, ST?, V} represent the same
element of MI'(4)\Mp,(Z) and #MT((4)\Mp,(Z) = 6, we get the result. []

Recall that 15 € A5 was defined in Section 1.2. Define vy, v}, v2,v3 € C[44] by

v = > es.

deAp,0°=k/2 mod2

Lemma 7.4. The following identities hold:
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Proof. (1) Since S~! = SZ3 and since pj(Z)e, = i "We_, by (6.1), we get

a(A)

2 aA) 1A

jo(A) ! Z es=1i227 Z es.

Pa(S™ e = pA(S)pa(Z)eg = i7" ——3
A AR ]AA\]/zaeAA dedy

This, together with the first equation of (6.1), yields (1).
(2) By [11], p. 325, 1. 16, we get

pA(ST—ZS)eO _ i—a(A)|AA|—1 Z eZni{<y76>+y2}e5 _ i_g(A)elA,
7,0 € Ap

where we used the identity

ZA eZni<y,a+y> — ZA e2ﬂi<y,8+1/\> = |AA|51/\78
y€AA rEAA

(cf. [11], Lemma 3.1) to get the second equality. Since S~' = §7 = Z3S, we get

pa(V""eo = pa(Z)’pp(ST2S)eg
=i " Mpa(2) e,
= i*”(A)iJ”(A)ezlA =ey,.
This proves (2). [

Lemma 7.5. The following identities hold:
8k k T+

1) £ =251 (55

@ £ @ = £ @),

Proof.  We apply [10], Theorem 5.1, to the lattice A" = (2. Since

1
Apr =<2)7/<2) = {075}7
the group ring C[4 Af] is equipped with the standard basis {eo, ¢/»}. Set
O (1) :=0a:(v)eo + Onr112(T)er 2.
By applying [10], Theorem 5.1, to A", we get

(7.1) Oni(g-7) = Jj(9:7)pa: (9)Oas (1), g€ Mpy(Z).

By (6.1) and (7.1), we have

. ey + ey 1€ —1ey
On: (ST -7) = STI,T{ On+ (1) +i' ——L204+ T},
Al( ) J( ) \/2—1 Al() \/2—1 A1+1/2()

On: (V1) = j(V,1){ealn:11/2(7) + €120+ (1)}
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Comparing the coefficients of ey, we get

(12)  Oatlsp (1) = (20) 2{0u: (1) + 0401 olc >}=(2i)59/.\;(le)»

(7.3) 0&;’1/(7) = 0A1++1/2(T)-

Here we get the second equality of (7.2) as follows:

T+l win?(t win?(t .
0&:( )— S P/ S A (1) 4 10,0 (7).

4 n even n odd
Set #7-sy84-8(7) := 17(1)7877(21)817(41')78, which is a modular form for MI'y(4) by

0 -1
Lemma 7.2. Since ST’ = (1 ; >,\/T+1> and since n(—t )% = t%y(7)® by [11],
Lemma 6.1, we get

g 1
Ni-spsg-s|s71(T) = (T+ )71 5345 (_ T——i—l>

:(r+l)477(—%+1)_8,7<_%+l>8;7(_ri+1)—8
— (t+D*r+1) 4<r+l> <f+1)

cres (Y

which, together with (7.2), yields (1).

1
Since V' = (( s ?),\/—21 + l> and since 77, s,s4 s (7) has weight —4, we get

4 T 8 2t Y 40\
M-sgsasly (1) = (=20 + 1) ”(—2r + 1) ”(—21 + 1) ’7(—21 + 1>
=(=21+1)* (2 - %)4 (1 - %)4 G - %)4
(2= (-2 Gs)
ren(a-) (- ()

-8
We define A(7) := (T + ;) 721+ 1)%y(4r +2) % for r € §. Then

1
(7.4) Ny-sasa-s|y (1) = 16T%h <_ E)‘
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Set { := exp(27i/48). Since A(7) is equal to

4‘8“6‘32{ ‘%loj (1- (—Q)")g}{qi‘iﬁl(l - qz")g}{q‘%nﬁl(l - q“”)_g}
=—q"! ﬁl{(l —) P+ ) (1= {1 =) 1+ )

= —q H( 211) 8(1 +q2n)78<1 +q2n71)78

and since we have the identities

9(20) = 204 T1(1 - ¢™)(1 + ¢™)’

n=1

and

[(1-g™)(1—g*!)’

s

(7.5) %20 = 10— ™)1+ ™), 9a(2x) =

n=

—_

n=1

by [16], p. 105, Egs. (32)—(36), we get

8

(7.6)  $(20)*%(20)* = 2% (1 — ¥+ )31+ ¢ ) = —2%h()

By [16], p. 104, Eq. (20), we have
B(—t N = —2%((0)Y, K- H = —2%K(0)*,

which, together with (7.6), yield the equality
1 . 1\ 1\
(D)=L (L)
= —4%5(27) "% (20)
- —4
_ —T_4{ H(l - q2n)2(1 +q2n—l)2(1 _ q2n—1)2}

_ _74{ g (L= =™ (1= g*2) }8

n=1 (1 - q4n)
0 -8
[1(1—g¢™)’
_ —4 ) n=1
1:[1(1 _ 4n)
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Here we used (7.5) to get the third equality. We deduce from (7.4) and (7.7) that
(7.8) Mi-sasas (1) = —167(20) "y (4)".

We get (2) from (7.3) and (7.8). [

Definition 7.6. For a 2-elementary lattice A, define a C[44]-valued holomorphic
function Fa(7) on $ by

a(A)—

0 _ 1
FA() = [ e+ 277 zgm (Do + fal) ) (Den,

5 g ey L (e,

yEAA

0 i
= f§3(+27(A) (t)eo +2

By the Fourier expansions of fk«))(r) and fk(l)(r) at ¢ =0, we get the following
Fourier expansion of Fj(7) at ¢ = 0:

(7.9)  Fa(t)={q ' +24+26(A) + O(q)} ey + 2= {24 +20(A) + O(q) } v

+0(q1/4) _|_0( 1/2)02+2 {C] 1/4_1_0(‘]%/4)}03

_ 212+0‘

+ (24 + a(A))g* + O(¢*) }ey,.

