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Abstract. We study the structure of the invariant of K3 surfaces with involution,
which we obtained using equivariant analytic torsion. It was known before that the invari-
ant is expressed as the Petersson norm of an automorphic form on the moduli space. When
the rank of the invariant sublattice of the K3 lattice with respect to the involution is strictly
bigger than 10, we prove that this automorphic form is expressed as the tensor product of
an explicit Borcherds lift and Igusa’s Siegel modular form.
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Introduction

In this paper, we study the structure of the invariant of K3 surfaces with involution
introduced in [62]. Let us recall briefly this invariant.

A K3 surface with holomorphic involution ðX ; iÞ is called a 2-elementary K3
surface if i acts non-trivially on the holomorphic 2-forms on X . Let LK3 be the K3 lattice,
i.e., an even unimodular lattice of signature ð3; 19Þ, which is isometric to H 2ðX ;ZÞ
endowed with the cup-product pairing. Let M be a sublattice of LK3 with rank rðMÞ. A
2-elementary K3 surface ðX ; iÞ is of type M if the invariant sublattice of H 2ðX ;ZÞ with
respect to the i-action is isometric to M. By [46], M H LK3 must be a primitive 2-elementary
Lorentzian sublattice. The rank of the discriminant group of M is denoted by lðMÞ
and the parity of the 2-elementary lattice M is denoted by dðMÞ A f0; 1g (cf. [48] and
Section 1.2).

Let M? be the orthogonal complement of M in LK3. Let WM? be the period domain
for 2-elementary K3 surfaces of type M, which is an open subset of a quadric hypersur-
face of PðM?nCÞ. We fix a connected component Wþ

M? of WM? , which is isomorphic
to a bounded symmetric domain of type IV of dimension 20 � rðMÞ. Let DM? be the dis-
criminant locus of Wþ

M? , which is a reduced divisor on Wþ
M? . Let OðM?Þ be the group

of isometries of M?. Then OðM?Þ acts properly discontinuously on WM? and DM? .
Let OþðM?Þ be the subgroup of OðM?Þ with index 2 that preserves Wþ

M? . The coarse
moduli space of 2-elementary K3 surfaces of type M is isomorphic to the analytic
space Mo

M? ¼ ðWþ
M?nDM?Þ=OþðM?Þ via the period map by the global Torelli theorem

[51], [15]. The period of a 2-elementary K3 surface ðX ; iÞ of type M is denoted by
$MðX ; iÞ A Mo

M? .

Let ðX ; iÞ be a 2-elementary K3 surface of type M. Let k be a i-invariant Kähler form
on X . Let X i be the set of fixed points of i and let X i ¼

P
i

Ci be the decomposition

into the connected components. Let h A H 0ðX ;W2
X Þnf0g. In [62], we introduced a real-

valued invariant
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" #

;

where tZ2
ðX ; kÞðiÞ is the equivariant analytic torsion of ðX ; kÞ with respect to the Z2-action

induced by i, tðCi; kjCi
Þ is the analytic torsion of ðCi; kjCi

Þ, and c1ðX i; kjX iÞ is the first
Chern form of ðX i; kjX iÞ (see [5], [6], [52] and Section 5). Since tMðX ; iÞ depends only on
the isomorphism class of ðX ; iÞ, we get the function

tM : Mo
M? C $MðX ; iÞ ! tMðX ; iÞ A R>0:

By [62], [66], there exists an automorphic form FM on Wþ
M? with values in a certain

OþðM?Þ-equivariant holomorphic line bundle on Wþ
M? , such that

tM ¼ kFMk�
1
2n; divFM ¼ nDM? ; n A Z>0:

Here k � k denotes the Petersson norm. By [62], FM is given by the Borcherds F-function
[8], [9] when M is one of the two exceptional lattices in Proposition 2.1. For an arithmetic
counterpart of the invariant tM , we refer the reader to [39].

In this paper, we give an explicit formula for tM for a class of non-exceptional M. We
use two kinds of automorphic forms to express tM , i.e., the Borcherds lift CM?ð�;FM?Þ and
Igusa’s Siegel modular form wg, which we explain briefly.

In [8], [10], Borcherds developed the theory of automorphic forms with infinite prod-
uct expansion over domains of type IV. For an even 2-elementary lattice L of signature�
2; rðLÞ � 2

�
, we define the Borcherds lift CLð�;FLÞ as follows.

Let AL be the discriminant group of L, which is a vector space over Z=2Z. Let C½AL�
be the group ring of AL and let rL : Mp2ðZÞ ! GLðC½AL�Þ be the Weil representation,
where Mp2ðZÞ is the metaplectic double cover of SL2ðZÞ. Let feggg AAL

be the standard basis
of C½AL�. Let hðtÞ be the Dedekind h-function and set h1�8284�8ðtÞ ¼ hðtÞ�8hð2tÞ8hð4tÞ�8.
Let yAþ

1
ðtÞ be the theta function of the (positive-definite) A1-lattice. Then h1�8284�8ðtÞ and

yAþ
1
ðtÞ are modular forms for the subgroup MG0ð4ÞHMp2ðZÞ corresponding to the

congruence subgroup G0ð4ÞH SL2ðZÞ. Following [11] and [55], we define a C½AL�-valued
holomorphic function FLðtÞ on the complex upper half-plane H as

FLðtÞ ¼
P

g AMG0ð4ÞnMp2ðZÞ
fh1�8284�8y

12�rðLÞ
Aþ

1

gjgðtÞrLðg�1Þe0:ð0:1Þ

Here we used the notation fjgðtÞ ¼ f
atþ b

ctþ d

� �
ðctþ dÞ�k for a modular form fðtÞ for

MG0ð4Þ of weight k with certain character and g ¼ a b

c d

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
 !

A Mp2ðZÞ. By

[11] and [55], FLðtÞ is an elliptic modular form for Mp2ðZÞ of type rL with weight

2 � rðLÞ
2

. Then CLð�;FLÞ is defined as the Borcherds lift of FLðtÞ, which is an automorphic
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form on Wþ
L for OþðLÞ by [10] (see (8.5) for an explicit infinite product expression of

CLð�;FLÞ). The Petersson norm kCM?ð�;FM?Þk2 is an OþðM?Þ-invariant function on
Wþ

M? and the value
��CM?

�
$MðX ; iÞ;FM?

��� makes sense.

Recall that wg is the Siegel modular form on the Siegel upper half-space Sg of degree
g defined as the product of all even theta constants (cf. [31])

wgðSÞ ¼
Q

ða;bÞ even

ya;bðSÞ; S A Sg; w0 ¼ 1:ð0:2Þ

Then wg gives rise to another function on Mo
M? as follows. For a 2-elementary K3 surface

ðX ; iÞ of type M, let X i denote the set of fixed points of i. By [48], X i is the disjoint
union of (possibly empty) compact Riemann surfaces, whose topological type is deter-
mined by M. Let gðMÞ A Zf0 denote the total genus of X i. The period of X i is denoted
by WðX iÞ A SgðMÞ=Sp2gðMÞðZÞ. By [62], there exist a proper OþðM?Þ-invariant Zariski
closed subset Z HDM? and an OþðM?Þ-equivariant holomorphic map

JM : WM?nZ ! SgðMÞ=Sp2gðMÞðZÞ

that induces the map of moduli spaces

Mo
M? C $MðX ; iÞ ! WðX iÞ A SgðMÞ=Sp2gðMÞðZÞ:

Then J �
MkwgðMÞk

2 is an OþðM?Þ-invariant Cy function on Wo
M? .

The following structure theorem for tM is the main result of this paper:

Theorem 0.1 (cf. Theorem 9.1). Let M be a primitive 2-elementary Lorentzian sub-

lattice of LK3. If rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ, then there exists a constant CM

depending only on the lattice M such that the following identity holds for every 2-elementary

K3 surface ðX ; iÞ of type M:

tMðX ; iÞ�2gðMÞþ1ð2gðMÞþ1Þ ¼ CM

��CM?
�
$MðX ; iÞ;FM?

���2gðMÞ��wgðMÞ
�
WðX iÞ

���16
:

It may be worth emphasizing that the structure of tM becomes transparent by consid-
ering elliptic modular forms for MG0ð4Þ rather than Mp2ðZÞ. After Bruinier [14], Theorem
0.1 may not be surprising. Indeed, if M? contains an even unimodular lattice of signature
ð2; 2Þ as a direct summand and if there is a Siegel modular form S such that divðJ �

MSÞ is a
Heegner divisor on Wþ

M? , then FM must be the product of a Borcherds lift and J �
MS by [14],

Theorem 0.8. When gðMÞ ¼ 2, this explains the existence of a factorization of tM like
Theorem 0.1.1) It seems to be an interesting problem to understand the geometric origin
of these common structures of the modular forms FL and wg.

There are 43 isometry classes of primitive 2-elementary Lorentzian sublattices
M H LK3 such that rðMÞ > 10 or

�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ (cf. Table 1 in Section 9). In

fact, Theorem 0.1 remains valid for a certain primitive 2-elementary Lorentzian sublattice

1) However, this does not seem to explain the common structures (0.1), (0.2) of the elliptic modular forms

FL and the Siegel modular forms wg appearing in the expression of tM .
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M H LK3 with rðMÞ ¼ 9 (see Theorem 9.4). By Theorems 0.1 and 9.4 and [62], Theorems
8.2 and 8.7, tM and FM are determined for 46 isometry classes of M. Since the total num-
ber of the isometry classes of primitive 2-elementary Lorentzian sublattices of LK3 is 75 by
Nikulin [48], the structures of tM and FM are still open for the remaining 29 lattices.

Following [62], Theorem 8.7, we shall prove Theorem 0.1 by comparing the
OþðM?Þ-invariant currents dd c log tM , dd c logkCM?ð�;FM?Þk2 and dd c log J �

Mkw8
gðMÞk

2

(see Section 9). The current dd c log tM was computed in [62]. In Section 8, the weight
and the zero divisor of CM?ð�;FM?Þ shall be determined, from which a formula for
dd c logkCM?ð�;FM?Þk2 follows. In Section 4, the current dd c log J �

Mkw8
gðMÞk

2 shall be

computed, where the irreducibility of certain component of the divisor DM?=OþðM?Þ on
Wþ

M?=OþðM?Þ plays a crucial role (see Appendix 11.3).

In Proposition 9.3, we shall prove that wgðMÞ vanishes identically on the locus
JMðWþ

M?nDM?Þ when
�
rðMÞ; dðMÞ

�
¼ ð10; 0Þ and M is not exceptional. Hence Theo-

rem 0.1 does not hold in these four cases. This is similar to the exceptional case�
rðMÞ; lðMÞ; dðMÞ

�
¼ ð10; 8; 0Þ, where wg should be replaced by the product of two Jacobi

D-functions [62], Theorem 8.7.

There is an application of the Borcherds lift CLð�;FLÞ to the moduli space Mo
M? .

Theorem 0.2. If rðMÞf 9 and
�
rðMÞ; lðMÞ

�
3 ð9; 9Þ, then Mo

M? is quasi-a‰ne.

When Mo
M? is the coarse moduli space of Enriques surfaces, this was proved by

Borcherds [9]. Since the coarse moduli space of ample M-polarized K3 surfaces (cf. [1],
[18], [47]) is a finite covering of Mo

M? , its quasi-a‰nity follows from that of Mo
M? . The

quasi-a‰nity of Mo
M? is a consequence of the fact that CM?ð�;FM?Þ vanishes only on the

discriminant locus DM? when rðM?Þe 13 and
�
rðM?Þ; lðM?Þ

�
3 ð13; 9Þ. By [48], there

are 53 isometry classes of primitive 2-elementary Lorentzian sublattices M H LK3 with
rðMÞf 9 and

�
rðMÞ; lðMÞ

�
3 ð9; 9Þ. In general, it is not easy to find a primitive sublattice

LH LK3 of signature
�
2; rðLÞ � 2

�
admitting an automorphic form on Wþ

L vanishing only
on DL. For example, there is no automorphic form on the coarse moduli space of polarized
K3 surfaces of degree 2d vanishing only on the discriminant locus, if the discriminant locus
is irreducible, [36], Section 3.3, [49] (see, e.g., [8], [9], [11], [12], [28], II, [34], [55], [26]
for a‰rmative examples). For another application of CLð�;FLÞ to the negativity of the
Kodaira dimension of MM? ¼ Wþ

M?=OþðM?Þ, see [37]. In fact, MM? is always unirational
and hence kðMM?Þ ¼ �y by S. Ma [37].

This paper is organized as follows. In Section 1, we recall lattices and orthogonal
modular varieties. In Section 2, we recall 2-elementary K3 surfaces and their moduli
spaces, and we study the singular fiber of an ordinary singular family of 2-elementary K3
surfaces. In Section 3, we recall log del Pezzo surfaces of indexe 2 and their relation with
2-elementary K3 surfaces. In Section 4, we study the current dd cJ �

Mkw8
gðMÞk

2 and we recall

the notion of automorphic forms on Wþ
M? . In Section 5, we recall the invariant tM . In

Section 6, we recall Borcherds products. In Section 7, we construct the elliptic modular
form FLðtÞ. In Section 8, we study the Borcherds lift CLð�;FLÞ. In Section 9, we prove
Theorem 0.1. In Section 10, we interpret Theorem 0.1 as a statement about the equivariant
determinant of the Laplacian on real K3 surfaces. In the Appendix, we prove some techni-
cal results about lattices.
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Nota bene: In [62], we used the notation WM , MM , DM etc. in stead of WM? , MM? ,
DM? etc.
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1. Lattices

A free Z-module of finite rank endowed with a non-degenerate, integral, symmetric
bilinear form is called a lattice. The rank of a lattice L is denoted by rðLÞ. The signa-
ture of L is denoted by signðLÞ ¼ ðbþðLÞ; b�ðLÞ

�
. We define sðLÞ :¼ bþðLÞ � b�ðLÞ. A

lattice L is Lorentzian if signðLÞ ¼
�
1; rðLÞ � 1

�
. For a lattice L ¼ ðZr; h� ; �iÞ, we define

LðkÞ :¼ ðZr; kh� ; �iÞ. The dual lattice of L is denoted by L4HLnQ. The finite
abelian group AL :¼ L4=L is called the discriminant group of L. For l A L4, we write
l :¼ lþ L A AL. A lattice L is even if hx; xi A 2Z for all x A L. A sublattice M HL is
primitive if L=M has no torsion elements. The level of an even lattice L is the smallest
positive integer l such that ll2=2 A Z for all l A L4. The group of isometries of L is denoted
by OðLÞ. We set DL :¼ fd A L; hd; di ¼ �2g and define

D0
L :¼ fd A DL; d=2 B L4g; D00

L :¼ fd A DL; d=2 A L4g:

Then DL, D 0
L, D 00

L are preserved by OðLÞ. For d A DL, the corresponding reflection sd A OðLÞ
is defined as sdðxÞ :¼ x þ hx; did for x A L.

1.1. Discriminant forms. For an even lattice L, the discriminant form qL of AL is
the quadratic form on AL with values in Q=2Z defined as qLðlÞ :¼ l2 þ 2Z for l A AL.
The corresponding bilinear form on AL with values in Q=Z is denoted by bL. Then
bLðl; l 0Þ ¼ hl; l 0iþ Z for l; l 0 A AL. Since l A L4 lies in L if and only if hl; li A Z for all
l A L4, the bilinear form bL is non-degenerate, i.e., if bLðg; xÞ1 0 mod Z for all x A AL,
then g ¼ 0 in AL. We often write g2 (resp. hg; di) for qLðgÞ (resp. bLðg; dÞ). The automor-
phism group of ðAL; qLÞ is denoted by OðqLÞ. See [46] for more details.

1.2. 2-elementary lattices. Set Z2 :¼ Z=2Z. An even lattice L is 2-elementary if there
is an integer l A Zf0 with AL GZ l

2. For a 2-elementary lattice L, we set lðLÞ :¼ dimZ2
AL.

Then rðLÞf lðLÞ and rðLÞ1 lðLÞ mod 2 by [46], Theorem 3.6.2 (2). We define

dðLÞ :¼ 0 if x2 A Z for all x A L4;

1 if x2 B Z for some x A L4:

�
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The triplet
�
signðLÞ; lðLÞ; dðLÞ

�
determines the isometry class of an indefinite even

2-elementary lattice L by [46], Theorem 3.6.2.

Since the mapping AL C g ! g2 A
1

2
Z=ZGZ2 is Z2-linear and since bL is non-

degenerate, there exists a unique element 1L A AL such that hg; 1Li1 g2 mod Z for all
g A AL. By the uniqueness of 1L, we have gð1LÞ ¼ 1L for all g A OðqLÞ. By definition,
1L ¼ 0 if and only if dðLÞ ¼ 0. If L ¼ L 0 lL 00, then 1L ¼ 1L 0 l 1L 00 .

Let U ¼ 0 1

1 0

� �
and let A1, D2k, E7, E8 be the negative-definite Cartan matrix of

type A1, D2k, E7, E8 respectively, which are identified with the corresponding even lattices.
Then U and E8 are unimodular, and A1, D2k and E7 are 2-elementary. Set

LK3 :¼ UlUlUl E8 l E8:

For a sublattice LH LK3, we define L? :¼ fl A LK3; hl;Li ¼ 0g. When LH LK3 is
primitive, then ðAL;�qLÞG ðAL? ; qL?Þ by [46], Corollary 1.6.2. In particular, one has
lðLÞeminfrðLÞ; 22 � rðLÞg for a primitive 2-elementary sublattice LH LK3.