Theorem 7.7. (1) Fa(t) = BA[1-s254- 80 )](r). In particular, Fa(7) is a modular
1
Sform for Mp,(Z) of type pp with weight a(N\)/2.

(2) The group O(A) preserves Fy, i.e., Aut(Fa,A) = O(A).
(3) If bH(A) £ 2 and a(A) = —12, then Fx(t) has integral Fourier coefficients.

Proof. (1) Set k =8 + a(A) and ¢(t) = ( ) in Proposition 7.1. Since fk (r) isa
modular form for MI'y(4) of weight (k — 8)/2 = a(A)/2 with character yf =y, ) by
Lemma 7.2, #x [fk(o)](r) is @ modular form for Mp,(Z) of type p, with weight a(A)/2 by
Proposition 7.1. We prove that Fp = Z[£,"]. Since k = 8 + 6(A) and |4a| = 2/™), we
deduce from Lemmas 7.4 (1) and 7.5(1) that

3
(7.10) 3 K lsr @A (ST e
sk ko130 o [T+
= 2N A (S )iy
=0 =0
—a(A)—I(A) 3 o [T+ _
SR WA (ST
j=01=0

3 3 .
= Z_TZ Z g,:)(t—&—l)i_l’v]
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Recall that f, (0)(1) = i C(O)(n) "G () — 0) /N, n/a
K (7)= i (n)q". Since g, (7) > o (gt we get

n=—1 n=s mod4

g/(:)(f + I) _ Z C/({O)(n)e2nin(r+1)/4 _ Z CI(CO)(n)l-slan,

n=s mod4 n=s mod4

which yields that

3 3
iy DY d4c,i°><n>[20 i = 45,90 (7).
n=s mot =

Hence we get

3

S Y iV = Y 4090 (1) = 49 (v),

I=05€Z/4Z seZ/AL

which, together with (7.10), yields that

(7.11) ,Z FOsri(0) - pa (ST Yo = D (2},

Similarly, we get by Lemmas 7.4 (2) and 7.5(2)

(7.12) Oy @paV e = £V (e,
By (7.11) and (7.12), we get Fp = @A[f,fo)].

(2) Since g(e,) = ;) for g e O(A) and y € Ax, we get g(eg) = e and g(v;) = v; for
all g € O(A) by the deﬁmtlon of v;. Since 14 is O(ga)-invariant by its uniqueness, we get
g(1a) = 14 for all g € O(A). This proves Aut(Fa, A) = O(A).

(3) Since fk ( ), g ( ), fk ( ) have integral Fourler coefﬁments for k = —4, ie.,

a(A) = —12, it suffices to prove by Definition 7.6 that 2" "¢ Z when b (A) =< 2. Since
a(A) = 2b+( ) —r(A), r(A) 2 [(A) and r(A) = I[(A) mod2 we get

4—a(A)—I(A)=2(2—=b"(A)) +r(A)—1(A) 20
and 4 —a(A) —I(A)=0mod2. [

Recall that F, induces a modular form Fa|, of type p;, when A = U(N) @ L (cf.
Section 6.2). Since A is 2-elementary, N € {1,2} and L is 2-elementary in this case.

Lemma 7.8. If A =U(N)® L, then Fp|, = Fy.
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Proof. Write Fol (1) = >_ (Falp),(v)e,. Since 1yny) = (0,0) for N = 1,2, we get
yedr
15 = ((0,0),1;). Since ((n/N,0), y)2 = y> mod?2 for y € Ay, it follows from Definition 7.6
and the definition of (Fal; )(7) (cf. (6.3)) that

doA-IA)

) 292 .
N2TE g () if y 40,1,

4—a(A)—I(

0 O :

(7.13)  (Fal),(0) = fiooa (@) + N2 =g\ (2) ifp=0,
1 4—a(A)—I(A) (A .

S @) + N2 g (1) iy =1,

A
In the last equality, we used the formula 13 = % mod 2, which follows from (6.2) and
(7.9). If N =1, then Ay = A, and hence Fp|, = Fao = Fy by Definition 7.6 and (7.13).
Assume N = 2. Since o(A) = (L) and /(A) =I(L) + 2, we get Fp|, = F; by comparing

the definition of F with (7.13). This proves the lemma. []

Lemma 7.9. Let L be a 2-elementary Lorentzian lattice. If r(L) < 10, then a subset
of ;" is a Weyl chamber of L if and only if it is a Weyl chamber of F.

Proof. Write Fr(t)= Y. e, Y. c1,(k)g*. By (6.4), it suffices to prove that if
veAL  peyg,
AeLY, 2* <0and ¢ ;(/12/2) + 0, then h; = hy for some d € Ay Since 8 + a(L) = 0, this

follows from (7.9). 0

8. Borcherds products for 2-elementary lattices
Throughout this section, we assume that A is an even 2-elementary lattice with
sign(A) = (2,r(A) - 2).
Recall that 2, and 2 were defined in Section 1.4. We have the splitting
, 1
@A: Z H;'—F,%A(IA,——)
2/2%1;, he Ay /1 2

when r(A) = 1 mod 4.

Theorem 8.1. If r(A) <12 or if r(A) =13 and [(A) £ 7, then the Borcherds lift
WA(-, Fp) is a holomorphic automorphic form on Qf for OT(A). The zero divisor of
WA (-, Fp) is given by

HA)-I(A)

div(Pa(-, FA)) =25+ (277 + 1)y
Sfor r(A) <12 and by

- - 1
div(PA(,FA)) =)+ (25 +1) Y H+(Q2 1 =T (1A,——>
22%1;,he N, /41 2
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Sfor r(A) =13 and I(A) < 7. The weight w(A) of Ya(-, Fa) is given by the formula

W(A) = (16— r(A) (277 +1) = 8(1 —3(A)) if r(A) =
(16— r(A)) (275 + 1) if T(A) * 12.

In particular, W (-, Fp) is reflective in the sense of Gritsenko—Nikulin [28], 1, Definition 2.1.2,
Jor r(A) = 13 and I(A) = 7.

Proof.  Assume r(A) < 12. Since sign(A) = (2,r(A) —2), we get o(A) =4 —r(A)
and 8 + g(A) = 0. By Theorem 7.7 (2), we get Aut(A, Fp) = O(A). Write

Fa(t)= X e > CA,"/(k)qk~
vedn ke%JrZ
By (7.9), we see that cp ,(k) = 0 if £ < 0 and that the coefficient of ¢, i.e., fs(izr(/\)(r), is

regular at ¢ = 0. By Theorem 6.1 and (7.9), W(-, Fa) is an automorphic form for O*(A)
such that

(8.1) div(Pa(Fa)) = X ey (A/2)H

LeAY/£1,22<0

= 3 cn5(A*/2)H.

reN/+1,2%2=—1

-+ Z CA’Z(},Z/z)Hg

AeAY /41,02 )2=—1/4

4-a(A)-1(A)
= Z Hg +2 2 Z H,1
LeAp/+1 LeA) /1

=g\ + 2" 1 )2

By Theorem 6.1, w(A) = ¢, 5(0)/2. If r(A) = 12 and d(A) = 0, then 14 = 0, which,
substituted into (7.9), implies that

(82)  Fa(t)={q ' +24+26(A) + O(q)}ey + PR {24 +20(A) + O(q) }vo

+ 0(q1/4)v1 + O(ql/z)vz + 247,;(/\2),1(/\)
* {_16 + O(Q)}E().

{a™"* +0(¢*)}vs

Since vy contains ey with multiplicity one and since a(A) = 4 — r(A), we deduce from (8.2)
that

CAyo(O)

w(A) = 5

12+a(A)+2 (12+a(A))

A)—I(A

= (16 —r(A))(2 +1) -8

This proves the formula for w(A) when r(A) = 12 and 6(A) = 0.
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If r(A) < 12 or (r(A),5(A)) = (12,1), the coefficient of e;, does not contribute to
cA,0(0) by (7.9), so that

(8.3) w(A) = c"vg(o) — 124 0(A) +27F (124 0(A))

A)—I(A)

= (16— r(A) 25+ 1)
in this case. This proves the theorem when r(A) < 12.

Assume that r(A) = 13 and /(A) < 7. By (7.9), the principal part of Fa(7) is given by
the formula

13-1(A) 1

(8.4) P(Fp) = q_leo +272 gy — 8q_%e1A

3-1A) 1 13-1(A) 1
ep+272 g+ Y e+ (272 —8)q de,.
P2=3/2, 71

= qil

Since /(A) <7, we get ca (k) =0 for k <0 by (8.4). The formula for div(W(:,Fa))
follows from Theorem 6.1 and (8.4) in the same manner as (8.1). Since 15 # 0 when
r(A) = 13, the coefficient of e;, does not contribute to cp ¢(0) by (7.9), so that w(A) is
given by (8.3). This completes the proof of Theorem 8.1. []

Corollary 8.2. If r(A) < 12 and A} = 0, then div(WA (-, Fp)) = Pa.

Proof. Since Aj’\ = (9, the result follows from Theorem 8.1. []

If A < lg; is primitive and r(A) = 13, [(A) = 9, then we get
(r(A),I(A),8(A)) = (13,9,1)

because /(A) < min{r(A),22 —r(A)} =9 and &(A)=1. Since A® has invariants
(r,1,6) = (9,9,1) in this case, we get A* = Al @ A?S if A <lgs is primitive and
r(A) =13, I(A) 2 9.

Corollary 8.3. The moduli space of 2-elementary K3 surfaces of type M is quasi-
affine if (M) =9 and M % A ® AP,

Proof. Set A := M*. Since A < lg; is primitive, either r(A) < 12 or r(A) = 13 and
I(A) < min{r(A),22 — r(A)} = 9 by the assumption r(M) = 9. Since M & Af ® A®® by
assumption, we get (r(A),/(A)) # (13,9). Hence either r(A) < 12 or r(A) = 13, I(A) < 7.
By Theorem 8.1, WA (-, Fa) is a holomorphic automorphic form on Q4. Recall that an
automorphic form on Qa is identified with a holomorphic section of an ample line
bundle over .#; by Baily-Borel [3]. Hence .#5\div(Wa(-,Fa)) is quasi-affine. Since
supp div(Wa (-, Fa)) = Za by Theorem 8.1 and hence .5 = 4)\\div(WA(:, Fa)), we get
the result. [

In [47], Section 2, [1], Section 2.2, and [18], Sections 1-3, the notion of lattice polar-
ized K3 surface was introduced. We follow the definition in [18].
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Corollary 84. If M < ks is a primitive 2-elementary Lorentzian sublattice with
r(M)=9 and M £ Al ® Afag, then the moduli space of ample M-polarized K3 surfaces
is quasi-affine.

Proof. Set Of (M*) :=ker{O"(M*) — O(qy-)}, where OT (M=) — O(gy-) de-
notes the natural homomorphism. By [17], p. 2607, the coarse moduli space of ample
M-polarized K3 surfaces is isomorphic to the analytic space Qf,./O;(M™*). By this
description, the proof of the corollary is similar to that of Corollary 8.3. [

For the table of isometry classes of primitive 2-eclementary Lorentzian sublattices
M < Lg; with r(M) =29 and M & A} @ AP see [21], Appendix, Tables 1-3; there are
53 isometry classes. There are some examples of lattices A with b*(A) = 2 admitting an
automorphic form on Q) with zero divisor Z,. See, e.g., [8], Section 16, Examples 1-3,
[9], [11], Section 12, [12], Examples 2.1, 2.2, [28], II, Theorem 5.2.1, [34], Theorem 6.4,
[55], Section 10.

As a related result, we mention the following theorem.

Theorem 8.5. The moduli space of 2-elementary K3 surfaces of type M contains no
complete curves if r(M) = 7. The same is true for the moduli space of ample M-polarized
K3 surfaces if M is 2-elementary and r(M) = 7.