1.3. Lorentzian lattices. Let L be a Lorentzian lattice. The set

CL :¼ fv A LnR; v2 > 0g

is called the positive cone of L. Since L is Lorentzian, CL consists of two connected compo-
nents, which are written as Cþ

L , C�
L . For l A LnR, we set hl :¼ fv A Cþ

L ; hv; li ¼ 0g. Then
hl 3j if and only if l2 < 0. We define ðCþ

L Þo :¼ Cþ
L n

S
d ADL

hd . Any connected component of
ðCþ

L Þo is called a Weyl chamber of L.

Let M H LK3 be a primitive 2-elementary Lorentzian sublattice. Let IM be the invo-
lution on M lM? defined as

IMðx; yÞ ¼ ðx;�yÞ; ðx; yÞ A M lM?:

Then IM extends uniquely to an involution on LK3 by [46], Corollary 1.5.2. We define

gðMÞ :¼ f22 � rðMÞ � lðMÞg=2; kðMÞ :¼ frðMÞ � lðMÞg=2:

For d A DM? , the smallest sublattice of LK3 containing M and Zd is given by

½M ? d� :¼ ðM? X d?Þ?:

By Lemma 11.3 below, ½M ? d� is again a 2-elementary Lorentzian lattice such that

I½M?d� ¼ sd � IM ¼ IM � sd ; ½M ? d�? ¼ M? X d?:ð1:1Þ

By, e.g., [21], Appendix, Tables 1–3, M and M? are expressed as direct sums of the
2-elementary lattices Aþ

1 :¼ A1ð�1Þ, A1, U, Uð2Þ, D2k, E7, E8, E8ð2Þ.
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1.4. Lattices of signature (2, n) and orthogonal modular varieties. Let L be a lattice
with signðLÞ ¼ ð2; nÞ. Define

WL :¼ f½x� A PðLnCÞ; hx; xi ¼ 0; hx; xi > 0g;

which has two connected components Wþ
L and W�

L . Each of WG
L is isomorphic to a bounded

symmetric domain of type IV of dimension n. OðLÞ acts projectively on WL. Set

OþðLÞ :¼ fg A OðLÞ; gðWG
LÞ ¼ WG

Lg;

which is a subgroup of OðLÞ of index 2 such that WL=OðLÞ ¼ Wþ
L=OþðLÞ. Since OþðLÞ

is an arithmetic subgroup of AutðWþ
LÞ, OþðLÞ acts properly discontinuously on Wþ

L . In
particular, the stabilizer OþðLÞ½h� :¼ fg A OþðLÞ; g � ½h� ¼ ½h�g is finite for all ½h� A Wþ

L , and
the quotient

ML :¼ WL=OðLÞ ¼ Wþ
L=OþðLÞ

is an analytic space. There exists a compactification M�
L of ML, called the Baily–Borel–

Satake compactification [3], such that M�
L is an irreducible normal projective variety of

dimension n with dimðM�
LnMLÞe 1.

For l A LnR, set Hl :¼ f½x� A WL; hx; li ¼ 0g. Then Hl 3j if and only if l2 < 0.
We define the discriminant locus of WL by

DL :¼
P

d ADL=G1

Hd ;

which is a reduced divisor on WL. We define the reduced divisors D 0
L and D 00

L by

D 0
L ¼

P
d AD0

L=G1

Hd ; D 00
L ¼

P
d AD00

L=G1

Hd :

Since DL ¼ D0
L q D00

L, we have DL ¼ D 0
L þD 00

L.

Assume that L is a primitive 2-elementary sublattice of LK3. We set

Wo
L :¼ WLnDL; Mo

L :¼ Wo
L=OðLÞ:

For d A DL, we have the relation

Hd XWL ¼ WLXd? ¼ W½L??d�? :

We define the subsets H o
d HHd (d A DL) and Do

LHDL by

H o
d :¼ f½h� A Wþ

L ;OþðLÞ½h� ¼ fG1;Gsdgg; Do
L :¼

P
d ADL=G1

H o
d :

If Hd 3j (resp. DL 3j), then H o
d (resp. Do

L) is a non-empty Zariski open subset of WLXd?

(resp. DL) unless M? ¼ ðAþ
1 Þ

l2 lA1 (cf. [66], proof of Theorem 4.1 and Section 5). Since
OðLÞ preserves DL and Do

L, we define

DL :¼ DL=OðLÞ; Do
L :¼ Do

L=OðLÞHDL:
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Then Do
LX SingML ¼ j by [62], Proposition 1.9 (5). For the irreducibility of D 0

L=OðLÞ,
see Proposition 11.6 (5) below.

When L ¼ UðNÞlL, a vector of LnC is denoted by ðm; n; vÞ, where m; n A C and
v A LnC. The tube domain LnR þ iCL is identified with WL via the map

LnR þ iCL C z ! ½ð�z2=2; 1=N; zÞ� A WLHPðLnCÞ; z A LnCð1:2Þ

by [10], p. 542. The component of WL corresponding to LnR þ iCþ
L via the isomorphism

(1.2) is written as Wþ
L .

2. K3 surfaces with involution

2.1. K3 surfaces with involution and their moduli space. A compact, connected,
smooth complex surface X is called a K3 surface if it is simply connected and has a
trivial canonical line bundle W2

X . Let X be a K3 surface. Then H 2ðX ;ZÞ endowed
with the cup-product pairing is isometric to the K3 lattice LK3. An isometry of lattices
a : H 2ðX ;ZÞG LK3 is called a marking of X . The pair ðX ; aÞ is called a marked K3 surface,
whose period is defined as

pðX ; aÞ :¼ ½aðhÞ� A PðLK3 nCÞ; h A H 0ðX ;W2
X Þnf0g:

Let M H LK3 be a primitive 2-elementary Lorentzian sublattice. A K3 surface
equipped with a holomorphic involution i : X ! X is called a 2-elementary K3 surface of

type M if there exists a marking a of X satisfying

i�jH 0ðX ;W2
X Þ ¼ �1; i� ¼ a�1 � IM � a:

Then a
�
H 2

þðX ;ZÞ
�
¼ M, where H 2

GðX ;ZÞ :¼ fl A H 2ðX ;ZÞ; i�l ¼Glg.

Let ðX ; iÞ be a 2-elementary K3 surface of type M and let a be a marking with
y� ¼ a�1 � IM � a. Since H 2;0ðX ;CÞHH 2

�ðX ;ZÞnC, we have pðX ; aÞ A Wo
M? by [45],

Theorem 3.10. By [62], Theorem 1.8, and Proposition 11.2 below, the OðM?Þ-orbit of
pðX ; iÞ is independent of the choice of a marking a with i� ¼ a�1IMa. The Gri‰ths period
of ðX ; iÞ is defined as the OðM?Þ-orbit

$MðX ; iÞ :¼ OðM?Þ � pðX ; aÞ A Mo
M? :

By [51], [15], [48], [18], as well as [62], Theorem 1.8, and by Proposition 11.2 below, the
coarse moduli space of 2-elementary K3 surfaces of type M is isomorphic to Mo

M? via the
map $M . In the rest of this paper, we identify the point $MðX ; iÞ A Mo

M? with the isomor-
phism class of ðX ; iÞ.

For a 2-elementary K3 surface ðX ; iÞ, set X i :¼ fx A X ; iðxÞ ¼ xg.

Proposition 2.1. Let ðX ; iÞ be a 2-elementary K3 surface of type M.

23Yoshikawa, K3 surfaces with involution, II

Brought to you by | Kyoto University
Authenticated

Download Date | 1/14/15 8:01 AM



(1) If M GUð2Þl E8ð2Þ, then X i ¼ j.

(2) If M GUl E8ð2Þ, then X i is the disjoint union of two elliptic curves.

(3) If M YUð2Þl E8ð2Þ;Ul E8ð2Þ, then there exist a smooth irreducible curve C of

genus gðMÞ and smooth rational curves E1; . . . ;EkðMÞ such that

X i ¼ C q E1 q � � � q EkðMÞ:

Proof. See [48], Theorem 4.2.2. r

After Proposition 2.1, a primitive 2-elementary Lorentzian sublattice M H LK3 is said
to be non-exceptional if M YUð2Þl E8ð2Þ;Ul E8ð2Þ. Let ðX ; iÞ be a 2-elementary K3 sur-
face of type M. When M is non-exceptional and when gðMÞ > 0, the component of X i

with genus gðMÞ is called the main component of X i.

For gf 0, let Sg be the Siegel upper half-space of degree g. When g ¼ 1, S1 is the
complex upper half-plane. We write H for S1. Let Sp2gðZÞ be the symplectic group of
degree 2g over Z and let Ag :¼ Sg=Sp2gðZÞ be the Siegel modular variety of degree g.
Then Ag is a coarse moduli space of principally polarized Abelian varieties of dimension g.
The Satake compactification of Ag is denoted by A�

g . Then A�
g has the stratification

A�
g ¼ Ag qAg�1 q � � � qA0.

For a 2-elementary K3 surface ðX ; iÞ of type M, the period of X i, i.e., the period of
JacðX iÞ :¼ H 1ðX i;OX iÞ=H 1ðX i;ZÞ, is denoted by WðX iÞ A AgðMÞ. For a 2-elementary K3
surface ðX ; iÞ of type M, we define

J o
MðX ; iÞ ¼ J o

M

�
$MðX ; iÞ

�
:¼ WðX iÞ A AgðMÞ:

Let PM? : WM? ! MM? be the projection and set J o
M :¼ J o

M �PM?jWo

M?
. Then J o

M is an

OðM?Þ-equivariant holomorphic map from Wo
M? to AgðMÞ with respect to the trivial

OðM?Þ-action on AgðMÞ. By [62], Theorem 3.3, J o
M extends to an OðM?Þ-equivariant

holomorphic map JM : Wo
M? WDo

M? ! A�
gðMÞ. The corresponding holomorphic extension

of J o
M is denoted by JM : Mo

M? WDo
M? ! A�

gðMÞ.

Proposition 2.2. The map JM extends to a meromorphic map from M�
M? to A�

gðMÞ.
When rðMÞf 19, JM extends to a holomorphic map from M�

M? to A�
gðMÞ.

Proof. By [13], JM extends to a holomorphic map from

M�
M?nðSingM�

M? W SingDM?Þ

to A�
gðMÞ. Since M�

M? is normal, we get dimðSingM�
M? W SingDM?Þe dimM�

M? � 2 when
rðMÞe 18, so that JM extends to a meromorphic map from M�

M? to A�
gðMÞ by [57] in this

case. If rðMÞ ¼ 19, the result follows from [13] because M�
M? is a compact Riemann surface

and M�
M?nMo

M? is a finite subset of M�
M? . If rðMÞ ¼ 20, the result is trivial because M�

M? is
a point. r
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2.2. Degenerations of 2-elementary K3 surfaces. Let DHC be the unit disc and set
D� :¼ Dnf0g. Let Z be a smooth complex threefold. Let p : Z ! D be a proper surjective
holomorphic function without critical points on Znp�1ð0Þ. Let i : Z ! Z be a holomor-
phic involution preserving the fibers of p. We set Zt ¼ p�1ðtÞ and it ¼ ijZt

for t A D. Then
p : ðZ; iÞ ! D is called an ordinary singular family of 2-elementary K3 surfaces of type M

if p has a unique, non-degenerate critical point on Z0 and if ðZt; itÞ is a 2-elementary K3
surface of type M for all t A D�. Since Z0 is a singular K3 surface, i0 A AutðZ0Þ extends to
an anti-symplectic holomorphic involution ~ii0 on the minimal resolution ~ZZ0 of Z0, i.e.,
ð~ii0Þ� ¼ �1 on H 0ð ~ZZ0;W

2
~ZZ0
Þ. Let o A Z be the unique critical point of p. There exists a

system of coordinates
�
U; ðz1; z2; z3Þ

�
centered at o such that

iðzÞ ¼ ð�z1;�z2;�z3Þ or ðz1; z2;�z3Þ; z A U:

If iðzÞ ¼ ð�z1;�z2;�z3Þ on U, i is said to be of type ð0; 3Þ. If iðzÞ ¼ ðz1; z2;�z3Þ on U, i is
said to be of type ð2; 1Þ.

Theorem 2.3. Let d A DM? and let H o
d :¼ PM?ðH o

d Þ be the image of H o
d by the natu-

ral projection PM? : WM? ! MM? . Let g : D ! MM? be a holomorphic curve intersecting

H o
d transversally at gð0Þ. Then there exists an ordinary singular family of 2-elementary K3

surfaces pZ : ðZ; iÞ ! D of type M with Gri‰ths period map g satisfying the following

properties:

(1) pZ is a projective morphism and the minimal resolution ð ~ZZ0;~ii0Þ is a 2-elementary

K3 surface of type ½M ? d� with Gri‰ths period gð0Þ.

(2) If d A D0
M? , then i is of type ð2; 1Þ and ð ~ZZ0Þ~ii0 is the normalization of Z i0

0 with total

genus gðMÞ � 1.

Proof. By [62], Theorem 2.6, there exists an ordinary singular family of
2-elementary K3 surfaces pZ : ðZ; iÞ ! D of type M with Gri‰ths period map g such
that pZ is projective. We prove that ð ~ZZ0;~ii0Þ is a 2-elementary K3 surface of type ½M ? d�.

Let oZ A Z0 be the unique critical point of pZ. Let pY : ðY; iYÞ ! D be the
family induced from pZ : ðZ; iÞ ! D by the map D C t ! t2 A D. Then Y ¼ Z�D D and
pY ¼ pr2. The projection pr1 induces an identification between ðYt; iYjYt

Þ and ðZt2 ; it2Þ
for all t A D. Since the Picard–Lefschetz transformation for the family of K3 surfaces
pYjD� : YjD� ! D� is trivial, there exists a marking b : R2ðpYjD�Þ�ZG LK3;D� . Let oY be
the unique singular point of Y with pr2ðoYÞ ¼ oZ. Since ðY; oYÞ is a three-dimensional
ordinary double point, there exist two di¤erent resolutions p : ðX;EÞ ! ðY; oYÞ and
p 0 : ðX 0;E 0Þ ! ðY; oYÞ, which satisfy the following properties (cf. [62], Theorem 2.1, proof
of Theorem 2.6 and the references therein):

(i) Set p :¼ pY � p and p 0 :¼ pY � p 0. Then p : X ! D and p 0 : X 0 ! D are simulta-
neous resolutions of pY : Y ! D, and they are smooth families of K3 surfaces. The
marking b induces a marking a for p : X ! D and a marking a 0 for p 0 : X 0 ! D.

(ii) E ¼ p�1ðoYÞ is a smooth rational curve on X0, and E 0 ¼ ðp 0Þ�1ðoYÞ is a smooth
rational curve on X 0

0. The marked family ðp 0 : X 0 ! D; a 0Þ is the elementary modifi-
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cation of ðp : X ! D; aÞ with center E (cf. [62], Section 2.1). Replacing b by g � b,
g A GðMÞ :¼ fg A OðLK3Þ; gIM ¼ IMgg if necessary, one has d ¼ a

�
c1ð½E�Þ

�
.

(iii) Let e : XnE ! X 0nE 0 be the isomorphism defined as

e :¼ ðp 0jX 0nE 0 Þ�1 � ðpjXnEÞ:

Then e is an isomorphism of fiber spaces over D� and the isomorphism

ejX0nE : X0nE ! X 0
0nE 0

extends to an isomorphism ~ee0 : X0 ! X 0
0 with

a0 � ð~ee0Þ� � ða 0
0Þ

�1 ¼ sd :ð2:1Þ

(iv) There exists an isomorphism jK3ðIMÞ : X ! X 0 of fiber spaces over D such that
the following diagrams are commutative (cf. [62], Eqs. (1.6), (2.8)):

ðX;EÞ 			!p ðY; oÞ 			!pr1 ðZ; oÞ

jK3ðIMÞ

???y iY

???y i

???y
ðX 0;E 0Þ 			!p 0

ðY; oÞ 			!pr1 ðZ; oÞ;

R2p 0
�Z 				!jK3ðIMÞ�

R2p�Z

a 0

???y ???ya

LK3;D 				!IM
LK3;D:

ð2:2Þ

We define y :¼ ð~ee0Þ�1 � jK3ðIMÞjX0
A AutðX0Þ. Since p 0 � ~ee0 ¼ pjX0

by (iii) and hence
p 0jX 0

0
nE 0 ¼ ðpjX0nEÞ � ð~ee0Þ�1jX 0

0
nE 0 , we get by the first diagram of (2.2)

ðpjX0nEÞ � ðyjX0nEÞ ¼ ðpjX0nEÞ � ð~ee0Þ�1jX 0
0
nE 0 � jK3ðIMÞjX0nE

¼ ðp 0jX 0
0
nE 0 Þ � jK3ðIMÞjX0nE

¼ ðiYjY0nfogÞ � pjX0nE ;

which implies ðpjX0
Þ � y ¼ ðiYjY0

Þ � ðpjX0
Þ. Since X0 is the minimal resolution of Z0, i.e.,

X0 ¼ ~ZZ0 and since ðY0; iYjY0
Þ ¼ ðZ0; i0Þ, the equality ðpjX0

Þ � y ¼ ðiYjY0
Þ � ðpjX0

Þ implies
that y is the involution on X0 induced from i0. Thus y ¼ ~ii0.

By (1.1), (2.1) and the second diagram of (2.2), we get

a0y
�a�1

0 ¼ a0jK3ðIMÞ�ða 0
0Þ

�1 � a 0
0ð~ee�1

0 Þ�a�1
0 ¼ IM � sd ¼ I½M?d�:ð2:3Þ

By (2.3), y ¼ ~ii0 is an anti-symplectic involution of type ½M ? d�. This proves (1).

Let d A D0
M? . If i is of type ð0; 3Þ, then gð½M ? d�Þ ¼ gðMÞ by [62], Proposition 2.5.

Since d A D0
M? implies gð½M ? d�Þ ¼ gðMÞ � 1 by Lemma 11.5 below, we get a contradic-

tion. Hence i must be of type ð2; 1Þ. Since ð ~ZZ0;~ii0Þ is a 2-elementary K3 surface of type
½M ? d�, ð ~ZZ0Þ~ii0 has total genus gð½M ? d�Þ ¼ gðMÞ � 1 by Lemma 11.5. Since ~ZZ0 ! Z0

is the blow-up at the ordinary double point oZ, it follows from the local description
iðzÞ ¼ ðz1; z2;�z3Þ near oZ that the set of fixed points ð ~ZZ0Þ~ii0 is the normalization of Z i0

0 .
This proves (2). r
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Let C be a (possibly disconnected) smooth complex surface. Let p : C ! D be a
proper, surjective holomorphic function without critical points on Cnp�1ð0Þ. Then
p : C ! D is called an ordinary singular family of curves if p has a unique, non-degenerate
critical point on p�1ð0Þ. We set Ct :¼ p�1ðtÞ for t A D.

Lemma 2.4. Let p : C ! D be an ordinary singular family of curves and let

g ¼ dim H 0ðCt;W
1
Ct
Þ for t3 0. Let J : D� ! Ag be the holomorphic map defined as

JðtÞ :¼ WðCtÞ for t A D�. Then J extends to a holomorphic map from D to A�
g by setting

Jð0Þ :¼ WðcC0C0Þ, where ĈC0 is the normalization of C0.

Proof. Since the result is obvious when g ¼ 0, we assume g > 0. The extendability
of J follows from, e.g., [4], Chapter III, Theorem 16.1. Assume that p has connected fibers.
Either C0 is the join of two smooth curves A and B intersecting transversally at Sing C0 or
C0 is irreducible. The result follows from, e.g., [20], Corollaries 3.2 and 3.8.

Assume that C is not connected. Let C ¼ C0 q � � � q Ck be the decomposition into the
connected components and set pi :¼ pjCi

. Since the period matrix of Ct is the direct sum of
those of the curves p�1

i ðtÞ, the result follows from the case where p has connected fibers and
[4], Chapter III, Theorem 16.1. r

Theorem 2.5. For d A DM? , the following equality holds:

JM jH o
d
¼ J o

½M?d�jH o
d
:

Proof. Let p A H o
d and let g : D ! MM? be a holomorphic curve intersecting

H o
d transversally at p ¼ gð0Þ. Let pZ : ðZ; iÞ ! D be an ordinary singular family of

2-elementary K3 surfaces of type M with Gri‰ths period map g, such that pZ is projec-
tive and such that ð ~ZZ0;~ii0Þ is a 2-elementary K3 surface of type ½M ? d� with Gri‰ths
period gð0Þ (cf. Theorem 2.3). Let o A Z be the unique critical point of pZ. Since
JMðpÞ ¼ JM

�
gð0Þ

�
¼ lim

t!0
JM

�
gðtÞ
�

by the continuity of JM and since

J o
½M?d�ðpÞ ¼ J o

½M?d�ð ~ZZ0;~ii0Þ ¼ W
�
ð ~ZZ0Þ~ii0

�
by Theorem 2.3, it su‰ces to prove

JMðpÞ ¼ lim
t!0

JM

�
gðtÞ
�
¼ W

�
ð ~ZZ0Þ~ii0

�
¼ J o

½M?d�ðpÞ:ð2:4Þ

Set Z i :¼ fz A Z; iðzÞ ¼ zg.

Assume that i is of type ð0; 3Þ. By [62], Proposition 2.5 (1), C :¼ Z infog is a smooth
complex surface and pjC : C ! D is a proper holomorphic submersion. Then

lim
t!0

J o
MðZt; itÞ ¼ lim

t!0
WðCtÞ ¼ WðC0Þ:ð2:5Þ

Since Z i0
0 ¼ C0 q fog, we get ð ~ZZ0Þ~ii0 ¼ C0 q P1, which yields that

WðC0Þ ¼ W
�
ð ~ZZ0Þ~ii0

�
:ð2:6Þ

Equation (2.4) follows from (2.5) and (2.6) in this case.
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Assume that i is of type ð2; 1Þ. By [62], Proposition 2.5 (2), pjZ i : Z i ! D is an ordi-
nary singular family of curves. Let W ! Z i0

0 be the normalization. We get

lim
t!0

J o
MðZt; itÞ ¼ lim

t!0
WðZ it

t Þ ¼ WðW Þ A A�
gðMÞð2:7Þ

by Lemma 2.4. In the same manner as in the proof of Theorem 2.3 (2), we get W ¼ ð ~ZZ0Þ~ii0 ,
which together with (2.7) yields (2.4) in this case. Since p is an arbitrary point of H o

d , we get
the result. r

The following propositions shall be used in the proof of Proposition 4.2 (3).

Proposition 2.6. If gðMÞ ¼ 1 and d A D0
M? , then JMðH o

d Þ ¼ A0 ¼ A�
1 nA1.

Proof. By Lemma 11.5 below, gð½M ? d�Þ ¼ gðMÞ � 1 ¼ 0. By Theorem 2.5, we get
JMðH o

d Þ ¼ J o
½M?d�ðH o

d Þ ¼ A0 ¼ A�
1 nA1. r

Proposition 2.7. If gðMÞ ¼ 1, then J o
MðWo

M?Þ ¼ A�
1 .

Proof. By Proposition 2.2, JM extends to a meromorphic map from M�
M? to A�

1 .
Since J o

MðWo
M?Þ ¼ JMðMo

M?Þ and since dimA�
1 ¼ 1, we have J o

MðWo
M?Þ ¼ A�

1 if J o
M is

non-constant. We see that J o
M is non-constant.

Since gðMÞ ¼ 1, we get by [48], p. 1434, Table 1, or [21], Appendix, Table 2,

M? GUlAþ
1 lAlm�1

1 ð1eme 10Þ; Uð2ÞlUð2ÞlD4; UlUð2Þ:ð2:8Þ

By (2.8), D0
M? 3j. Let d A D0

M? . By Proposition 2.6, we get JMðH o
d Þ ¼ A0 ¼ A�

1 nA1.
Since JMðWo

M?ÞHA1, this implies that JM is non-constant. r

Proposition 2.8. If gðMÞ ¼ 1 and d A D00
M? , then JMðH o

d ÞHA1.

Proof. Since d A D00
M? , we get gð½M ? d�Þ ¼ gðMÞ ¼ 1 by Lemma 11.5 below. By

Theorem 2.5, we get JMðH o
d Þ ¼ J o

½M?d�ðH o
d ÞH J o

½M?d�ðW
o
½M?d�?ÞHA1. r

Proposition 2.9. If gðMÞ ¼ 2 and d A D0
M? , then JMðH o

d Þ ¼ A�
2 nA2.

Proof. By Lemma 11.5 below, gð½M ? d�Þ ¼ 1. By Theorem 2.5, we get

JMðH o
d Þ ¼ J o

½M?d�ðH o
d Þ ¼ J½M?d�ðWo

½M?d�?Þ ¼ A�
1 ¼ A�

2 nA2;

where the third equality follows from Proposition 2.7. r

We define the divisor N2 HA2 as

N2 :¼ fWðE1 � E2Þ A A2;E1;E2 are elliptic curvesg:
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Proposition 2.10. Let gðMÞ ¼ 2 and d A D00
M? . Then JMðH o

d ÞXN2 3j if and only

if M GAþ
1 lAl8

1 and d=21 1M? mod M?. In particular, if either M YAþ
1 lAl8

1 or

d=2E 1M? mod M?, then

JMðH o
d ÞHA2nN2:

Proof. Assume JMðH o
d ÞXN2 3j. By Theorem 2.5,

J½M?d�ðWo
½M?d�?ÞXN2 I J½M?d�ðH o

d ÞXN2 ¼ JMðH o
d ÞXN2 3j:

Let ðX ; iÞ be a 2-elementary K3 surface of type ½M ? d� such that J½M?d�ðX ; iÞ A N2. If
½M ? d�YUl E8ð2Þ;Uð2Þl E8ð2Þ, there exists an irreducible smooth curve C of genus
gð½M ? d�Þ with J½M?d�ðX ; iÞ ¼ WðCÞ by Proposition 2.1. By d A D00

M? and Lemma 11.5 be-
low, we get gð½M ? d�Þ ¼ 2. However, the period of an irreducible smooth curve of genus 2
lies in A2nN2. This contradicts the condition WðCÞ A N2. Thus ½M ? d�GUl E8ð2Þ or
½M ? d�GUð2Þl E8ð2Þ. If ½M ? d�GUð2Þl E8ð2Þ, then C ¼ j by Proposition 2.1 (1),
which contradicts the condition WðCÞ A N2. We get ½M ? d�GUl E8ð2Þ and hence
M?X d? ¼ ½M ? d�?GUl2 l E8ð2Þ.

Since d A D00
M? , we get

�
rðMÞ; lðMÞ

�
¼
�
rð½M ? d�Þ � 1; lð½M ? d�Þ þ 1

�
¼ ð9; 9Þ

by Proposition 11.6 below. Since rðMÞ ¼ 9, we get dðMÞ ¼ 1. All together, we get�
rðMÞ; lðMÞ; dðMÞ

�
¼ ð9; 9; 1Þ and hence M GAþ

1 lAl8
1 . Set L :¼ Zd HM?. Then

LGA1. Since
�
rðM?Þ; lðM?Þ; dðM?Þ

�
¼ ð13; 9; 1Þ, we get the decomposition

M? G ðM? X d?ÞlLGUl2 l E8ð2ÞlL

by comparing the triplets ðr; l; dÞ, which implies 1M? ¼ 1M?Xd? l 1L ¼ 1L ¼ d=2 in AM? .

Conversely, assume M GAþ
1 lAl8

1 and d=21 1M? mod M?. Since d=2 A ðM?Þ4,
we get d A D00

M? . Since
�
rðM?Þ; lðM?Þ

�
¼
�
rðM? X d?Þ þ 1; lðM?X d?Þ þ 1

�
by Prop-

osition 11.6 (3), (4) below, we get

rðM? X d?Þ ¼ rðM?Þ � 1 ¼ 12 and lðM? X d?Þ ¼ lðM?Þ � 1 ¼ 8:

Since dðM?Þ ¼ 1, we get M? ¼ ðM? X d?ÞlL by comparing ðr; l; dÞ. Let us see
that dðM?X d?Þ ¼ 0. Let x A ðM?X d?Þ4 be an arbitrary element and let k A Z. Set
y ¼ x þ kðd=2Þ A ðM?Þ4¼ ðM? X d?Þ4lL4. Since 1M? 1 d=2 mod M?, we get by the
definition of 1M?

�k=2 ¼ hy; d=2i1hy; 1M?i1hy; yi1hx; xi� k2=2 mod Z:

Hence x2 1 kðk � 1Þ=21 0 mod Z, which implies dðM?X d?Þ ¼ 0. Since

ðr; l; dÞ ¼ ð12; 8; 0Þ for M?X d?;

we get M?X d? GUl2 l E8ð2Þ and hence ½M ? d�GUl E8ð2Þ. By Theorem 2.5,
JMðH o

d ÞH J o
½M?d�ðW

o
½M?d�ÞHN2, where the last inclusion follows from Proposition 2.1 (2).

Hence JMðH o
d ÞXN2 3j. r
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3. Log del Pezzo surfaces and 2-elementary K3 surfaces

In this section, we recall the notion of log del Pezzo surfaces of indexe 2 and DNP
surfaces, for which we refer the reader to [1] and [44]. In Section 3, the canonical divisor
of a normal complex surface S is denoted by KS. Hence the canonical line bundle of S is
denoted by OSðKSÞ in stead of W2

S in this section.

3.1. Log del Pezzo surfaces of index 2 and DNP surfaces. A normal projective sur-
face S is a log del Pezzo surface if it has only log terminal singularities and if its anti-
canonical divisor �KS is an ample Q-Cartier divisor. The index of S is the smallest integer
n A Z>0 such that �nKS is Cartier, [1], Section 1.

A smooth projective surface Y is a DNP surface if h1ðYÞ ¼ 0, KY S 0 and if there
exists an e¤ective divisor C A j�2KY j with only simple singularities, [1], Section 2.1. A
DNP surface Y is rational if j�2KY j3j. If Y is a DNP surface and if C A j�2KY j is a
smooth divisor, the pair ðY ;CÞ is called a right DNP pair.

Let S be a log del Pezzo surface of index 2. By [1], Theorem 1.5, j�2KSj contains a
smooth curve. Let C A j�2KSj be smooth. To the pair ðS;CÞ, one can associate a right
DNP pair and a 2-elementary K3 surface as follows ([1], Section 2.1, [44], Section 6.6).

Let a : ~SS ! S be the minimal resolution. Since S has only log terminal singularities of
index 2, we deduce from [1], Section 1.2, the existence of a non-zero a-exceptional simple
normal crossing divisor E on ~SS such that �2K ~SS @ a�ð�2KSÞ þ E. If D is a connected
component of E, the germ

�
S; aðDÞ

�
A Sing S is isomorphic to one of the singularities Kn

in [1], Section 1.2, [44], Example 4.17.

Let b : Y ! ~SS be the blowing-up at the nodes of E. By [1], Section 1.2, the proper
transform EY of E is the disjoint union of ð�4Þ-curves on Y and the total transform b�E
is the disjoint union of the configurations in [1], Section 1.5 (9). Set p :¼ a � b. The bira-
tional morphism p : Y ! S is called the right resolution of S.

Let CY :¼ p�1ðCÞHY be the total transform of C with respect to the birational mor-
phism p : Y ! S. Since C A j�2KSj is smooth and hence C X Sing S ¼ j, pjCY

: CY ! C

is an isomorphism. By [1], Section 2.1, [44], p. 415, Eq. (6-1), Y is a DNP surface and the
pair ðY ;CY þ EY Þ is a right DNP pair. We call ðY ;CY þ EY Þ the right DNP pair associ-

ated to ðS;CÞ.

Since CY þ EY A j�2KY j, there exists a double covering p : X ! Y with branch
divisor CY þ EY . Let i : X ! X be the non-trivial covering transformation of p : X ! Y .
By [1], Section 2.1, [44], Section 6.6, ðX ; iÞ is a 2-elementary K3 surface such that
X i GCY þ EY . We call ðX ; iÞ the 2-elementary K3 surface associated to ðS;CÞ. In this
case, gðCÞ ¼ gðX iÞf 2 by [1], Theorem 4.1.

Conversely, if ðX ; iÞ is a 2-elementary K3 surface with gðX iÞf 2, then ðX=i;X iÞ is a
right DNP pair. By [1], Theorem 4.1, there exists a unique pair ðS;CÞ, where S is a log del
Pezzo surface of indexe 2 and C A j�2KSj is a smooth member, such that ðX ; iÞ is associ-
ated to ðS;CÞ.
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3.2. Some properties of the main component of X i. Let M H LK3 be a primitive
2-elementary Lorentzian sublattice. Assume that M is non-exceptional and that gðMÞf 1.
Recall that if ðX ; iÞ is a 2-elementary K3 surface of type M and if X i ¼ C q E1 q � � � q Ek

denotes the decomposition into the connected components with gðCÞ ¼ gðMÞf 1 and
Ei GP1 for 1e ie k, then C is called the main component of X i.

Proposition 3.1. Assume that rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ. Then

0e gðMÞe 5

and the following hold:

(1) If gðMÞ ¼ 3, then there exists a 2-elementary K3 surface ðX ; iÞ of type M such that

the main component of X i is non-hyperelliptic.

(2) If gðMÞ ¼ 4, then there exists a 2-elementary K3 surface ðX ; iÞ of type M such that

the main component of X i is isomorphic to the complete intersection of a smooth quadric and

a (possibly singular) cubic in P3.

(3) If gðMÞ ¼ 5, then there exists a 2-elementary K3 surface ðX ; iÞ of type M such

that the main component of X i is the normalization of an irreducible plane quintic with one

node.

Proof. By [48], p. 1434, Table 1, and the assumption on M, we get 0e gðMÞe 5.

In what follows, we use Nakayama’s notation [44], p. 410, Table 6, and [44],
pp. 494–495, Table 14, for the type of log del Pezzo surfaces of indexe 2. See [44],
p. 410, Tables 9, for the relation between the type of a log del Pezzo surface and the type
of the associated 2-elementary K3 surface.

Let S be a log del Pezzo surface and let G A j�2KSj be a non-singular member. Let
M H LK3 be the type of the 2-elementary K3 surface ðX ; iÞ associated to ðS;GÞ. The main
component of X i is isomorphic to G by construction.

(1) Since gðMÞ ¼ 3, rðMÞf 10 and
�
rðMÞ; dðMÞ

�
3 ð10; 0Þ, the type of S is one of

½2�þðbÞ ð0e be 4Þ by [44], p. 410, Table 6 and p. 444 Table 9. By [44], pp. 494–495, Table
14, S is a hypersurface of Pð1; 1; 1; 2Þ defined by the following equation:

Lattice M? Type of S Equation defining S

Ul2 lD4 lAl4
1 ½2�þð0Þ xyu ¼ z4 þ F3ðx; zÞx þ G3ðy; zÞy;

Ul2 lD4 lAl4�b
1 ½2�þðbÞ ð1e be 4Þ xyu ¼ F4�bðx; zÞxb þ G3ðy; zÞy;

where wtðxÞ ¼ wtðyÞ ¼ wtðzÞ ¼ 1, wtðuÞ ¼ 2 and Fkðx; yÞ A C½x; y� is a homogeneous poly-
nomial of degree k and G3ðx; yÞ A C½x; y� is a homogeneous polynomial of degree 3. Since
OSð�2KSÞGOPð1;1;1;2Þð2ÞjS by the adjunction formula and hence

u � Uðx; y; zÞ A H 0
�
S;OSð�2KSÞ

�
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for a homogeneous polynomial Uðx; y; zÞ A C½x; y; z� of degree 2, a general member of the
linear system j�2KSj is a hypersurface of P2 defined by the following equation:

Type of S Equation defining G
½2�þð0Þ xyUðx; y; zÞ ¼ z4 þ F3ðx; zÞx þ G3ðy; zÞy;
½2�þðbÞ ð1e be 4Þ xyUðx; y; zÞ ¼ F4�bðx; zÞxb þ G3ðy; zÞy:

In particular, G A j�2KSj is a smooth plane quartic if Fkðx; yÞ, G3ðx; yÞ and Uðx; y; zÞ are
su‰ciently general. Since a smooth plane quartic curve is non-hyperelliptic, we get (1).