Proof. By [62], Theorem 5.9, 7,/ is a strongly pluri-subharmonic function on .%,;.
if r(M) = 7. Hence .#,;. contains no complete curves when (M) = 7. Since the moduli
space of ample M-polarized K3 surfaces Qf,./Of (M*) is a finite covering of .#;,., the
second assertion follows from the first one. []

Question 8.6. The existence of a strongly pluri-subharmonic function on a quasi-
projective variety X does not necessarily imply the quasi-affinity of X (see [29], p. 232,
Example 3.2, for a counter example). If (M) = 7, is .4, quasi-affine?

The referee suggested an interesting approach to the problem of quasi-affinity of ..
using the Lefschetz formula (cf. [50] for a similar approach using the Grothendieck—
Riemann—Roch formula).

Assume A = U(N) @ L, where L is a 2-elementary Lorentzian lattice with (L) < 10
and N € {1,2}. Hence r(A) < 12, and Fa|, = F; by Lemma 7.8. By [10], Theorem 13.3, by

Definition 7.6 and the definitions of fk(o)(r), fk(l)(r) and g,@(r), the infinite product for
WA (-, Fp) is given explicitly as follows:

(8.5)  Wa(z,Fa) =@ [ (1 - eED) a2/
LeL,iW>0,422-2

r(A)—I(A) ©) 5
% H (1 _ eniN(i,z})z 2 CM,,(A)(A /2)
AE2LY, AW >0,42 = -2

. (1) 72
X H (1 _ e2m</1-,z>)2cx+ﬂ(,\>(/“ /2)’
e +L), -9 >0,2>20
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where ze L ® R + i with (Im 2)2 >0, % < L ® Risa Weyl chamber of L by Lemma 7.9
and o = o(L, F, ") € L ® Q is the Weyl vector of (L, Fr,"").

Example 8.7. Let A= U(2) ® A7 ® AP* with 0 < k < 8. By [65], Theorem 1.1,
Wa(-, Fa) is regarded as an automorphic form on the Kéhler moduli of a del Pezzo
surface of degree 9 — k, which appears in the formula for the BCOV invariant [19] of
certain Borcea—Voisin threefolds. By [65], Propositions 4.1 and 4.3, and [27], proof of
Theorem 2.3(a) and Section 3, there is a Borcherds—Kac—Moody superalgebra with
denominator function Wx (-, Fp). In [26], Corollaries 3.4 and 3.5, Gritsenko gave a very
explicit Fourier series expansion of W (-, Fx) under an appropriate identification of the
domains Q3 and Qe2qp, -

Example 8.8. Let A=U((2) ® U(2) ® Eg(2). We have /(A) =12 and w(A) =0.
This A admits no primitive embedding into g3 by [46], Theorem 1.12.1. Since Ay = 0,
we get I = 0, so that WA (-, Fp) is a constant function. This Fu(z) gives an example of
non-trivial elliptic modular form for Mp,(Z) whose Borcherds lift becomes trivial.

Example 8.9. Let A=U® U(2) @ Es(2). We have /(A) = 10 and w(A) = 4. Then
WA (-, Fp) is the Borcherds ®-function of dimension 10. See [8], Section 15, Example 4, 9],
[10], Example 13.7, [19], Section 13, [23], Section 11, [33], Remark 4.7, Theorem 7.1, [54],
[62], Section 8.1, for more about this example and related results.

Example 8.10. Let A = U?@® Eg(2). We have /(A) =8 and w(A) = 12. Then
WA(, Fa) = Pa (", On (1) /0(7) **) is the restriction of the Borcherds ®-function of dimen-
sion 26 to Q4, where @+ (1) is the theta function [10], Section 4, for the positive-definite
16-dimensional Barnes—Wall lattice Aj. See [62], Section 8.2.

Example 8.11. Let A = U @ U(2) ® D;. We have /(A) = 6 and w(A) = 28. Kondd
[34], Theorem 6.4, used W (-, Fa) to study the projective model of the moduli space of 8
points on P!. By [34], Theorem 6.7 and its proof, ‘I’A(-,FA)15 is expressed as the product
of certain 105 additive Borcherds lifts ([10], Section 14). See also [23], Section 12.

Example 8.12. Let A=U®U®Es. Then /(A) =0 and w(A) =252. We get
Fa(t) = E4(2)? /n(z)**, where E4(z) is the Eisenstein series of weight 4. The correspond-
ing Borcherds lift WA (-, Fo) = Wa (-, Ea(z)*/n(z)**) was introduced by Borcherds [8],
Theorem 10.1, Section 16, Example 1. By Harvey—Moore [30], Sections 4 and 5,
‘{’A(~,E4(r)2 /17(1)24) appears in the formula for the one-loop coupling renormalization.
See [30], Egs. (4.1), (4.5), (4.16), (4.27).

Example 8.13. When A = U? @ Dy, WA (-, Fx) coincides with the automorphic form
A of Freitag—Hermann [22], Theorem 11.6. Notice that the weight of A is 72 in our defini-
tion (cf. [22], p. 250, 1l. 21-23). By [22], proof of Theorem 11.5, W(-, Fa) is expressed as
the product of certain 36 theta functions.

Example 8.14. When A = (Af)eaz ® AP* Wa(-,Fy) is the product of all even
Freitag theta functions ([59] and [63], Theorem 7.9), so that the structure of Wa(-, Fa) is
similar to that of Wy, gy ep2(» Fugu@en?): Yuren,( Furen,)- For the corresponding
2-elementary K3 surfaces, see [59].
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Example 8.15. When A = (A[)®* @ A®*, then W, (-, F)) coincides with the auto-
morphic form Aj; of Gritsenko—Nikulin [28], II, Example 3.4 and Theorem 5.2.1. When
A=U’® A, then W (-, Fa) coincides with the automorphic form A?Aj,s of Gritsenko—
Nikulin [28], II, Examples 2.4 and 3.9, Theorem 5.2.1.

We study the case where A < Lgj is primitive and r(A) =13, /(A) = 9. Since
I(A) <9 as in the proof of Corollary 8.3, we get (r(A),/(A),6(A)) = (13,9,1) and hence
A=UUBER2) ®A.