(2) Since gðMÞ ¼ 4, rðMÞf 10 and
�
rðMÞ; dðMÞ

�
3 ð10; 0Þ, the type of S is one of

½0; 1; 1�þðbÞ ð1e be 3Þ by [44], p. 410, Table 6 and p. 444, Table 9. By [44], pp. 494–495,
Table 14, S is a complete intersection of Pð1; 1; 1; 1; 2Þ defined by the following equations:

Lattice M? Type of S Equations defining S

ðAþ
1 Þ

l2 l E8 lAl2
1 ½0; 1; 1�þð1Þ

xw ¼ yz;

xu ¼ ðw þ czÞzw þ ðw þ c 0yÞyw;

�
ðAþ

1 Þ
l2 l E8 lAl3�b

1 ½0; 1; 1�þðbÞ ðbf 2Þ
xw ¼ yz;

xu ¼ ðw þ czÞzw þ w3�byb;

�
where wtðxÞ ¼ wtðyÞ ¼ wtðzÞ ¼ wtðwÞ ¼ 1, wtðuÞ ¼ 2 and c; c 0 A C are constants. Since
OSð�2KSÞGOPð1;1;1;1;2Þð2ÞjS by the adjunction formula or by Lemma 3.2 below and hence
u � Uðx; y; z;wÞ A H 0

�
S;OSð�2KSÞ

�
for a homogeneous polynomial

Uðx; y; z;wÞ A C½x; y; z;w�

of degree 2, G A j�2KSj is a complete intersection of P3 defined by the following equations:

Type of S Equations defining G
½0; 1; 1�þð1Þ xw ¼ yz; xUðx; y; z;wÞ ¼ ðw þ czÞzw þ ðw þ c 0yÞyw;
½0; 1; 1�þðbÞ ð2e be 3Þ xw ¼ yz; xUðx; y; z;wÞ ¼ ðw þ czÞzw þ w3�byb:

By choosing c, c 0, Uðx; y; z;wÞ su‰ciently general, G is a complete intersection in P3 of a
smooth quadric and a (possibly singular) cubic. This proves (2).

(3) Step 1. Since gðMÞ ¼ 5, rðMÞf 10 and
�
rðMÞ; dðMÞ

�
3 ð10; 0Þ, the type of S

is one of ½1; 1; 1�þð1; bÞ ð2e be 3Þ by [44], p. 410, Table 6 and p. 444, Table 9. By [44],
pp. 494–495, Table 14, S is a subvariety of the weighted projective space Pð1; 1; 2; 2; 4Þ
defined by the following equations:

Lattice M? Type of S Equations defining S

UlAþ
1 l E8 lAl3�b

1 ½1; 1; 1�þðbÞ ð2e be 3Þ
xw ¼ yz;

z2w ¼ ðxu � y2b�1w3�bÞx;
zw2 ¼ ðxu � y2b�1w3�bÞy;

8<:
where wtðxÞ ¼ wtðyÞ ¼ 1, wtðzÞ ¼ wtðwÞ ¼ 2, wtðuÞ ¼ 4. Notice that S is not a complete
intersection in Pð1; 1; 2; 2; 4Þ.
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Since OSð�2KSÞGOPð1;1;2;2;4Þð4ÞjS by Lemma 3.2 below and hence

u � Uðx; y; z;wÞ A H 0
�
S;OSð�2KSÞ

�
for a weighted homogeneous polynomial Uðx; y; z;wÞ A C½x; y; z;w� of degree 4, G is a
subvariety of Pð1; 1; 2; 2Þ defined by the following equations:

Type of S Equations defining G

½1; 1; 1�þðbÞ ð2e be 3Þ
xw ¼ yz;

z2w ¼ ðxUðx; y; z;wÞ � y2b�1w3�bÞx;
zw2 ¼ ðxUðx; y; z;wÞ � y2b�1w3�bÞy:

8<:
Step 2. Set S1 :¼ fðx : y : z : wÞ A Pð1; 1; 2; 2Þ; xw ¼ yzg. By [44], Lemma 7.6,

S1 GP
�
OP1 lOP1ð1Þ

�
is a Hirzebruch surface, which contains G as an irreducible divisor.

The projection p : S1 ! P1 is given by the formula

p : S1 C ðx : y : z : wÞ ! ðx : yÞ ¼ ðz : wÞ A P1:

By [44], Lemma 7.6, the negative section s of p : S1 ! P1 is given by

s : P1 C ðz : wÞ ! ð0 : 0 : z : wÞ A S1:

Let l and C be the divisors on S1 defined as

l :¼ fð0 : y : 0 : wÞ A S1; ðy : wÞ A Pð1; 2Þg ¼ p�1ð0 : 1ÞHS1;

C :¼


ðx : y : z : wÞ A S1; z2w ¼

�
xUðx; y; z;wÞ � y2b�1w3�b

�
x
�
HS1:

We have the equation of divisors C ¼ Gþ l. Since OPð1;1;2;2Þð2ÞjS1
GOS1

ðsþ 2lÞ by

[44], Lemma 7.6, and since z2w � fxUðx; y; z;wÞ � y2b�1w3�bgx is an element of
H 0
�
Pð1; 1; 2; 2Þ;OPð1;1;2;2Þð6Þ

�
, we get

Gþ l ¼ C ¼ div
�
z2w � fxUðx; y; z;wÞ � y2b�1w3�bgx

�
A
��OS1

�
3ðsþ 2lÞ

���:
Hence G ¼ C � l A jOS1

ð3sþ 5lÞj. Regard H 2ðS1;ZÞ as the Neron–Severi lattice of S1.
Then we have the equations s � s ¼ �1, l � l ¼ 0 and s � l ¼ 1. Since G is linearly equiv-
alent to 3sþ 5l, we get G � G ¼ 21, G � s ¼ 2.

Step 3. Let p : S1 ! P2 be the blowing-down of the ð�1Þ-curve s and set G :¼ pðGÞ.
Let m :¼ multpðsÞ G be the multiplicity of G at pðsÞ. Then m ¼ G � s ¼ 2, so that pðsÞ is
a double point of G. Since G is smooth and since p : Gns ! GnfpðsÞg is an isomor-
phism, G has a unique singular point at pðsÞ and pjG : G ! G is the normalization. Since
ðdegGÞ2 ¼ G � G ¼ G � Gþ m2 ¼ 25, we get degG ¼ 5.

Since p : S1 ! P2 is the blowing-down of s and since G ¼ pðGÞ, pðsÞ is a node of G
if and only if G intersects s transversally at two di¤erent points. Since G � s ¼ 2, pðsÞ is a
node of G if and only if KðGX sÞ ¼ 2. By the definitions of G and s,
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KðGX sÞ ¼Kfðx : y : z : wÞ A G; x ¼ y ¼ 0g

¼Kfð0 : 0 : z : wÞ A Pð1; 1; 2; 2Þ; zw ¼ 0g ¼ 2:

Hence GHP2 is a quintic with one node, and G is the normalization of G. r

3.3. Some log del Pezzo surfaces of index 2. Let n be an integer with 0e ne 3. Let
ðx : y : z : w : uÞ be the system of homogeneous coordinates of the weighted projective
space P

�
1; 1; n þ 1; n þ 1; 2ðn þ 1Þ

�
with weights

wtðxÞ ¼ wtðyÞ ¼ 1; wtðzÞ ¼ wtðwÞ ¼ n þ 1; wtðuÞ ¼ 2ðn þ 1Þ:

Set

W :¼


ðx : y : z : w : uÞ A P

�
1; 1; n þ 1; n þ 1; 2ðn þ 1Þ

�
; xw ¼ yz

�
:

In [44], Proposition 7.13, Nakayama gave a system of homogeneous polynomials that
defines a log del Pezzo surface of index 2 as a subvariety of W .

Lemma 3.2. Let S HW be a log del Pezzo surface of index 2 as in [44], Prop-

osition 7.13. Then the following isomorphism of holomorphic line bundles on S holds:

OPð1;1;nþ1;nþ1;2ðnþ1ÞÞ
�
2ðn þ 1Þ

�
jS GOSð�2KSÞ:

Proof. Let F be the vector bundle of rank 2 over Pð1; 1; n þ 1; n þ 1Þ defined as

F :¼ OPð1;1;nþ1;nþ1ÞlOPð1;1;nþ1;nþ1Þ
�
2ðn þ 1Þ

�
:

Let PðFÞ ! Pð1; 1; n þ 1; n þ 1Þ be the P1-bundle associated with F and let
OPðFÞð1Þ ! PðFÞ be the tautological quotient line bundle. Let

C : PðFÞ ! P
�
1; 1; n þ 1; n þ 1; 2ðn þ 1Þ

�
be the birational morphism as in [44], Lemma 7.5.

Set Sn :¼ fðx : y : z : wÞ A Pð1; 1; n þ 1; n þ 1Þ; xw ¼ yzg. By [44], Lemma 7.6,
Sn GP

�
OP1 lOP1ðn þ 1Þ

�
is a Hirzebruch surface. We set

E :¼ FjSn
; PðEÞ :¼ PðFÞjSn

; OPðEÞð1Þ :¼ OPðFÞð1ÞjPðEÞ:

Then PðEÞ ! Sn is the P1-bundle associated with E, and OPðEÞð1Þ ! PðEÞ is the tautolog-
ical quotient line bundle. Set F :¼ CjPðEÞ. Then F

�
PðEÞ

�
¼ W by [44], Proposition 7.13.

By [44], Proposition 7.8, F : PðEÞ ! W is a birational morphism. By [44], p. 461, l. 10,
we have C�OPð1;1;nþ1;nþ1;2ðnþ1ÞÞ

�
2ðn þ 1Þ

�
GOPðFÞð1Þ and hence

F�OPð1;1;nþ1;nþ1;2ðnþ1ÞÞ
�
2ðn þ 1Þ

�
jW GOPðFÞð1ÞjPðEÞ ¼ OPðEÞð1Þ:ð3:1Þ

34 Yoshikawa, K3 surfaces with involution, II

Brought to you by | Kyoto University
Authenticated

Download Date | 1/14/15 8:01 AM



Let V HPðEÞ be the proper transform of S with respect to the birational morphism
F : PðEÞ ! W . We set j :¼ FjV (cf. [44], p. 465, l. 15). Then j : V ! S is a birational
morphism. By [44], p. 464, ll. 1–11, we have

j�OSð�2KSÞGOPðEÞð1ÞjV :ð3:2Þ

By (3.1) and (3.2), we have an isomorphism of holomorphic line bundles on V :

j�OPð1;1;nþ1;nþ1;2ðnþ1ÞÞ
�
2ðn þ 1Þ

�
jS G j�OSð�2KSÞ:ð3:3Þ

Since jjVnj�1ðSing SÞ : Vnj�1ðSing SÞ ! SnSing S is an isomorphism by [44], p. 464, ll. 9–10,
and since S is normal, the desired isomorphism follows from (3.3). r

3.4. Even theta-characteristics on the main component of X i. Recall that a theta-

characteristic on a compact Riemann surface C is a half canonical line bundle on C,
i.e., a holomorphic line bundle on C whose square is the canonical line bundle of C. A
theta-characteristic L is even if h0ðLÞ1 0 mod 2. A theta-characteristic L is e¤ective if
h0ðLÞ > 0. If gðCÞ denotes the genus of C, there are exactly 2gðCÞ�1ð2gðCÞ þ 1Þ even theta-
characteristics on C.

Proposition 3.3. Let C be a compact Riemann surface of genus gðCÞ.

(1) If gðCÞe 2, C has no e¤ective even theta-characteristics.

(2) When gðCÞ ¼ 3, C has no e¤ective even theta-characteristics if and only if C is

non-hyperelliptic.

(3) When gðCÞ ¼ 4, C has no e¤ective even theta-characteristics if and only if C is a

complete intersection of a smooth quadric and a cubic in P3.

(4) If C is the normalization of an irreducible plane quintic with one node, then

gðCÞ ¼ 5 and C has no e¤ective even theta-characteristics.

Proof. (1) When gðCÞ ¼ 0, the result is trivial. When gðCÞ ¼ 1; 2, the result follows
from, e.g., [43], Chapter IIIa, Proposition 6.1 (iv), since C is hyperelliptic.

(2) The result follows from, e.g., [35], p. 58.

(3) We may assume C to be non-hyperelliptic by [25], p. 258, [43], Chapter IIIa,
Proposition 6.1 (iv), Corollary 6.7. The result follows from, e.g., [2], p. 196, A-3, p. 206
and p. 232.

(4) The result follows from [58], Lemma 0.18 (i), (ii). r

Proposition 3.4. Let M H LK3 be a primitive 2-elementary Lorentzian sublattice. If

rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ, then there exists a 2-elementary K3 surface ðX ; iÞ of

type M such that X i has no e¤ective even theta-characteristics.

Proof. The result follows from Propositions 3.1 and 3.3. r
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4. Automorphic forms on the period domain

4.1. Igusa’s Siegel modular form and its pull-back on WM? . Let Fg be the Hodge line
bundle on Ag. Then Fg is an ample line bundle on Ag in the sense of orbifolds. There is an
integer n A N such that Fn

g is a line bundle on Ag in the ordinary sense and such that Fmn
g

extends to a very ample line bundle on A�
g for mg 0. In this case, let Fmn

g denote the
holomorphic extension of Fmn

g to A�
g . An element of H 0ðAg;F

k
g Þ is identified with a

Siegel modular form on Sg for Sp2gðZÞ of weight k. For g > 0, we define

wgðSÞ :¼
Q

ða;bÞ even

ya;bðSÞ; S A Sg;

where a; b A 0;
1

2

� �g

and ya;bðSÞ :¼
P

n AZg

expfpi tðn þ aÞSðn þ aÞ þ 2pi tðn þ aÞbg is the

corresponding theta constant. Here ða; bÞ is even if 4 tab1 0 mod 2. When g ¼ 0, we define
w0 :¼ 1. By [31], Lemma 10, w8

g is a Siegel modular form of weight 2gþ1ð2g þ 1Þ. Let ynull;g

be the reduced divisor on Ag defined as

ynull;g :¼ f½S� A Ag; wgðSÞ ¼ 0g:

It is classical that ynull;2 ¼ N2. In Section 9, w8
g shall play a crucial role.

Define the Petersson metric on Fg by

kxk2ðSÞ :¼ ðdet ImSÞjxj2; ðS; xÞ A Sg � C:ð4:1Þ

Since w8
g is a Siegel modular form, kw8

gk
2 ¼ ðdet ImSÞwðgÞjwgðSÞ

8j2, wðgÞ ¼ 2gþ1ð2g þ 1Þ, is
a Cy function on Ag in the sense of orbifolds.

Lemma 4.1. Let p : C ! D be an ordinary singular family of curves of genus g > 0
such that C0 is irreducible. Let o :¼ Sing C0.

(1) There exists a holomorphic function hðtÞ A OðDÞ such that

log
��wg

�
WðCtÞ

�8��2 ¼ 22g�2 logjtj2 þ logjhðtÞj2 þ Oðlog logjtj�1Þ ðt ! 0Þ:

(2) If g ¼ 1 or g ¼ 2, then hð0Þ3 0.

Proof. We follow [41], p. 370, Section 3. For S A Sg, we write S ¼ z to

o Z

� �
,

where z A H, o A Cg�1, Z A Sg�1.

(1) Since C0 is an irreducible curve of arithmetic genus g > 0 with one node, the nor-
malization of C0 is a smooth curve of genus g � 1. By [20], Corollary 3.8, there exists a
holomorphic function cðtÞ on D with values in complex symmetric g � g-matrices such that

WðCtÞ ¼
log t

2pi
A þ cðtÞ

 �
A Ag; A ¼ 1 t0g�1

0g�1 Og�1

� �
:ð4:2Þ

Write cð0Þ ¼ c0
to0

o0 Z0

� �
. Then Z0 A Sg�1 and lim

t!0
WðCtÞ ¼ ½Z0� A Ag�1 HA�

g .
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For a; b A 0;
1

2

� �g

, write a ¼ ða1; a
0Þ, b ¼ ðb1; b

0Þ, where

a1; b1 A 0;
1

2

� �
; a 0; b 0 A 0;

1

2

� �g�1

:

Let a1 ¼ 1

2
. There is a holomorphic function fa 0;b 0 ðz;o;ZÞ such that

ya;bðSÞ ¼
P

n¼ðn1;n 0Þ AZ�Zg�1

epi n1þ1
2ð Þ2

zþ2pi n1þ1
2ð Þ toðn 0þa 0Þþpi tðn 0þa 0ÞZðn 0þa 0Þþ2pi tðnþaÞbð4:3Þ

¼ e
piz

4 fe�pib1ya 0;b 0 ð�o=2;ZÞ þ epib1ya 0;b 0 ðo=2;ZÞ

þ e2pizfa 0;b 0 ðe2piz;o;ZÞg

¼ e
piz

4 f2i2b1ya 0;b 0 ðo=2;ZÞ þ e2pizfa 0;b 0 ðe2piz;o;ZÞg;

where we used 4 tab A 2Z and the identity ya 0;b 0 ð�o=2;ZÞ ¼ ð�1Þ4 ta 0b 0
ya 0;b 0 ðo=2;ZÞ to

get the third equality; see [42], p. 167, Proposition 3.14. The number of even ða; bÞ with
a1 ¼ 1=2 is given by 22ðg�1Þ.

Similarly, let a1 ¼ 0. Then the pair ða 0; b 0Þ must be even. There is a holomorphic
function ga 0;b 0 ðz;o;ZÞ such that

ya;bðSÞ ¼
P

n¼ðn1;n 0Þ AZ�Zg�1

epin2
1
zþ2pin1

toðn 0þa 0Þþpi tðn 0þa 0ÞZðn 0þa 0Þþ2pi tðnþaÞbð4:4Þ

¼ ð�1Þ2 ta 0b 0
ya 0;b 0 ðZÞ þ epizga 0;b 0 ðepiz;o;ZÞ:

By (4.3), (4.4), there is a holomorphic function Fðz;o;ZÞ such that

wgðSÞ
8 ¼

Q
ða;bÞ even

ya;bðSÞ8 ¼ ðe
piz

4 Þ8�22ðg�1Þ
Fðepiz;o;ZÞð4:5Þ

¼ ðe2pizÞ22g�2

Fðepiz;o;ZÞ:

Since w8
g is a Siegel modular form and hence wgðWþ AÞ8 ¼ wgðWÞ8, we have that Fðz;o;ZÞ

is an even function in z. By (4.2), z ¼ ðlog tÞ=2pi þ c11ðtÞ for some c11ðtÞ A OðDÞ. Hence
expð2pizÞ ¼ t exp

�
2pic11ðtÞ

�
. By (4.5), there exists hðtÞ A OðDÞ such that

wg

log t

2pi
A þ cðtÞ

� �8

¼ t22g�2

hðtÞ:ð4:6Þ

Since

Im
log t

2pi
A þ cðtÞ

� �
¼ � 1

2p
logjtj

� �
A þ Imcð0Þ þ OðjtjÞ
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with cð0Þ ¼ c0
to0

o0 Z0

� �
, Z0 A Sg�1, we get

det Im
log t

2pi
A þ cðtÞ

� �
¼ � det Im Z0

2p
logjtj þ Oð1Þ:ð4:7Þ

By (4.2), (4.6), (4.7), we get (1).

(2) Let g ¼ 1. Since p : C ! D is an ordinary singular family of elliptic curves, ðD; 0Þ
is regarded as a local coordinate of A�

1 centered at the cusp þiy. Since w8
1ðtÞ ¼ hðtÞ24

vanishes of order 1 at the cusp of A�
1 , we get (2) in this case.

Let g ¼ 2. Then o0 A C, Z0 A H and ya 0;b 0 ðZ0Þ3 0 in (4.4). Set L0 :¼ Z þ Z0Z.
By (4.3), the assertion (2) follows if ya;bðo0=2;Z0Þ3 0 for all ða; bÞ A f0; 1=2g. Since

div ya;bð�;Z0Þ ¼ a þ 1

2

� �
Z0 þ b þ 1

2

� � �
A C=L0 by [42], Lemma 4.1, it su‰ces to prove

that
o0

2
B

1

2
Z

� �
Z0 þ

1

2
Z, i.e., o0 B L0. Let i : ĈC0 ! C0 be the normalization. Since o is the

node of C0, we can write i�1ðoÞ ¼ fôo1; ôo2g with ôo1 3 ôo2. By [20], p. 53, Corollary 3.8, there
exist a symplectic basis fa; bg of H1ðĈC0;ZÞ and a holomorphic 1-form v on ĈC0 such thatÐ
a

v ¼ 1,
Ð
b

v ¼ Z0 and
Ð̂oo2

ôo1

v ¼ o0. Since ôo1 3 ôo2, we get o0 B L0. This proves (2). r

Let oSg
be the Sp2gðZÞ-invariant Kähler form on Sg defined as

oSg
ðSÞ :¼ �dd c log det ImS; S A Sg:

Let oAg
be the Kähler form on Ag in the sense of orbifolds induced from oSg

. Then

oAg
¼ c1ðFg; k � kÞ:

Let IðMÞHZ be the ideal defined as follows: q A IðMÞ if and only if there exists
F

q

gðMÞ A H 1ðA�
gðMÞ;O

�
A�

gðMÞ
Þ with F

q

gðMÞjAgðMÞ
¼ F

q

gðMÞ.

Let i : Wo
M? WDo

M? ,! WM? be the inclusion. For q A IðMÞ, we set

l
q
M :¼ i�OWo

M?WDo

M?
ðJ �

MF
q

gðMÞÞ:

By [62], Lemma 3.6, and by Proposition 2.2, the OWM? -module l
q
M is an invertible sheaf on

WM? . We identify l
q
M with the corresponding holomorphic line bundle on WM? . By [62],

Lemma 3.7, and by Proposition 2.2, the OðM?Þ-action on l
q
M jWo

M?WDo

M?
induced from the

OðM?Þ-equivariant map JM extends to the one on l
q
M . Hence l

q
M is equipped with the

structure of an OðM?Þ-equivariant line bundle on l
q
M .

Let k � klq

M
be the OðM?Þ-invariant Hermitian metric on l

q
M jWo

M?
defined as

k � klq

M
:¼ ðJ o

MÞ�k � k:
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By (4.1), ðJ o
MÞ�oAgðMÞ is a Cy closed semi-positive ð1; 1Þ-form on Wo

M? such that

qðJ o
MÞ�oAgðMÞ ¼ c1ðlq

M jWo

M?
; k � klq

M
Þ:

Since dimWM?nðWo
M? WDo

M?Þe dimWM? � 2 when rðMÞe 18, we can define the closed
positive ð1; 1Þ-current J �

MoAgðMÞ on WM? as the trivial extension of ðJ o
MÞ�oAgðMÞ from Wo

M?

to WM? by [56], p. 53, Theorem 1, and [62], Theorem 3.9. When rðMÞ ¼ 19, ðJ o
MÞ�oAgðMÞ

extends trivially to a closed positive ð1; 1Þ-current J �
MoAgðMÞ on WM? , because ðJ o

MÞ�oAgðMÞ

has Poincaré growth along DM? by [62], Proposition 3.8. By [56], p. 53, Theorem 1, and
[62], Theorem 3.13, the Hermitian metric k � klq

M
on l

q
M jWo

M?
extends to a singular Hermi-

tian metric on l
q
M with curvature current

c1ðlq
M ; k � klq

M
Þ ¼ qJ �

MoAgðMÞ :ð4:8Þ

Let l A Z>0 be such that 2gðMÞþ1ð2gðMÞ þ 1Þl A IðMÞ. Then F
2gðMÞþ1ð2gðMÞþ1Þl

gðMÞ extends

to a holomorphic line bundle on A�
gðMÞ. Since w8l

gðMÞ is a holomorphic section of

F
2gðMÞþ1ð2gðMÞþ1Þl

gðMÞ , J �
Mw8l

gðMÞ is an OðM?Þ-invariant holomorphic section of l
2gðMÞþ1ð2gðMÞþ1Þl
M .

If J o
MðWo

M?ÞS ynull;gðMÞ, we define

D :¼ divðJ �
Mw8l

gðMÞÞ:

Since JM is OðM?Þ-equivariant with respect to the trivial OðM?Þ-action on A�
gðMÞ, D is an

OðM?Þ-invariant e¤ective divisor on WM? . By [56], p. 53, Theorem 1, [62], Theorem 3.13,
and (4.8), logkJ �

Mw8
gðMÞk lies in L1

locðWM?Þ and satisfies the following equation of currents
on WM? :

�dd c logkJ �
Mw8l

gðMÞk
2 ¼ 2gðMÞþ1ð2gðMÞ þ 1ÞlJ �

MoAgðMÞ � dD:ð4:9Þ

Recall that the divisor D 0
M? was defined in Section 1.4.

Proposition 4.2. Assume that rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ and that

gðMÞ > 0. Hence M is non-exceptional. Let l A Z>0 be such that

2gðMÞþ1ð2gðMÞ þ 1Þl A IðMÞ:

Then the following hold:

(1) J o
MðWo

M?ÞS ynull;gðMÞ.

(2) There exist an integer a A Zf0 and an OðM?Þ-invariant ( possibly empty) e¤ective

divisor E on WM? such that dimðE XD 0
M?Þ < dimD 0

M? and

D ¼ 2ð22gðMÞ�2 þ aÞlD 0
M? þ E:

In particular, the following equation of currents on WM? holds:

�dd c logkJ �
Mw8l

gðMÞk
2 ¼ 2gðMÞþ1ð2gðMÞ þ 1ÞlJ �

MoAgðMÞ � 2ð22gðMÞ�2 þ aÞldD 0
M?

� dE :

(3) If gðMÞ ¼ 1 or gðMÞ ¼ 2, then a ¼ 0 and E ¼ 0 in ð2Þ.
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Proof. (1) Let ðX ; iÞ be a 2-elementary K3 surface of type M and let C be the
main component of X i. By Riemann’s theorem [25], p. 338, and Riemann’s singularities
theorem [40], [25], p. 348, C has an e¤ective even theta-characteristic if and only if
J o

MðX ; iÞ A ynull;gðMÞ. Since rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ, there exists by Prop-

osition 3.4 a 2-elementary K3 surface ðX ; iÞ of type M such that the main component of
X i has no e¤ective even theta-characteristics, i.e., J o

MðX ; iÞ B ynull;gðMÞ. This proves (1).

(2) Since D is an OðM?Þ-invariant e¤ective divisor on WM? , we can write

D ¼
P

d AD0
M?

mðdÞHd þ E;

where mðdÞ A Zf0 and E is an e¤ective divisor on WM? with

dimðD 0
M? XEÞe dimD 0

M? � 1:

Since gðHdÞ ¼ HgðdÞ for all g A OðM?Þ and d A D0
M? , the OðM?Þ-invariance of D implies

that m
�
gðdÞ

�
¼ mðdÞ for all g A OðM?Þ and d A D0

M? . Since OðM?Þ acts transitively on
D0

M? by [21], Proposition 3.3, and Proposition 11.6 (5) below, there exists a A Zf0 with

D ¼ aD 0
M? þ E:ð4:10Þ

Let d A D0
M? and p A H o

d . Let g : D ! MM? be a holomorphic curve intersecting H o
d

transversally at gð0Þ ¼ p such that gðDnf0gÞHMMnðDM? WDÞ. By Theorem 2.3 (1), there
exists an ordinary singular family of 2-elementary K3 surfaces pZ : ðZ; iÞ ! D of type M

with Gri‰ths period map g, such that ð ~ZZ0;~ii0Þ is a 2-elementary K3 surface of type ½M ? d�
with Gri‰ths period gð0Þ.

Since the natural projection PM? : WM? ! MM? is doubly ramified along H o
d by [62],

Proposition 1.9 (4), there exists a holomorphic curve c : D ! WM? intersecting H o
d transver-

sally at cð0Þ A H o
d such that PM?

�
cðtÞ
�
¼ gðt2Þ. Hence we have

JM

�
cðtÞ
�
¼ WðZ i

t2

t2 Þ:ð4:11Þ

Since d A D0
M? , by Theorem 2.3 (2), i is of type ð2; 1Þ. By [62], Proposition 2.5,

pjZ i : Z i ! D is an ordinary singular family of curves. Let CHZ i be the connected com-
ponent such that Ct :¼ CXZ it

t is the main component of Z it
t for all t A Dnf0g. Since the

normalization of Z i0
0 is given by ð ~ZZ0Þ~ii0 , the normalization of C0 has genus gðMÞ � 1 by

Theorem 2.3 (2). Hence C0 is singular and pjC : C ! D is an ordinary singular family of
curves. Since the normalization of C0 has genus gðMÞ � 1 and since C0 has a unique node
as its singular set, C0 is irreducible.

We apply Lemma 4.1 to the ordinary singular family pjC : C ! D with irreducible
C0. Since WðCtÞ ¼ WðZ it

t Þ for all t A Dnf0g, there exists hðtÞ A OðDÞ by Lemma 4.1 (1) such
that

log
��wgðMÞ

�
WðZ it

t Þ
�8��2 ¼ 22gðMÞ�2 logjtj2 þ logjhðtÞj2 þ Oðlog logjtj�1Þ:ð4:12Þ
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Since gðDnf0gÞXD ¼ j by the choice of g, hðtÞ does not vanish identically on D by (4.6).
Let a A Zf0 be the multiplicity of hðtÞ at t ¼ 0. By (4.11), (4.12), we get

log
��wgðMÞ

�
JM

�
cðtÞ
��8l��2 ¼ 2ð22gðMÞ�2 þ aÞl logjtj2 þ Oðlog logjtj�1Þ;ð4:13Þ

which yields that Hd H suppD for d A D0
M? . Comparing (4.9), (4.10) and (4.13), we get

a ¼ 2ð22gðMÞ�2 þ aÞl in (4.10). Since D and D 0
M? are OðM?Þ-invariant, so is E by (4.10).

This proves (2).

(3) Let gðMÞ ¼ 1 or gðMÞ ¼ 2. By Proposition 3.3 (1), we get the inclusion
DHDM? . This, together with (4.10), implies the inclusion E HD 00

M? . Since rðMÞf 10
and hence M YAþ

1 lAl8
1 , there exists by Propositions 2.8 and 2.10 a dense Zariski

open subset U of D 00
M? with JMðUÞHAgðMÞnynull;gðMÞ. By the inclusion E HD 00

M? , we get
JMðE XUÞHAgðMÞnynull;gðMÞ. If E 3 0, J �

Mw8l
gðMÞ would not vanish on the non-empty dense

Zariski open subset E XU of E, which contradicts the fact that E HD ¼ divðJ �
Mw8l

gðMÞÞ.
This proves that E ¼ 0. The equality a ¼ 0 follows from (4.12), (4.13) and the non-
vanishing hð0Þ3 0 in Lemma 4.1 (2). This proves the proposition. r

Lemma 4.3. Let p : C ! D be an ordinary singular family of curves of genus 2 such

that C0 is the join of two elliptic curves intersecting at one point transversally. Then

log
��w2

�
WðCtÞ

�8��2 ¼ 8 logjtj2 þ Oðlog logjtj�1Þ ðt ! 0Þ:

Proof. Since g ¼ 2 and C0 is reducible, we deduce from [20], Corollary 3.8, the exis-
tence of a holomorphic map c : D ! S2 with

WðCtÞ ¼ ½cðtÞ�; cð0Þ ¼ c1 0

0 c2

� �
; c 0ð0Þ ¼ 0 a

a 0

� �
; c1;c2 A H; a3 0:

The result follows from, e.g., [61], Eq. (A.24). r

Proposition 4.4. Let gðMÞ ¼ 2 and rðMÞ < 10, i.e., M GAþ
1 lAl8

1 . Let

HM? 1M? ;� 1

2

� �
be the Heegner divisor defined as

HM? 1M? ;� 1

2

� �
:¼

P
l A 1M?þM?;l2¼�1

2f g=G1

Hl ¼
P

d AD00
M?=G1;d=2 A 1M?þM?

Hd :

Then the following equation of divisors on WM? holds:

divðJ �
Mw8l

2 Þ ¼ 8lD 0
M? þ 16lHM? 1M? ;� 1

2

� �
:

In particular, the following equations of currents on WM? holds:

�dd c logkJ �
Mw8l

2 k2 ¼ 40lJ �
MoA2

� 8ldD 0
M?

� 16ldHM? 1M? ;�1
2ð Þ:

Proof. Let d A D00
M? and d=2 ¼ 1M? . Since M GAþ

1 lAl8
1 , we get

½M ? d�GUl E8ð2Þ
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by the proof of Proposition 2.10. Let p A H o
d . Let g : D ! MM? be a holomorphic

curve intersecting H o
d transversally at gð0Þ ¼ p such that gðDnf0gÞHMMnðDM? WDÞ. By

Theorem 2.3 (1), there exists an ordinary singular family of 2-elementary K3 surfaces
pZ : ðZ; iÞ ! D of type M with Gri‰ths period map g, such that ð ~ZZ0;~ii0Þ is a 2-elementary
K3 surface of type ½M ? d�GUl E8ð2Þ with Gri‰ths period gð0Þ. As in the proof of
Proposition 4.2 (2), there exists a holomorphic curve c : D ! WM? intersecting H o

d transver-
sally at cð0Þ A H o

d and satisfying (4.11). If i is of type ð0; 3Þ, then Z i0
0 is the disjoint union of

a smooth curve of genus 2 and an isolated point by [62], Proposition 2.5, which implies that
JM

�
cð0Þ

�
A A2nN2. By Theorem 2.5, this leads to the contradiction

JM

�
cð0Þ

�
¼ J o

½M?d�
�
cð0Þ

�
¼ J o

UlE8ð2Þ
�
cð0Þ

�
A N2;

where the last inclusion follows from Proposition 2.1 (2). Hence i is of type ð2; 1Þ.

By [62], Proposition 2.5, pjZ i : Z i ! D is an ordinary singular family of curves. Since
the normalization of ðZ0Þ i0 is isomorphic to ð ~ZZ0Þ~ii0 by Theorem 2.3 (2) and since ð ~ZZ0;~ii0Þ is
of type ½M ? d�GUl E8ð2Þ, we deduce from Proposition 2.1 (2) that ðZ0Þ i0 is the join of
two elliptic curves intersecting at one point transversally. By Lemma 4.3, we get

log
��w2

�
WðZ it

t Þ
�8��2 ¼ 8 logjtj2 þ Oðlog logjtj�1Þ ðt ! 0Þ:ð4:14Þ

By (4.11) and (4.14), we get

log
��w2

�
JM

�
cðtÞ
��8��2 ¼ 16 logjtj2 þ Oðlog logjtj�1Þ ðt ! 0Þ:ð4:15Þ

By Proposition 2.1 (3), we get JMðWo
M?Þ ¼ J o

MðWo
M?ÞHA2nynull;2. By Prop-

osition 2.10, we get JM

� S
d AD00

M? ;d=2E1M?