Theorem 8.16. Let A =~ U @ U @ Es(2) @ Ay. Then the Borcherds lift WA (-, Fa) is a
meromorphic automorphic form for Ot (A) of weight 15 with zero divisor

1
D\ + 59" — 8H# <1A, —§>.
Proof. We have r(A) =13, I[(A) =9, a(A) = =9 and J/(A) ):(1. By Theorem 6.1
4—a(A)—I(A
and (7.9), (8.4), the weight of W (-, Fy) is given by (12 + a(A)) (25 + 1) = 15 and the
divisor of WA (-, Fp) is given by

4-o(A 1

- 1
Tn 42 ) l(A)@X _ 212+0(A)%A <1A7 __> =D\ + 593 — 8Hn <1A, ——>,

2 2

1 o
where —212+7(A) 7, (1 As— 5) comes from the negative coefficient of ¢~ + ey L in (7.9), (8.4).

This proves the theorem. []

9. An explicit formula for 7,

Theorem 9.1. Let M be a primitive 2-elementary Lorentzian sublattice of Lgs. If
r(M) > 10 or (r(M),6(M)) = (10,1), then there is a constant Cy; > 0 depending only on
M such that for every 2-elementary K3 surface (X,1) of type M,

g(M
I~

TM(X7l)—2y</w>+1(zy</‘4)+1) = Cf|| ¥y (B0(X, 1), Fag) )HXg(M) (Q(X’))||16.

. . . . g 20N (2000) 1)/ .
In particular, if ¢ € Z is an integer such that Fym extends to a very ample line

bundle on <7, then the following equality holds in Theorem 5.1:
g(M)-1 N
(I)M: C]{/[/zlPML("FML)zj /®JMX§(/M)

Proof. By our assumption r(M) =10, we get r(M*‘) <12. If the equality
r(M*) = 12 holds, then (M) = 1. We set A = M~ in Theorem 8.1. Then we have
r(A) —I(A) 1 r(M)+1(M)

16 — r(A) = r(M) — 6, 3 3

=g(M).

Recall that the Bergman kernel K,. € C*(Q;,.) was defined in Section 4.2. Let w),-
be the Kihler form of the Bergman metric on Q7 , i.e.,

Oyl = —ddClOgKML.
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By [62], Eq. (7.1), and [66], Theorem 4.1, we have the following equation of currents on
QML:

(9.1) dd‘logty = M) =6

. 1
4 Wprt +Jth%(M) _Zéng'

By Theorem 8.1, by (4.17) and the Poincaré—Lelong formula, we get

(9.2) —29M=1 dd log||W s (-, Far ) ||
= 20001290 4 1) (H(M) — 6)ps-

— 9=l pe(M)=1(29(M) L 15,
ML ML

By Proposition 4.2 (2), there exist a € Zxo and an O (M *)-invariant effective divisor E on
Q;,. such that

(9.3)  —dd“log|[J3,x ¥ |1

=29 90 L 1) Tx oy, — 202272 4 a)s,  — O
{ Jyan
By (9.1), (9.2), (9.3), we get the following equation of currents on Q.

¢ 29(M)+1(9g(M) 4 1)y 9(M)—1 % /
(9.4) —ddloglty, VI (L Fy ) @ Ty )

= 2ald,  — .
M

Since log ty, log|Ware (-, Fur)|| and log|[J5.x5(, || are OF(M~*)-invariant L} -functions
on Q7 ., we deduce from (9.4), [62], Theorem 3.17, and [66], Eq. (4.8), the existences of
an integer m and an O*(M*)-invariant meromorphic function ¢ on Qj,. with divisor
m(2a/%,,. + E) such that

2000+ (24(M) 4 1)/ 20001 « 8 |2 2/m
9.5y PG R @ TS 1P = Lol

Since @ = 0, / > 0 and E is effective, ¢ is holomorphic. By the O*(M*)-invariance of ¢,
there exists a holomorphic function ¢ on .#),. such that

Iy, ¢ =9,

where Ty : Q). — . is the projection. Recall that .#,;. is the Baily—Borel-Satake
compactification of .#y,.. We define By := My \ My

Case 1. Assume that r(M) < 17. Since .#,,. is an irreducible normal projective
variety and since dim By,. < dim.#,;, — 2 by the condition r(M) < 17, ¢ extends to a
holomorphic function on .#y;,. Since .#,,, is compact, ¢ must be a constant function on

i Hence a =0, E =0 and ¢ is a constant. Setting Cy := |¢| /" in (9.5), we get the
result.
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r(M)+1(M)

2
osition 4.2 (3), we get « = 0 and E = 0. Hence ¢ is a nowhere vanishing holomorphic func-
tion on .#y,.. By [66], Theorem 1.1, ¢ has at most zeros or poles on B),.. In particular, ¢
extends to a meromorphic function on .#;;, such that div(¢) < B),.. Since B, is irreduc-
ible when r(M) = 18 by Proposition 11.7 below, either div(¢) or —div(¢) is effective. In
both cases, ¢ must be a constant. This completes the proof. []

Case 2. Assume that r(M) = 18. Then g(M) =11 — < 2. By Prop-

Remark 9.2. The same proof does not work in the case r(M) = 9. Since we get by
Theorem 8.1 an extra contribution of the divisor —8.#,. (1 ML, — 5) in (9.2) in this case,

the divisor corresponding to (the minus sign of) the right-hand side of (9.4) may not be
effective. As a result, ¢ in (9.5) may not be a constant.

Table 1 lists all M=+ such that M is a primitive 2-elementary Lorentzian sublattice
M < Lgs with r(M) > 10 or (r(M),6(M)) = (10,1).

g(M) M+ withs(M+) =1 M+ with6(M+) =0
0 AN @APF 0k <9 U2)®?
1 U A ®@A®"  (0<k=9) UQR)®* @ D4, U@ U(_2)
2 U®2 @ ALK (1<k<8) U@ UQR) @ Dy, U2
3 U2 Ds@A%Y  (1sk<4) U®2 @ Dy
4 AN dRE®AP (0<k=2)
5 UBDA @EBEB®AP" 0<k=1)

Table 1. List of M with (M) > 10 or (r(M),8(M)) = (10, 1).