H o
d

�
HA2nynull;2. By these two inclusions,

JM

�
Wo

M? W
S

d AD00
M? ;d=2E1M?

H o
d

�
HA2nynull;2;

which implies that J �
Mw8l

2 does not vanish on Wo
M? W

S
d AD00

M? ;d=2E1M?

H o
d . Hence

ðWo
M? WDo

M?ÞXDH ðWo
M? WDo

M?Þn
�
Wo

M? W
S

d AD00
M? ;d=2E1M?

H o
d

�
¼ Do

M?n
S

d AD00
M? ;d=2E1M?

H o
d

HD 0
M? WHM? 1M? ;� 1

2

� �
:

Since WM?nðWo
M? WDo

M?Þ is an analytic subset of codimension 2 in WM? , we get

DHD 0
M? WHM? 1M? ;� 1

2

� �
:ð4:16Þ
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Since the proof of Proposition 4.2 (2) works in the case M GAþ
1 lAl8

1 , (4.13) remains
valid. Moreover, we get a ¼ 0 in (4.13) by Lemma 4.1 (2). The desired formula follows
from (4.10), (4.13) with a ¼ 0, (4.15), (4.16). r

4.2. Automorphic forms on WB
L . Let L be a lattice of signature

�
2; rðLÞ � 2

�
. We fix

a vector lL A LnR with hlL; lLif 0, and we set

jLðg; ½h�Þ :¼
hgðhÞ; lLi
hh; lLi

; ½h� A Wþ
L ; g A OþðLÞ:

Since HlL ¼ j, jLðg; �Þ is a nowhere vanishing holomorphic function on Wþ
L .

Let GHOþðLÞ be a cofinite subgroup. A holomorphic function f A OðWþ
LÞ is called

an automorphic form on Wþ
L for G of weight p if

f ðg � ½h�Þ ¼ wðgÞ jLðg; ½h�Þp
f ð½h�Þ; ½h� A Wþ

L ; g A G;

where w : G ! C� is a unitary character. For an automorphic form f on Wþ
L for G of

weight p, the Petersson norm k f k is the function on Wþ
L defined as

k f ð½h�Þk2 :¼ KLð½h�Þpj f ð½h�Þj2; KLð½h�Þ :¼
hh; hi

jhh; lLij2
:

If rðLÞf 5, then k f k2 is a G-invariant Cy function on Wþ
L , because the group G=½G;G� is

finite and Abelian and hence w is finite in this case.

We also consider automorphic forms on Wþ
M? with values in the sheaf l

q
M . Let

M H LK3 be a primitive 2-elementary Lorentzian sublattice. Let w be a character of
OþðM?Þ. Let p; q A Z. Then C A H 0ðWþ

M? ; l
q
MÞ is called an automorphic form on Wþ

M?

for OþðM?Þ of weight ðp; qÞ if for all g A OþðM?Þ,

Cðg � ½h�Þ ¼ wðgÞ jM?ðg; ½h�Þpg
�
Cð½h�Þ

�
; ½h� A Wþ

M? :

For an automorphic form C on Wþ
M? for OþðM?Þ of weight ðp; qÞ, the Petersson

norm of C is a Cy function on Wþ
M? defined as

kCð½h�Þk2 :¼ KM?ð½h�Þp � kCð½h�Þk2
l

q

M
; ½h� A Wþ

M? :ð4:17Þ

5. The invariant tM of 2-elementary K3 surfaces of type M

Let ðX ; iÞ be a 2-elementary K3 surface of type M. Identify Z2 with the subgroup of
AutðXÞ generated by i. Let k be a Z2-invariant Kähler form on X . Set

VolðX ; kÞ :¼ ð2pÞ�2 Ð
X

k2=2!:

Let h be a nowhere vanishing holomorphic 2-form on X . The L2-norm of h is defined as

khk2
L2 :¼ ð2pÞ�2 Ð

X

h5h:
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Let k0;q ¼ ðqþ q�Þ2 be the q-Laplacian acting on Cyð0; qÞ-forms on X . Let sðk0;qÞ
be the spectrum of k0;q. For l A sðk0;qÞ, let E0;qðlÞ be the eigenspace of k0;q with respect
to the eigenvalue l. Since Z2 preserves k, E0;qðlÞ is a finite-dimensional representation of
Z2. For s A C, set

z0;qðiÞðsÞ :¼
P

l A sðk0; qÞnf0g
TrðijE0; qðlÞÞl

�s:

Then z0;qðiÞðsÞ converges absolutely when Re s > dim X , admits a meromorphic continua-
tion to the complex plane C, and is holomorphic at s ¼ 0. The equivariant analytic torsion

of the trivial Hermitian line bundle on ðX ; kÞ is defined as

tZ2
ðX ; kÞðiÞ :¼ exp


�
P

qf0

ð�1Þq
qz 00;qðiÞð0Þ

�
:

We refer to [52], [6], [7], [24], [5], [38], [32] for more about equivariant and non-equivariant
analytic torsion.

Let X i ¼
P

i

Ci be the decomposition of the fixed point set of i into the connected

components. Let c1ðCi; kjCi
Þ be the Chern form of ðTCi; kjCi

Þ and let tðCi; kjCi
Þ be the

analytic torsion of the trivial Hermitian line bundle on ðCi; kjCi
Þ. We define

tMðX ; iÞ :¼ Vol
�
X ; ð2pÞ�1k

�14�rðMÞ
4 tZ2

ðX ; kÞðiÞ
Q

i

Vol
�
Ci; ð2pÞ�1kjCi

�
tðCi; kjCi

Þ

� exp
1

8

Ð
X i

log
h5h

k2=2!
�
Vol
�
X ; ð2pÞ�1k

�
khk2

L2

 !�����
X i

c1ðX i; kjX iÞ
" #

;

which is independent of the choice of k by [62], Theorem 5.7. Hence tMðX ; iÞ is an invari-
ant of the pair ðX ; iÞ, so that tM descends to a function on Mo

M? .

Theorem 5.1. There exist an integer n A Z>0 and an automorphic form FM on

WM? for OþðM?Þ of weight
�
n
�
rðMÞ � 6

�
; 4n
�

with zero divisor nDM? such that for every

2-elementary K3 surface ðX ; iÞ of type M,

tMðX ; iÞ ¼
��FM

�
$MðX ; iÞ

���� 1
2n:

Proof. See [62], Main Theorem, [66], Theorem 1.1, and Proposition 11.2 below. r

6. Borcherds products

6.1. Modular forms for Mp2(Z). Recall that HHC is the complex upper half-plane.
Let Mp2ðZÞ be the metaplectic double cover of SL2ðZÞ (cf. [11], Section 2), which is gener-
ated by the two elements

S :¼ 0 �1

1 0

� �
;
ffiffiffi
t

p
 !

and T :¼ 1 1

0 1

� �
; 1

 !
:
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For g ¼ a b

c d

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
 !

A Mp2ðZÞ and t A H, we define

jðg; tÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
and g � t :¼ atþ b

ctþ d
:

Let M be an even lattice, C½AM � be the group ring of the discriminant group AM , and
feggg AAM

be the standard basis of C½AM �. The Weil representation

rM : Mp2ðZÞ ! GLðC½AM �Þ

is defined as follows ([11], Section 2):

rMðTÞeg :¼ epig2

eg; rMðSÞeg :¼
i�sðMÞ=2

jAM j1=2

P
d AAM

e�2pihg; died:ð6:1Þ

A C½AM �-valued holomorphic function FðtÞ on H is a modular form of type rM with

weight w A
1

2
Z if the following conditions (a) and (b) are satisfied:

(a) For g A Mp2ðZÞ and t A H, Fðg � tÞ ¼ jðg; tÞ2wrMðgÞ � FðtÞ.

(b) FðtÞ ¼
P

g AAM

eg
P

k A 1
l
Z

cgðkÞe2pikt, where l is the level of M, cgðkÞ A Z for all k A
1

l
Z

and cgðkÞ ¼ 0 for k f 0.

By the first condition of (6.1), [14], Eq. (1.4), and condition (a), we get

cgðkÞ ¼
0 if k B g2=2 þ Z;

c�gðkÞ if k A g2=2 þ Z:

�
ð6:2Þ

The group OðMÞ acts on C½AM � by gðegÞ :¼ egðgÞ, where g A OðqMÞ is the element
induced by g A OðMÞ. For a modular form F of type rM , we define

AutðM;FÞ :¼ fg A OðMÞ; gðFÞ ¼ Fg:

Then AutðM;FÞ is a cofinite subgroup of OðMÞ, since AutðM;FÞI kerfOðMÞ ! OðqMÞg.

6.2. Borcherds products. Let L be an even lattice of signature
�
2; rðLÞ � 2

�
.

Assume that L ¼ UðNÞlL, for simplicity. A vector of LnQ is denoted by ðm; n; vÞ,
where m; n A Q and v A LnQ. We write a vector of AL in the same manner. If
FðtÞ ¼

P
g AAL

fgðtÞeg is a modular form of type rL, then FðtÞ induces a modular form

F jLðtÞ of type rL with the same weight as follows ([10], Theorem 5.3):

F jLðtÞ :¼
P

l AAL

fLþlðtÞel; fLþlðtÞ :¼
PN�1

n¼0

f n

N
;0;lð ÞðtÞ:ð6:3Þ
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Write F jLðtÞ ¼
P

g AAL

eg
P

k A
g2

2
þZ

cL; gðkÞe2pikt. By [10], Section 6, p. 517, F jLðtÞ induces

a chamber structure of Cþ
L :

ðCþ
L Þ0

F jL :¼ Cþ
L n

S
l AL4;l2<0; c

L; l
ðl2=2Þ30

hl ¼
‘
a AA

Wa;ð6:4Þ

where hl ¼ l? ¼ fv A LnR; hv; li ¼ 0g and fWaga AA is the set of connected components

of ðCþ
L Þ0

F jL . Each component Wa is called a Weyl chamber of F jLðtÞ. If l A LnR satisfies

hl;wi > 0 for all w A Wa, we write l �Wa > 0.

Theorem 6.1. Let FðtÞ ¼
P

g AAL

eg
P

k A
g2

2
þZ

cgðkÞe2pikt be a modular form of type rL with

weight sðLÞ=2. Then there exists a meromorphic automorphic form CLðz;FÞ on Wþ
L for

AutðL;FÞXOþðLÞ of weight c0ð0Þ=2 such that

div
�
CLð�;FÞ

�
¼ 1

2

P
l AL4;l2<0

c
l
ðl2=2ÞHl ¼

P
l AL4=G1;l2<0

c
l
ðl2=2ÞHl:

If W is a Weyl chamber of F jL, then there exists a vector %ðL;F jL;WÞ A LnQ such that

CLðz;FÞ is expressed as the following infinite product near the cusp under the identification

(1.2): For z A LnR þ iW with ðIm zÞ2 g 0,

CLðz;FÞ ¼ e2pih%ðL;F jL;WÞ; zi Q
l AL4;l�W>0

Q
n AZ=NZ

ð1 � e2pi hl; ziþ n

Nð ÞÞ
c n

N
; 0; lð Þðl

2=2Þ
:

Proof. See [10], Theorem 13.3, and [14], Theorem 3.22. r

The automorphic form CLðz;FÞ is called the Borcherds product or the Borcherds

lift of FðtÞ, and the vector %ðL;F jL;WÞ is called the Weyl vector of CLðz;FÞ. See [10],
Theorem 10.4, and [11], p. 321, Correction, for an explicit formula for %ðL;F jL;WÞ.

7. 2-elementary lattices and elliptic modular forms

Throughout Section 7, we assume that L is an even, 2-elementary lattice. Set

MG0ð4Þ :¼
a b

c d

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
 !

A Mp2ðZÞ; c1 0 mod 4

( )
:

Let w A
1

2
Z and let w : MG0ð4Þ ! C� be a character. A holomorphic function f ðtÞ on H is

a modular form for MG0ð4Þ of weight w with character w if the following conditions are
satisfied:

(a) f ðg � tÞ ¼ jðg; tÞ2wwðgÞ f ðtÞ for all g A MG0ð4Þ and t A H.

(b) f ðtÞ ¼
P

k A 1
4
Z

cðkÞe2pikt with cðkÞ ¼ 0 for k f 0.
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Set q ¼ e2pit for t A H. Let hðtÞ ¼ q1=24
Qy
n¼1

ð1 � qnÞ be the Dedekind h-function and

let Q2ðtÞ, Q3ðtÞ, Q4ðtÞ be the Jacobi theta functions:

Q2ðtÞ ¼
P

n AZ

q nþ1
2ð Þ2

=2; Q3ðtÞ ¼
P

n AZ

qn2=2; Q4ðtÞ ¼
P

n AZ

ð�1Þn
qn2=2:

Notice that we use the notation q ¼ e2pit while q ¼ epit in [16], Chapter 4. Recall that A1 is
the negative-definite one-dimensional A1-lattice h�2i and Aþ

1 ¼ h2i. For d A f0; 1g, let
yAþ

1
þd=2ðtÞ be the theta function of Aþ

1 :

yAþ
1
ðtÞ :¼ Q3ð2tÞ; yAþ

1
þ1=2ðtÞ :¼ Q2ð2tÞ:

By [11], Lemma 5.2, there exists a character wy : MG0ð4Þ ! fG1;Gig such that yAþ
1
ðtÞ is a

modular form for MG0ð4Þ of weight 1=2 with character wy.

For k A Z, define f
ð0Þ

k ðtÞ; f
ð1Þ

k ðtÞ A OðHÞ and fc
ð0Þ
k ðlÞgl AZ, fc

ð1Þ
k ðlÞgl AZþk=4 by

f
ð0Þ

k ðtÞ :¼
hð2tÞ8yAþ

1
ðtÞk

hðtÞ8hð4tÞ8
¼
P
l AZ

c
ð0Þ
k ðlÞql ¼ q�1 þ 8 þ 2k þ OðqÞ;

f
ð1Þ

k ðtÞ :¼ �16
hð4tÞ8yAþ

1
þ1

2
ðtÞk

hð2tÞ16
¼

P
l A k

4
þZ

2c
ð1Þ
k ðlÞql

¼ �2kþ4qk=4f1 þ ðk þ 16Þq2 þ Oðq4Þg:

We define holomorphic functions g
ðiÞ
k ðtÞ A OðHÞ, i A Z=4Z, by

g
ðiÞ
k ðtÞ :¼

P
l 1 i mod 4

c
ð0Þ
k ðlÞql=4:

By definition,

P
i AZ=4Z

g
ðiÞ
k ðtÞ ¼

hðt=2Þ8yAþ
1
ðt=4Þk

hðtÞ8hðt=4Þ8
¼ f

ð0Þ
k ðt=4Þ:

For a modular form fðtÞ of weight l for MG0ð4Þ and for g A Mp2ðZÞ, we define

fjgðtÞ :¼ fðg � tÞ jðg; tÞ�2l :

The following key construction of modular forms of type rL is due to Borcherds.

Proposition 7.1. Let fðtÞ be a modular form for MG0ð4Þ of weight l with character

w
sðLÞ
y and set

BL½f�ðtÞ :¼
P

g AMG0ð4ÞnMp2ðZÞ
fjgðtÞrLðg�1Þe0:

Then the following hold:
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(1) rLðgÞe0 ¼ wyðgÞ
sðLÞe0 for all g A MG0ð4Þ.

(2) BL½f�ðtÞ is independent of the choice of representatives of MG0ð4ÞnMp2ðZÞ. More-

over, BL½f�ðtÞ is a modular form for Mp2ðZÞ of type rL of weight l.

Proof. (1) Let wAL
be the character of MG0ð4Þ defined in [11], Theorem 5.4. Let

k A Z>0 be such that sðLÞ þ 8k f 0. Since jALj � 2sðLÞþ8k ¼ 22f2þ4kþðlðLÞ�rðLÞÞ=2g, we get
�1

jAj

� �
¼ 1 and wjALj�2sðLÞþ8k 1 1 by the definitions of the character wn and the symbol

c

d

� �
in [11], p. 328. Hence we get wAL

¼ w
sðLÞ
y by [11], Theorem 5.4.

Set MGð4Þ0 :¼ a b

c d

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
 !

A Mp2ðZÞ; b1 c1 0 mod 4

( )
. By [11], Theo-

rem 5.4, we get rLðgÞe0 ¼ wyðgÞ
sðLÞe0 for all g A MGð4Þ0, because wAL

¼ w
sðLÞ
y . Since the

coset MG0ð4Þ=MGð4Þ0 is represented by f1;T ;T 2;T 3g, any g A MG0ð4Þ can be expressed
as g ¼ T ag0, where a A Z and g0 A MGð4Þ0. Since rLðTÞe0 ¼ e0 by (6.1) and wyðTÞ ¼ 1 by
[11], Lemma 5.2, we get

rLðgÞe0 ¼ rðTÞarðg0Þe0 ¼ wyðg0ÞsðLÞe0 ¼ wyðT ag0ÞsðLÞe0 ¼ wyðgÞ
sðLÞe0:

Since g A MG0ð4Þ is an arbitrary element, we get (1).

(2) By (1), the result follows from [55], Theorem 6.2. See also [10], Lemma 2.6, and
[11], proof of Lemma 11.1. r

Lemma 7.2. The function f
ð0Þ

k ðtÞ is a modular form for MG0ð4Þ of weight �4 þ k

2
with character wk

y .

Proof. The result follows from [11], Lemma 5.2 and Theorem 6.2. r

Set Z :¼ S2 ¼ � 1 0

0 1

� �
; i

 !
and V :¼ S�1T 2S ¼ 1 0

�2 1

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2tþ 1

p
 !