When (r,0) = (10,0), the same formula for 7, as in Theorem 9.1 does not hold.
Proposition 9.3.  If (r(M),5(M)) = (10,0) and M % U(2) & Es(2), then

Jl(l)l( ](\)li)c null, g(M)-

Proof.  We prove that J;(Q4,.) & Oqun,g(ar) yields a contradiction. In what follows,
assume J 5, (Qf,.) & Onun, g(ar)- Since S(M+) =0 and r(M*+) = 12,

(M)=1 (9 g(M) 2 % / g(M) _
9= \PML(',FML)ZQ (29M4-1)/ ® (JMXS(/M))ZJ 1

is an automorphic form on Q7,. for O*(M*) of weight 29M)~1(220(M) _ 1)/(4,4) by The-
orem 8.1. Since J (5. ) & Ot g(ar)» We get ¢ £ 0. We can put v = 29M=1(200M) 4 1)/ in
Theorem 5.1. Set  := (p/d)ﬁ,j(m_l. Since y is an O (M*)-invariant meromorphic function
on Qj,., we identify y with the corresponding meromorphic function on .#,;.. We com-
pute the divisor of .
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Since §(M*) =0 implies A}, =0, we get 2}, =0. Since r(M)=10 and
M 2 UQ2) ®Eg(2), we get g(M) >0 by Proposition 2.1. By Proposition 4.2(2) and
Theorem 8.1, we get

(9.6)  div(p) = 29129 L 1)rgr (290 — 1) {2222 L 4)/ Ty, + E}

= {291 (2200M) 4 1) 4 20(29M) — 1)V D, + (29 —1)E.

By Theorem 5.1, div(®y) = vZ;,. = 29M=1(290M) 4 1)/, | which, together with (9.6),
yields that

(9.7) div(y) = div(p) — (29M) — 1) div(D,)
= {29M) 4 2q(29M) _ 1)V}, + (2/M) — 1)E.
Since / = 1, a = 0 and since E is an effective divisor, div(y) is a non-zero and effective

divisor on Q7. by (9.7). This contradicts the fact that y descends to a meromorphic func-
tion on A#y,.. [

When 2 < g(M) < 5, one can verify Proposition 9.3 by using the explicit equations
defining the corresponding log del Pezzo surfaces [44], pp. 494-495, Table 14.

Theorem 9.4. [If M =~ Af“ @ A®8, then there exists a constant Cy > 0 depending
only on M such that for every 2-elementary K3 surface (X,1) of type M,

T (X,1) ™ = Cu|[®are (@ar (X 1), Fars) ||| g0 (QLXD) |-

Proof. Since M ~ A @ Aleag, we get M+ =~ U®?@EK(2) @A by, eg, [21],
Appendix, Table 2. By (9.1) and Proposition 4.4, we get

(9.8) dd“{—40¢ log ta; — log||J 5,25 |1}
= /{300 + 1059,4# o 8591:u - 165=Wwi (lwhfl)}

2

=/{-30wy; . + 255/{“ + 10591(;i — 165}/%,“(1,,@7—1)}'

By (9.8) and [62], Theorem 3.17, there is a meromorphic automorphic form ¢,, on Q. for
O (M*1) of weight 30/ with

. 1
such that
(9.10) 40/ log T + log|| 75,23 > = —logllpy|*.

Since O (M*)/[0OT(M*),0"(M™1)] is a finite Abelian group, there exists v € Z~( such
that ¢}, and Wy (-, Fyr2 )™ are automorphic forms with trivial character. By Theorem 8.16
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and (9.9), (Wari (-, Far2)* Jpp) " is an O (M™*)-invariant meromorphic function on Q.
with

v 1
(911) diV(\PML(',FML)zf/(ﬂM) = V/{zg;wL + 10 ‘JI‘/JL - 16%ML <1ML7—2>}

1
— v/{Z@]’W + 102, — 164, <1ML,—§>}

=0.
Since div (‘P me( F Mi)zl ), M) " is empty, there exists a non-zero constant Cj; with
orr = Cor?War (-, Fygs)”
By (9.10), (9.11), we get the result. []

Question 9.5. s div(J}, 8 ( )) a linear combination of Heegner divisors on Q. ? If
it is the case and if M- =~ U®? @ K for some lattice K, ®);/J; Y ;(2/ will be expressed as a
Borcherds product by [14], Theorem 0.8. Is there a Siegel modular form ¥ on Sy such
that div(J;,¥) is a linear combination of Heegner divisors on Q. ?

10. Equivariant determinant of the Laplacian on real K3 surfaces

In this section, we give an explicit formula for the equivariant determinant of real K3
surfaces. We refer to [17], [64] for more details about real K3 surfaces.

The pair of a K3 surface and an anti-holomorphic involution is called a real K3
surface. Let (Y, o) be a real K3 surface. There exists a primitive 2-elementary Lorentzian
sublattice M < g3 and a marking o of Y such that ac*a~! = I);. A holomorphic 2-form #
on Y is said to be defined over R if 6*n = 7. Let y be a g-invariant Ricci-flat Kdhler metric
on Y with volume 1. Let A(y ;) be the Laplacian of (Y, 7). Since o preserves y, Ay, com-
mutes with the g-action on Cw( Y). We define CL(Y) :={f e C*(Y);c"f = +f}, which
are preserved by Ay ,). We set Aiy ) + == Ay, y)|Cf (v)- Let {+(Y,7)(s) denote the spectral
zeta function of Ay, ;. Then it converges absolutely for Res > 0 and extends mero-
morphically to the complex plane C, and it is holomorphic at s = 0. We define

detz, Ay, (o) := exp[~L (¥, 7)(0) + (Y, 7)(0)].
Let Y(R) :={y € Y;a(y) = y} be the set of real points of (¥, ) and let Y(R) = ]_[ C;

be the decomposition into the connected components. Then Y(R) is the disjoint union
of oriented two-dimensional manifolds. The Riemannian metric gy, induces a complex
structure on Y (R). The period of Y (R) with respect to this complex structure is denoted by
Q(Y(R), Py ) Let A(c,,|..) be the Laplacian of the Riemannian manifold (C;, 7|, ) and
let {(C;, V|C,-)( ) denote the spectral zeta function of A, ;). The regularized determinant
of Aic, ) is defined as

det” Ac¢ Ciile,) —GXP[—C(Cmﬂc,)/(O)]-
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After [64], Definition 4.4, we define
(Y, 0,7) = {dety, Ay (o)} 2 T] VOI(Ci,7lc)(det™ A, 1))~

Theorem 10.1. Let (Y,0) be a real K3 surface and let o. be a marking of Y such
that ac*a~' = Iy Let y be a o-invariant Ricci-flat Kéhler metric on Y with volume 1. Let
w, be the Kdihler form of y, and let n, be a holomorphic 2-form on Y defined over R such
that n, A1, = 2603. If r(M) > 10 or (r(M),6(M)) = (10,1), then the following identity
holds:

—4(29M 4 1) logt(Y,0,y) = log||¥ s (a(w, + ilmn,), Fy) Hz
- 2
+ 24790 og] |y an) (Q(Y (R), 2y ) I” + Ch
where Cy, = 2log Cy and w,, n, are identified with their cohomology classes.

Proof. The result follows from Theorem 9.1 and [64], Lemma 4.5, Eq. (4.6). [

11. Appendix
In this section, we prove some technical results about lattices.

11.1. A proof of the equality I'y; = O(M*). Let M be a primitive sublattice of Lg3
and set Hyy := Lg3/(M @ M*). Since g3 is unimodular, we get

MM clyg=1 M @MY,
sothat Hy < Ay @ Ay Let py - Hy — Appand py @ Hy — Ay be the homomorphism
induced by the projections Ay @ Ayr — Ay and Ay @ Appr — Appo, respectively. By
[46], Propositions 1.5.1 and 1.6.1, the following hold:
(a) p and p, are isomorphisms.
(b) Apr = Ay via the isomorphism yb“Ml = paoprl.
(©) qur 0 73F e = —qu-

Recall that g € O(M+) induces g € O(qys1). For g e O(M*), we set

- Lk3 -1 — Lgs
Vo= arars) 0G0 7arare-

Then y, € Aut(4y).
Lemma 11.1.  The automorphism Vs, preserves qu, i.e., Y, € O(qu).

Proof. The result follows from condition (c) and the fact that g€ O(qy2). O
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Assume that M < [ g3 is a primitive 2-elementary Lorentzian sublattice. Recall that

the isometry I; € O(lLg3) was defined in Section 1.2. In [62], Section 1.4 (c), we introduced
the following subgroup I'y; = O(M*):

Cari={gly. € OM*);ge O(Lg3),g oIy = Iy o g}
Proposition 11.2.  The following equality holds:
Ty =0M").
Proof. By the definition of Ty, it suffices to prove O(M*) = Ty,. Let g e O(M™)

be an arbitrary element. Since M is 2-elementary and indefinite, the natural homomor-
phism O(M) — O(qyy) is surjective by [46], Theorem 3.6.3, which implies the existence of

¥, € O(M) with ¢, =¥,. Define § := ¥, ® g O(M ® M"). Then

(11.1) Paiws © By = Vafas 0 Wy = G070

By (11.1) and the criterion of Nikulin [46], Corollary 1.5.2, we get g € O(lLx3). We have
goly =1Iyogon M@ M because for all (m,n)e M ® M+,

goIy(m,n) = g(m,—n) = (¥Yy(m),—g(n)) = Ly (¥Yy(m),g(n)) = Iy o g(m,n).

Since M @ M* linearly spans Lg; ® Q, we have o Iy = Iy o g in O(lLg3). Hence g € T'y,.
This proves the inclusion O(M*) = Ty, [

11.2. A formula for g(IM L d]).

Lemma 11.3. Let d € Ay;1. The smallest primitive 2-elementary Lorentzian sublattice
of Lgs containing M @ Zd is given by [M L d] = (M+ ~d*)*.

Proof. Set L:=7Zd=A,. Then [M L d] is the smallest primitive Lorentzian
sublattice of lg3; containing M @ L. Since M @L< [M Ldlc[M Ld=M"®L"
and hence [M L d]/(M®L)c M Ld'/(MDL) = Ay ® AL = Zé(M)H, we have that
Aprig) =M Ld]”/[M Ld] is a vector space over Z,. Hence [M L d] is 2-elementary.

O

Lemma 11.4. Letd e Ay.. Then

I([M Ld)=IM*"n~d")

(MY +1 ifded,,.,
(MY —1 ifded,..

Proof.  See [21], Proposition 3.1. [

Lemma 11.5. Letd e Ay.. Then

oM L d) ={g
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Proof. Since r(M+ nd*) =r(M~+) -1 and

g(M) = {r(M") = (M)} /2, g(IM Ld)) = {r(M* nd") = I(M* ~d")}/2,
the result follows from Lemma 11.4. [

11.3. The K3-graph. In [21], Finashin and Kharlamov introduced the notion of
the lattice graph I'; for an even unimodular lattice L. When L = L3, the K3-graph
I'k3 = Iy, is defined as follows (cf. [21], Section 3):

The set of vertices of '3, denoted by Vg3, consists of the isometry classes of primi-
tive 2-elementary Lorentzian sublattices of [ g3. For a primitive 2-elementary Lorentzian
sublattice M < Lgs, write [M] e Vis for its isometry class. We identify [M] with the
triplet (r(M),[(M),5(M)). The vertex [M] € Vi3 is even (resp. odd) if (M) =0 (resp.
o(M) =1). In [21], an even (resp. odd) vertex is said to be of type I (resp. type II). The
set Vx3 was determined by Nikulin [46], [48].