.

Lemma 7.3. The coset MG0ð4ÞnMp2ðZÞ is represented by f1;S;ST ;ST 2;ST 3;Vg.

Proof. Since none of two elements of f1;S;ST ;ST 2;ST 3;Vg represent the same
element of MG0ð4ÞnMp2ðZÞ and KMG0ð4ÞnMp2ðZÞ ¼ 6, we get the result. r

Recall that 1L A AL was defined in Section 1.2. Define v0; v1; v2; v3 A C½AL� by

vk :¼
P

d AAL; d
21k=2 mod 2

ed:

Lemma 7.4. The following identities hold:

(1) rL
�
ðST lÞ�1�e0 ¼ i

sðLÞ
2 2�lðLÞ

2

P3
k¼0

i�lkvk,

(2) rLðV�1Þe0 ¼ e1L .
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Proof. (1) Since S�1 ¼ SZ3 and since rLðZÞeg ¼ i�sðLÞe�g by (6.1), we get

rLðS�1Þe0 ¼ rLðSÞrLðZ3Þe0 ¼ isðLÞ i�
sðLÞ

2

jALj1=2

P
d AAL

ed ¼ i
sðLÞ

2 2�lðLÞ
2

P
d AAL

ed:

This, together with the first equation of (6.1), yields (1).

(2) By [11], p. 325, l. 16, we get

rLðST�2SÞe0 ¼ i�sðLÞjALj�1 P
g; d AAL

e2pifhg; diþg2ged ¼ i�sðLÞe1L ;

where we used the identityP
g AAL

e2pihg; eþgi ¼
P

g AAL

e2pihg; eþ1Li ¼ jALjd1L; e

(cf. [11], Lemma 3.1) to get the second equality. Since S�1 ¼ S7 ¼ Z3S, we get

rLðV�1Þe0 ¼ rLðZÞ3rLðST�2SÞe0

¼ i�sðLÞrLðZÞ3e1L

¼ i�sðLÞi�3sðLÞe1L ¼ e1L :

This proves (2). r

Lemma 7.5. The following identities hold:

(1) f
ð0Þ

k jST l ðtÞ ¼ 2
8�k

2 i�
k

2f
ð0Þ

k

tþ l

4

� �
,

(2) f
ð0Þ

k jV ðtÞ ¼ f
ð1Þ

k ðtÞ.

Proof. We apply [10], Theorem 5.1, to the lattice Aþ
1 ¼ h2i. Since

AAþ
1
¼ h2i4=h2i ¼ 0;

1

2

� �
;

the group ring C½AAþ
1
� is equipped with the standard basis fe0; e1=2g. Set

YAþ
1
ðtÞ :¼ yAþ

1
ðtÞe0 þ yAþ

1
þ1=2ðtÞe1=2:

By applying [10], Theorem 5.1, to Aþ
1 , we get

YAþ
1
ðg � tÞ ¼ jðg; tÞrAþ

1
ðgÞYAþ

1
ðtÞ; g A Mp2ðZÞ:ð7:1Þ

By (6.1) and (7.1), we have

YAþ
1
ðST l � tÞ ¼ jðST l ; tÞ

e0 þ e1=2ffiffiffiffi
2i

p yAþ
1
ðtÞ þ i l e0 � ie1=2ffiffiffiffi

2i
p yAþ

1
þ1=2ðtÞ

� �
;

YAþ
1
ðV � tÞ ¼ jðV ; tÞfe0yAþ

1
þ1=2ðtÞ þ e1=2yAþ

1
ðtÞg:
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Comparing the coe‰cients of e0, we get

yAþ
1
jST lðtÞ ¼ ð2iÞ�

1
2fyAþ

1
ðtÞ þ i lyAþ

1
þ1=2ðtÞg ¼ ð2iÞ�

1
2yAþ

1

tþ l

4

� �
;ð7:2Þ

yAþ
1
jVðtÞ ¼ yAþ

1
þ1=2ðtÞ:ð7:3Þ

Here we get the second equality of (7.2) as follows:

yAþ
1

tþ l

4

� �
¼
P

n even
e2pin2ðtþlÞ=4 þ

P
n odd

e2pin2ðtþlÞ=4 ¼ yAþ
1
ðtÞ þ i lyAþ

1
þ1=2ðtÞ:

Set h1�8284�8ðtÞ :¼ hðtÞ�8hð2tÞ8hð4tÞ�8, which is a modular form for MG0ð4Þ by

Lemma 7.2. Since ST l ¼ 0 �1

1 l

� �
;
ffiffiffiffiffiffiffiffiffiffi
tþ l

p
 !

and since hð�t�1Þ8 ¼ t4hðtÞ8 by [11],
Lemma 6.1, we get

h1�8284�8 jST lðtÞ ¼ ðtþ lÞ
8
2h1�8284�8 � 1

tþ l

� �

¼ ðtþ lÞ4h � 1

tþ l

� ��8

h � 2

tþ l

� �8

h � 4

tþ l

� ��8

¼ ðtþ lÞ4ðtþ lÞ�4 tþ l

2

� �4
tþ l

4

� ��4

� hðtþ lÞ�8h
tþ l

2

� �8

h
tþ l

4

� ��8

¼ 24h1�8284�8

tþ l

4

� �
;

which, together with (7.2), yields (1).

Since V ¼ 1 0

�2 1

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2tþ 1

p
 !

and since h1�8284�8ðtÞ has weight �4, we get

h1�8284�8 jV ðtÞ ¼ ð�2tþ 1Þ4h
t

�2tþ 1

� ��8

h
2t

�2tþ 1

� �8

h
4t

�2tþ 1

� ��8

¼ ð�2tþ 1Þ4 2 � 1

t

� ��4

1 � 1

2t

� �4 1

2
� 1

4t

� ��4

� h 2 � 1

t

� ��8

h 1 � 1

2t

� �8

h
1

2
� 1

4t

� ��8

¼ 24t4h 2 � 1

t

� ��8

h 1 � 1

2t

� �8

h
1

2
� 1

4t

� ��8

:

We define hðtÞ :¼ h tþ 1

2

� ��8

hð2tþ 1Þ8hð4tþ 2Þ�8 for t A H. Then

h1�8284�8 jV ðtÞ ¼ 16t4h � 1

4t

� �
:ð7:4Þ
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Set z :¼ expð2pi=48Þ. Since hðtÞ is equal to

z�8þ16�32

�
q� 8

24

Qy
n¼1

�
1 � ð�qÞn��8

��
q

16
24

Qy
n¼1

ð1 � q2nÞ8

��
q�32

24

Qy
n¼1

ð1 � q4nÞ�8

�

¼ �q�1Qy
n¼1

fð1 � q2nÞ�8ð1 þ q2n�1Þ�8g � ð1 � q2nÞ8 � fð1 � q2nÞ�8ð1 þ q2nÞ�8g

¼ �q�1Qy
n¼1

ð1 � q2nÞ�8ð1 þ q2nÞ�8ð1 þ q2n�1Þ�8

and since we have the identities

Q2ð2tÞ ¼ 2q1=4Qy
n¼1

ð1 � q2nÞð1 þ q2nÞ2

and

Q3ð2tÞ ¼
Qy
n¼1

ð1 � q2nÞð1 þ q2n�1Þ2; Q4ð2tÞ ¼
Qy
n¼1

ð1 � q2nÞð1 � q2n�1Þ2ð7:5Þ

by [16], p. 105, Eqs. (32)–(36), we get

Q2ð2tÞ4Q3ð2tÞ4 ¼ 24q
Qy
n¼1

ð1 � q2nÞ8ð1 þ q2nÞ8ð1 þ q2n�1Þ8 ¼ �24hðtÞ�1:ð7:6Þ

By [16], p. 104, Eq. (20), we have

Q2ð�t�1Þ4 ¼ �t2Q4ðtÞ4; Q3ð�t�1Þ4 ¼ �t2Q3ðtÞ4;

which, together with (7.6), yield the equality

h � 1

4t

� �
¼ �24Q2 � 1

2t

� ��4

Q3 � 1

2t

� ��4

ð7:7Þ

¼ �t�4Q3ð2tÞ�4Q4ð2tÞ�4

¼ �t�4

�Qy
n¼1

ð1 � q2nÞ2ð1 þ q2n�1Þ2ð1 � q2n�1Þ2

��4

¼ �t�4

�Qy
n¼1

ð1 � q2nÞð1 � q4nÞð1 � q4n�2Þ
ð1 � q4nÞ

��8

¼ �t�4

Qy
n¼1

ð1 � q2nÞ2

Qy
n¼1

ð1 � q4nÞ

8>><>>:
9>>=>>;
�8

¼ �t�4hð2tÞ�16hð4tÞ8:
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Here we used (7.5) to get the third equality. We deduce from (7.4) and (7.7) that

h1�8284�8 jV ðtÞ ¼ �16hð2tÞ�16hð4tÞ8:ð7:8Þ

We get (2) from (7.3) and (7.8). r

Definition 7.6. For a 2-elementary lattice L, define a C½AL�-valued holomorphic
function FLðtÞ on H by

FLðtÞ : ¼ f
ð0Þ

8þsðLÞðtÞe0 þ 2
4�sðLÞ�lðLÞ

2

P3
l¼0

g
ðlÞ
8þsðLÞðtÞvl þ f

ð1Þ
8þsðLÞðtÞe1L

¼ f
ð0Þ

8þsðLÞðtÞe0 þ 2
4�sðLÞ�lðLÞ

2

P
g AAL

g
ð2g2Þ
8þsðLÞðtÞeg þ f

ð1Þ
8þsðLÞðtÞe1L :

By the Fourier expansions of f
ð0Þ

k ðtÞ and f
ð1Þ

k ðtÞ at q ¼ 0, we get the following
Fourier expansion of FLðtÞ at q ¼ 0:

FLðtÞ ¼ fq�1 þ 24 þ 2sðLÞ þ OðqÞge0 þ 2
4�sðLÞ�lðLÞ

2 f24 þ 2sðLÞ þ OðqÞgv0ð7:9Þ

þ Oðq1=4Þv1 þ Oðq1=2Þv2 þ 2
4�sðLÞ�lðLÞ

2 fq�1=4 þ Oðq3=4Þgv3

� 212þsðLÞq
8þsðLÞ

4



1 þ

�
24 þ sðLÞ

�
q2 þ Oðq4Þ

�
e1L :

Theorem 7.7. (1) FLðtÞ ¼ BL½h1�8284�8y
8þsðLÞ
Aþ

1

�ðtÞ. In particular, FLðtÞ is a modular

form for Mp2ðZÞ of type rL with weight sðLÞ=2.

(2) The group OðLÞ preserves FL, i.e., AutðFL;LÞ ¼ OðLÞ.

(3) If bþðLÞe 2 and sðLÞf�12, then FLðtÞ has integral Fourier coe‰cients.

Proof. (1) Set k ¼ 8 þ sðLÞ and fðtÞ ¼ f
ð0Þ

k ðtÞ in Proposition 7.1. Since f
ð0Þ

k ðtÞ is a

modular form for MG0ð4Þ of weight ðk � 8Þ=2 ¼ sðLÞ=2 with character wk
y ¼ w

sðLÞ
y by

Lemma 7.2, BL½ f ð0Þ
k �ðtÞ is a modular form for Mp2ðZÞ of type rL with weight sðLÞ=2 by

Proposition 7.1. We prove that FL ¼ BL½ f ð0Þ
k �. Since k ¼ 8 þ sðLÞ and jALj ¼ 2 lðLÞ, we

deduce from Lemmas 7.4 (1) and 7.5 (1) that

P3
l¼0

f
ð0Þ

k jST l ðtÞrL
�
ðST lÞ�1�e0ð7:10Þ

¼
P3
l¼0

2
8�k

2 i�
k

2i
sðLÞ

2 jALj�
1
2
P3
j¼0

f
ð0Þ

k

tþ l

4

� �
i�ljvj

¼ 2
�sðLÞ�lðLÞ

2

P3
j¼0

P3
l¼0

f
ð0Þ

k

tþ l

4

� �
i�ljvj

¼ 2�sðLÞþlðLÞ
2

P3
j¼0

P3
l¼0

P
s AZ=4Z

g
ðsÞ
k ðtþ lÞi�ljvj:
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Recall that f
ð0Þ

k ðtÞ ¼
Py

n¼�1

c
ð0Þ
k ðnÞqn. Since g

ðsÞ
k ðtÞ ¼

P
n1s mod 4

c
ð0Þ
k ðnÞqn=4, we get

g
ðsÞ
k ðtþ lÞ ¼

P
n1s mod 4

c
ð0Þ
k ðnÞe2pinðtþlÞ=4 ¼

P
n1s mod 4

c
ð0Þ
k ðnÞi slqn=4;

which yields that

P3
l¼0

i�jlg
ðsÞ
k ðtþ lÞ ¼

P
n1s mod 4

c
ð0Þ
k ðnÞ

P3
l¼0

iðs� jÞlqn=4 ¼ 4djsg
ðsÞ
k ðtÞ:

Hence we get

P3
l¼0

P
s AZ=4Z

i�jlg
ðsÞ
k ðtþ lÞ ¼

P
s AZ=4Z

4dsjg
ðsÞ
k ðtÞ ¼ 4g

ð jÞ
k ðtÞ;

which, together with (7.10), yields that

P3
l¼0

f
ð0Þ

k jST l ðtÞ � rL
�
ðST lÞ�1�e0 ¼ 2

4�sðLÞ�lðLÞ
2

P3
j¼0

g
ð jÞ
k ðtÞvj:ð7:11Þ

Similarly, we get by Lemmas 7.4 (2) and 7.5 (2)

f
ð0Þ

k jV ðtÞrLðV �1Þe0 ¼ f
ð1Þ

k ðtÞe1L :ð7:12Þ

By (7.11) and (7.12), we get FL ¼ BL½ f ð0Þ
k �.

(2) Since gðegÞ ¼ egðgÞ for g A OðLÞ and g A AL, we get gðe0Þ ¼ e0 and gðviÞ ¼ vi for
all g A OðLÞ by the definition of vi. Since 1L is OðqLÞ-invariant by its uniqueness, we get
gð1LÞ ¼ 1L for all g A OðLÞ. This proves AutðFL;LÞ ¼ OðLÞ.

(3) Since f
ð0Þ

k ðtÞ, g
ð jÞ
k ðtÞ, f

ð1Þ
k ðtÞ have integral Fourier coe‰cients for k f�4, i.e.,

sðLÞf�12, it su‰ces to prove by Definition 7.6 that 2
4�sðLÞ�lðLÞ

2 A Z when bþðLÞe 2. Since
sðLÞ ¼ 2bþðLÞ � rðLÞ, rðLÞf lðLÞ and rðLÞ1 lðLÞ mod 2, we get

4 � sðLÞ � lðLÞ ¼ 2
�
2 � bþðLÞ

�
þ rðLÞ � lðLÞf 0

and 4 � sðLÞ � lðLÞ1 0 mod 2. r

Recall that FL induces a modular form FLjL of type rL when L ¼ UðNÞlL (cf.
Section 6.2). Since L is 2-elementary, N A f1; 2g and L is 2-elementary in this case.

Lemma 7.8. If L ¼ UðNÞlL, then FLjL ¼ FL.
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Proof. Write FLjLðtÞ ¼
P

g AAL

ðFLjLÞgðtÞeg. Since 1UðNÞ ¼ ð0; 0Þ for N ¼ 1; 2, we get

1L ¼
�
ð0; 0Þ; 1L

�
. Since

�
ðn=N; 0Þ; g

�2 ¼ g2 mod 2 for g A AL, it follows from Definition 7.6
and the definition of ðFLjLÞðtÞ (cf. (6.3)) that

ðFLjLÞgðtÞ ¼

N2
4�sðLÞ�lðLÞ

2 g
ð2g2Þ
8þsðLÞðtÞ if g3 0; 1L;

f
ð0Þ

8þsðLÞðtÞ þ N2
4�sðLÞ�lðLÞ

2 g
ð0Þ
8þsðLÞðtÞ if g ¼ 0;

f
ð1Þ

8þsðLÞðtÞ þ N2
4�sðLÞ�lðLÞ

2 g
ðsðLÞÞ
8þsðLÞðtÞ if g ¼ 1L:

8>>>><>>>>:ð7:13Þ

In the last equality, we used the formula 12
L1

sðLÞ
2

mod 2, which follows from (6.2) and

(7.9). If N ¼ 1, then AL ¼ AL and hence FLjL ¼ FL ¼ FL by Definition 7.6 and (7.13).
Assume N ¼ 2. Since sðLÞ ¼ sðLÞ and lðLÞ ¼ lðLÞ þ 2, we get FLjL ¼ FL by comparing
the definition of FL with (7.13). This proves the lemma. r

Lemma 7.9. Let L be a 2-elementary Lorentzian lattice. If rðLÞe 10, then a subset

of Cþ
L is a Weyl chamber of L if and only if it is a Weyl chamber of FL.

Proof. Write FLðtÞ ¼
P

g AAL

eg
P

k A g2

2
þZ

cL; gðkÞqk. By (6.4), it su‰ces to prove that if

l A L4, l2 < 0 and c
L;l

ðl2=2Þ3 0, then hl ¼ hd for some d A DL. Since 8 þ sðLÞf 0, this

follows from (7.9). r

8. Borcherds products for 2-elementary lattices

Throughout this section, we assume that L is an even 2-elementary lattice with

signðLÞ ¼
�
2; rðLÞ � 2

�
:

Recall that D 0
L and D 00

L were defined in Section 1.4. We have the splitting

D 00
L ¼

P
l=2E1l;l AD

00
L=G1

Hl þHL 1L;�
1

2

� �
when rðLÞ1 1 mod 4.