The set of oriented edges of '3, denoted by Egj3, consists of the O(lk3)-orbits of
the pairs (M, [d]), where M is a primitive 2-elementary Lorentzian sublattice of Lg3 and
[d] € Ayr. /O(M™). The oriented edge represented by (M, [d]) is denoted by [(M,[d])].
Then [(M,[d])] connects the vertices [M] and [M L d] with arrow starting from [M] to
[M 1 d]. By identifying (M, [d]) with the divisor H; = O(M*) - H; = %y, there is a
bijection between the following sets:

(i) The edges of I'ks starting from [M].

(ii) The irreducible components of Z..

By the equivalence of (i) and (ii), two vertices [M],[M’] € T'x; are connected by
an oriented edge of I'x3 going from [M] to [M'] if and only if there exist y € O(Lg3) and
d € Ay such that /%y( Myt is an irreducible component of &, .

An edge [(M, [d))] with [d] € A},./O(M*) is called an odd edge. An edge [(M, [d])]
with [d] e A},./O(M™*) is called an even edge. If an even edge [(M,][d])] satisfies
o(d+ A M) =0, then [(M, [d])] is called an even Wu edge. If 6(d+ n M*) =1, [(M, [d])]
is called an even non-Wu edge. The set Ex3 was determined by Finashin—Kharlamov [21].
See [21], p. 694, Figure 1, for the K3-graph I'k;.

Proposition 11.6. The following hold.

(1) (M,[d]) = (M,[d"]) in Exs if and only if [ M L d]=[M L d'] in Vgs.

(2) If [(M,[d])] € Eks3 is odd, then

(r([M Ld)),I([M Ld),6([M Ld])) = (r(M)+1,I(M) +1,1).

(3) If [(M,[d])] € Eks is even Wu, then

(h(IM L d]), I(IM L d)),6(IM L ) = ((M) + 1,1(M) — 1,0).
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(4) If (M, [d))] € Eks is even non-Wu, then
(r([M Ld]), (M Ld]),6(IM Ld)))=(r(M)+1,[(M)—1,1).

(5) Tks contains no multiple edges. In particular, [N, /OM*) <1 and
1A} JO(M )] < 2.

Proof.  The proof can be found in [21], Section 3. For the sake of completeness, we
give it here.

We get (1) by [21], Proposition 3.3. When [(M,[d])] € Ex; is odd, the equality
r([M L d])=r(M)+1 is trivial, the equality /([M L d]) =[(M)+ 1 follows from [21],
Proposition 3.1, and the equality 6([M L d]) = 1 follows from [21], proof of Proposition 3.3,
because Ay is a direct summand of A}y 4. This proves (2). When [(M, [d])] € Eks is
even Wu (resp. non-Wu), the equality r([M L d]) =r(M)+1 is trivial, the equality
[([M L d])=1(M)— 1 follows from [21], Proposition 3.1, and the equality 6([M L d]) =0
(resp. o([M L d]) = 1) follows from the definition of a Wu (resp. non-Wu) edge. This
proves (3) and (4). We get (5) by (1), (2), (3), (4). O

11.4. The irreducibility of the boundary locus: the case r(A) < 4. The following was
used in the proof of Theorem 9.1.

Proposition 11.7.  If r(A) < 4, then By = M\ M is irreducible.

Proof. When r(A) =2, we get A= (A[)®* and By = 0. Assume r(A) = 3. Let
Inax(A) be the set of maximal primitive isotropic sublattices of A. The number of the irre-
ducible components of B, of maximal dimension is given by [l (A)/O(A)] (cf. [53],
Section 2.1). We must prove that when 3 < r(A) < 4,

(11.2) #Iman (A)/O(A)] £ 1.
Since 3 < r(A) < 4, A is one of the following 7 lattices (cf. Table 1):
U (k=12), (ADTZ@AP (1=12), USUQR), USAI @A, UBAS

Case 1. Assume that A = U(k) @ U(k) (k £2) or A= (AN @ A% (1=1,2).
Since there exist an indefinite unimodular lattice A" and k € Z~, with A = A'(k), we get
(11.2) by [46], Proposition 1.17.1.

Case 2. Assume that A=U®@® A[. There exist isomorphisms Qy ~$ and
O"(A) = SLy(Z) such that the O"(A)-action on Qf is identified with the projective
action of SL;(Z) on & via these isomorphisms (cf. [17], Theorem 7.1). Hence
Mp = SLy(Z)\D = C and M\ M = {+ico}, which implies (11.2) in this case.

Case 3. Assumethat A=U@UR2)orA=U® Af’ @ Aj. Let L = A be a primi-
tive isotropic sublattice of rank 2. Let {e;, e} be a basis of L. Extending this basis of L, we
get a basis {ej, e, e3,e4} of A with Gram matrix G as follows:

0O A4 1 0
G:((ei,ej>)l§iﬂj§4:<A B), A:<O 2), BGMZ(Z)’ ‘B = B.
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Set e} := e3 + oe; + fe; and ey = e4 + ye; + dey, where o, 5, 7,0 € Z. The Gram matrix of
A with respect to {e;, e, e}, e} is given by

o A 20 v+ 2B
I —
G_(A B+C>’ C_<y+2ﬂ 46 )

Since A is even, we can write {es,esy = 4k or 4k +2. We set o := —<e3,e3)/2, f:=0,
y:= —<{e3,e4y and 0 := —2k. Then we get B+ C = O if 6(A) =0 (i.e., {es,e4y = 0 mod 4)

0 0
and B+ C = <0 1) if 6(A) =1 (i.e., es,esy = 2 mod4). This proves the existence of a

basis {ej 1,e>1,€31,es 1} of A with L = Ze; 1 + Ze 1, such that the Gram matrix of A

A 1 0
with respect to this basis is of the form <2 B>' Here 4 = (O 2), B=0ifo(A)=0

0 0
and B = < 0 2> if 9(A) = 1. If L' = A is another primitive isotropic sublattice of rank 2,

then we get an isometry of A sending L to L' by identifying the basis {e; 1,e>1,€31,€s 1}
and {e; 1/, €2 1/,€3 1/,es 1/} via the map e; ; — e; ;. This proves (11.2). [
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