Theorem 8.1. If rðLÞe 12 or if rðLÞ ¼ 13 and lðLÞe 7, then the Borcherds lift

CLð�;FLÞ is a holomorphic automorphic form on Wþ
L for OþðLÞ. The zero divisor of

CLð�;FLÞ is given by

div
�
CLð�;FLÞ

�
¼ D 0

L þ ð2
rðLÞ�lðLÞ

2 þ 1ÞD 00
L

for rðLÞe 12 and by

div
�
CLð�;FLÞ

�
¼ D 0

L þ ð2
13�lðLÞ

2 þ 1Þ
P

l=2E1l;l AD
00
L=G1

Hl þ ð2
13�lðLÞ

2 � 7ÞHL 1L;�
1

2

� �
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for rðLÞ ¼ 13 and lðLÞe 7. The weight wðLÞ of CLð�;FLÞ is given by the formula

wðLÞ ¼
�
16 � rðLÞ

�
ð2

rðLÞ�lðLÞ
2 þ 1Þ � 8

�
1 � dðLÞ

�
if rðLÞ ¼ 12;�

16 � rðLÞ
�
ð2

rðLÞ�lðLÞ
2 þ 1Þ if rðLÞ3 12:

8<:
In particular, CLð�;FLÞ is reflective in the sense of Gritsenko–Nikulin [28], I, Definition 2.1.2,
for rðLÞe 13 and lðLÞe 7.

Proof. Assume rðLÞe 12. Since signðLÞ ¼
�
2; rðLÞ � 2

�
, we get sðLÞ ¼ 4 � rðLÞ

and 8 þ sðLÞf 0. By Theorem 7.7 (2), we get AutðL;FLÞ ¼ OðLÞ. Write

FLðtÞ ¼
P

g AAL

eg
P

k A g2

2
þZ

cL; gðkÞqk:

By (7.9), we see that cL; gðkÞf 0 if k < 0 and that the coe‰cient of e1L , i.e., f
ð1Þ

8þsðLÞðtÞ, is

regular at q ¼ 0. By Theorem 6.1 and (7.9), CLð�;FLÞ is an automorphic form for OþðLÞ
such that

div
�
CLð�;FLÞ

�
¼

P
l AL4=G1;l2<0

c
L;l

ðl2=2ÞHlð8:1Þ

¼
P

l AL=G1;l2=2¼�1

c
L;0ðl

2=2ÞHl

þ
P

l AL4=G1;l2=2¼�1=4

c
L;l

ðl2=2ÞHl

¼
P

l ADL=G1

Hl þ 2
4�sðLÞ�lðLÞ

2

P
l AD00

L=G1

Hl

¼ D 0
L þ ð2

rðLÞ�lðLÞ
2 þ 1ÞD 00

L:

By Theorem 6.1, wðLÞ ¼ c
L;0ð0Þ=2. If rðLÞ ¼ 12 and dðLÞ ¼ 0, then 1L ¼ 0, which,

substituted into (7.9), implies that

FLðtÞ ¼ fq�1 þ 24 þ 2sðLÞ þ OðqÞge0 þ 2
4�sðLÞ�lðLÞ

2 f24 þ 2sðLÞ þ OðqÞgv0ð8:2Þ

þ Oðq1=4Þv1 þ Oðq1=2Þv2 þ 2
4�sðLÞ�lðLÞ

2 fq�1=4 þ Oðq3=4Þgv3

þ f�16 þ OðqÞge0:

Since v0 contains e0 with multiplicity one and since sðLÞ ¼ 4 � rðLÞ, we deduce from (8.2)
that

wðLÞ ¼ cL;0ð0Þ
2

¼ 12 þ sðLÞ þ 2
4�sðLÞ�lðLÞ

2

�
12 þ sðLÞ

�
� 8

¼
�
16 � rðLÞ

�
ð2

rðLÞ�lðLÞ
2 þ 1Þ � 8:

This proves the formula for wðLÞ when rðLÞ ¼ 12 and dðLÞ ¼ 0.
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If rðLÞ < 12 or
�
rðLÞ; dðLÞ

�
¼ ð12; 1Þ, the coe‰cient of e1L does not contribute to

cL;0ð0Þ by (7.9), so that

wðLÞ ¼ cL;0ð0Þ
2

¼ 12 þ sðLÞ þ 2
4�sðLÞ�lðLÞ

2

�
12 þ sðLÞ

�
ð8:3Þ

¼
�
16 � rðLÞ

�
ð2

rðLÞ�lðLÞ
2 þ 1Þ

in this case. This proves the theorem when rðLÞe 12.

Assume that rðLÞ ¼ 13 and lðLÞe 7. By (7.9), the principal part of FLðtÞ is given by
the formula

PðFLÞ ¼ q�1e0 þ 2
13�lðLÞ

2 q�1
4v3 � 8q�1

4e1Lð8:4Þ

¼ q�1e0 þ 2
13�lðLÞ

2 q�1
4

P
g213=2; g31L

eg þ ð2
13�lðLÞ

2 � 8Þq�1
4e1L :

Since lðLÞe 7, we get cL; gðkÞf 0 for k < 0 by (8.4). The formula for div
�
CLð�;FLÞ

�
follows from Theorem 6.1 and (8.4) in the same manner as (8.1). Since 1L 3 0 when
rðLÞ ¼ 13, the coe‰cient of e1L does not contribute to cL;0ð0Þ by (7.9), so that wðLÞ is
given by (8.3). This completes the proof of Theorem 8.1. r

Corollary 8.2. If rðLÞe 12 and D00
L ¼ j, then div

�
CLð�;FLÞ

�
¼ DL.

Proof. Since D00
L ¼ j, the result follows from Theorem 8.1. r

If LH LK3 is primitive and rðLÞ ¼ 13, lðLÞf 9, then we get�
rðLÞ; lðLÞ; dðLÞ

�
¼ ð13; 9; 1Þ

because lðLÞeminfrðLÞ; 22 � rðLÞg ¼ 9 and dðLÞ ¼ 1. Since L? has invariants
ðr; l; dÞ ¼ ð9; 9; 1Þ in this case, we get L?GAþ

1 lAl8
1 if LH LK3 is primitive and

rðLÞ ¼ 13, lðLÞf 9.

Corollary 8.3. The moduli space of 2-elementary K3 surfaces of type M is quasi-

a‰ne if rðMÞf 9 and M YAþ
1 lAl8

1 .

Proof. Set L :¼ M?. Since LH LK3 is primitive, either rðLÞe 12 or rðLÞ ¼ 13 and
lðLÞeminfrðLÞ; 22 � rðLÞg ¼ 9 by the assumption rðMÞf 9. Since M YAþ

1 lAl8
1 by

assumption, we get
�
rðLÞ; lðLÞ

�
3 ð13; 9Þ. Hence either rðLÞe 12 or rðLÞ ¼ 13, lðLÞe 7.

By Theorem 8.1, CLð�;FLÞ is a holomorphic automorphic form on WL. Recall that an
automorphic form on WL is identified with a holomorphic section of an ample line
bundle over M�

L by Baily–Borel [3]. Hence MLndiv
�
CLð�;FLÞ

�
is quasi-a‰ne. Since

supp div
�
CLð�;FLÞ

�
¼ DL by Theorem 8.1 and hence Mo

L ¼ MLndiv
�
CLð�;FLÞ

�
, we get

the result. r

In [47], Section 2, [1], Section 2.2, and [18], Sections 1–3, the notion of lattice polar-
ized K3 surface was introduced. We follow the definition in [18].
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Corollary 8.4. If M H LK3 is a primitive 2-elementary Lorentzian sublattice with

rðMÞf 9 and M YAþ
1 lAl8

1 , then the moduli space of ample M-polarized K3 surfaces

is quasi-a‰ne.

Proof. Set Oþ
0 ðM?Þ :¼ kerfOþðM?Þ ! OðqM?Þg, where OþðM?Þ ! OðqM?Þ de-

notes the natural homomorphism. By [17], p. 2607, the coarse moduli space of ample
M-polarized K3 surfaces is isomorphic to the analytic space Wo

M?=Oþ
0 ðM?Þ. By this

description, the proof of the corollary is similar to that of Corollary 8.3. r

For the table of isometry classes of primitive 2-elementary Lorentzian sublattices
M H LK3 with rðMÞf 9 and M YAþ

1 lAl8
1 , see [21], Appendix, Tables 1–3; there are

53 isometry classes. There are some examples of lattices L with bþðLÞ ¼ 2 admitting an
automorphic form on Wþ

L with zero divisor DL. See, e.g., [8], Section 16, Examples 1–3,
[9], [11], Section 12, [12], Examples 2.1, 2.2, [28], II, Theorem 5.2.1, [34], Theorem 6.4,
[55], Section 10.

As a related result, we mention the following theorem.

Theorem 8.5. The moduli space of 2-elementary K3 surfaces of type M contains no

complete curves if rðMÞf 7. The same is true for the moduli space of ample M-polarized

K3 surfaces if M is 2-elementary and rðMÞf 7.

Proof. By [62], Theorem 5.9, tM is a strongly pluri-subharmonic function on Mo
M?

if rðMÞf 7. Hence Mo
M? contains no complete curves when rðMÞf 7. Since the moduli

space of ample M-polarized K3 surfaces Wo
M?=Oþ

0 ðM?Þ is a finite covering of Mo
M? , the

second assertion follows from the first one. r

Question 8.6. The existence of a strongly pluri-subharmonic function on a quasi-
projective variety X does not necessarily imply the quasi-a‰nity of X (see [29], p. 232,
Example 3.2, for a counter example). If rðMÞf 7, is Mo

M? quasi-a‰ne?

The referee suggested an interesting approach to the problem of quasi-a‰nity of Mo
M?

using the Lefschetz formula (cf. [50] for a similar approach using the Grothendieck–
Riemann–Roch formula).

Assume L ¼ UðNÞlL, where L is a 2-elementary Lorentzian lattice with rðLÞe 10
and N A f1; 2g. Hence rðLÞe 12, and FLjL ¼ FL by Lemma 7.8. By [10], Theorem 13.3, by

Definition 7.6 and the definitions of f
ð0Þ

k ðtÞ, f
ð1Þ

k ðtÞ and g
ðiÞ
k ðtÞ, the infinite product for

CLð�;FLÞ is given explicitly as follows:

CLðz;FLÞ ¼ e2pih%; zi Q
l AL;l�W>0;l2

f�2

ð1 � e2pihl; ziÞc
ð0Þ
8þsðLÞðl

2=2Þð8:5Þ

�
Q

l A 2L4;l�W>0;l2
f�2

ð1 � epiNhl; ziÞ2
rðLÞ�lðLÞ

2 c
ð0Þ
8þsðLÞðl

2=2Þ

�
Q

l A ð1LþLÞ;l�W>0;l2
f0

ð1 � e2pihl; ziÞ2c
ð1Þ
8þsðLÞðl

2=2Þ
;
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where z A LnR þ iW with ðIm zÞ2 g0, WHLnR is a Weyl chamber of L by Lemma 7.9
and % ¼ %ðL;FL;WÞ A LnQ is the Weyl vector of ðL;FL;WÞ.

Example 8.7. Let L ¼ Uð2ÞlAþ
1 lAlk

1 with 0e k e 8. By [65], Theorem 1.1,
CLð�;FLÞ is regarded as an automorphic form on the Kähler moduli of a del Pezzo
surface of degree 9 � k, which appears in the formula for the BCOV invariant [19] of
certain Borcea–Voisin threefolds. By [65], Propositions 4.1 and 4.3, and [27], proof of
Theorem 2.3 (a) and Section 3, there is a Borcherds–Kac–Moody superalgebra with
denominator function CLð�;FLÞ. In [26], Corollaries 3.4 and 3.5, Gritsenko gave a very
explicit Fourier series expansion of CLð�;FLÞ under an appropriate identification of the
domains Wþ

L and WUl2lDk�1
.

Example 8.8. Let L ¼ Uð2ÞlUð2Þl E8ð2Þ. We have lðLÞ ¼ 12 and wðLÞ ¼ 0.
This L admits no primitive embedding into LK3 by [46], Theorem 1.12.1. Since DL ¼ j,
we get DL ¼ j, so that CLð�;FLÞ is a constant function. This FLðtÞ gives an example of
non-trivial elliptic modular form for Mp2ðZÞ whose Borcherds lift becomes trivial.

Example 8.9. Let L ¼ UlUð2Þl E8ð2Þ. We have lðLÞ ¼ 10 and wðLÞ ¼ 4. Then
CLð�;FLÞ is the Borcherds F-function of dimension 10. See [8], Section 15, Example 4, [9],
[10], Example 13.7, [19], Section 13, [23], Section 11, [33], Remark 4.7, Theorem 7.1, [54],
[62], Section 8.1, for more about this example and related results.

Example 8.10. Let L ¼ U2 l E8ð2Þ. We have lðLÞ ¼ 8 and wðLÞ ¼ 12. Then
CLð�;FLÞ ¼ CL

�
�;YLþ

16
ðtÞ=hðtÞ24� is the restriction of the Borcherds F-function of dimen-

sion 26 to WL, where YLþ
16
ðtÞ is the theta function [10], Section 4, for the positive-definite

16-dimensional Barnes–Wall lattice Lþ
16. See [62], Section 8.2.

Example 8.11. Let L ¼ UlUð2ÞlD2
4 . We have lðLÞ ¼ 6 and wðLÞ ¼ 28. Kondō

[34], Theorem 6.4, used CLð�;FLÞ to study the projective model of the moduli space of 8
points on P1. By [34], Theorem 6.7 and its proof, CLð�;FLÞ15 is expressed as the product
of certain 105 additive Borcherds lifts ([10], Section 14). See also [23], Section 12.

Example 8.12. Let L ¼ UlUl E8. Then lðLÞ ¼ 0 and wðLÞ ¼ 252. We get
FLðtÞ ¼ E4ðtÞ2=hðtÞ24, where E4ðtÞ is the Eisenstein series of weight 4. The correspond-
ing Borcherds lift CLð�;FLÞ ¼ CL

�
�;E4ðtÞ2=hðtÞ24� was introduced by Borcherds [8],

Theorem 10.1, Section 16, Example 1. By Harvey–Moore [30], Sections 4 and 5,
CL

�
�;E4ðtÞ2=hðtÞ24� appears in the formula for the one-loop coupling renormalization.

See [30], Eqs. (4.1), (4.5), (4.16), (4.27).

Example 8.13. When L ¼ U2 lD4, CLð�;FLÞ coincides with the automorphic form
D of Freitag–Hermann [22], Theorem 11.6. Notice that the weight of D is 72 in our defini-
tion (cf. [22], p. 250, ll. 21–23). By [22], proof of Theorem 11.5, CLð�;FLÞ is expressed as
the product of certain 36 theta functions.

Example 8.14. When L ¼ ðAþ
1 Þ

l2 lAl4
1 , CLð�;FLÞ is the product of all even

Freitag theta functions ([59] and [63], Theorem 7.9), so that the structure of CLð�;FLÞ is
similar to that of CUlUð2ÞlD2

4
ð�;FUlUð2ÞlD2

4
Þ, CU2lD4

ð�;FU2lD4
Þ. For the corresponding

2-elementary K3 surfaces, see [59].
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Example 8.15. When L ¼ ðAþ
1 Þ

l2 lAl3
1 , then CLð�;FLÞ coincides with the auto-

morphic form D11 of Gritsenko–Nikulin [28], II, Example 3.4 and Theorem 5.2.1. When
L ¼ U2 lA1, then CLð�;FLÞ coincides with the automorphic form D4

5D35 of Gritsenko–
Nikulin [28], II, Examples 2.4 and 3.9, Theorem 5.2.1.

We study the case where LH LK3 is primitive and rðLÞ ¼ 13, lðLÞf 9. Since
lðLÞe 9 as in the proof of Corollary 8.3, we get

�
rðLÞ; lðLÞ; dðLÞ

�
¼ ð13; 9; 1Þ and hence

LGUlUl E8ð2ÞlA1.

Theorem 8.16. Let LGUlUl E8ð2ÞlA1. Then the Borcherds lift CLð�;FLÞ is a

meromorphic automorphic form for OþðLÞ of weight 15 with zero divisor

D 0
L þ 5D 00

L � 8HL 1L;�
1

2

� �
:

Proof. We have rðLÞ ¼ 13, lðLÞ ¼ 9, sðLÞ ¼ �9 and dðLÞ ¼ 1. By Theorem 6.1

and (7.9), (8.4), the weight of CLð�;FLÞ is given by
�
12 þ sðLÞ

�
ð2

4�sðLÞ�lðLÞ
2 þ 1Þ ¼ 15 and the

divisor of CLð�;FLÞ is given by

DL þ 2
4�sðLÞ�lðLÞ

2 D 00
L � 212þsðLÞHL 1L;�

1

2

� �
¼ D 0

L þ 5D 00
L � 8HL 1L;�

1

2

� �
;

where �212þsðLÞHL 1L;�
1

2

� �
comes from the negative coe‰cient of q

8þsðLÞ
4 e1L in (7.9), (8.4).

This proves the theorem. r

9. An explicit formula for tM

Theorem 9.1. Let M be a primitive 2-elementary Lorentzian sublattice of LK3. If

rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ, then there is a constant CM > 0 depending only on

M such that for every 2-elementary K3 surface ðX ; iÞ of type M,

tMðX ; iÞ�2gðMÞþ1ð2gðMÞþ1Þ ¼ CM

��CM?
�
$MðX ; iÞ;FM?

���2gðMÞ��wgðMÞ
�
WðX iÞ

���16
:

In particular, if l A Z>0 is an integer such that F
2gðMÞþ1ð2gðMÞþ1Þl

gðMÞ extends to a very ample line

bundle on A�
gðMÞ, then the following equality holds in Theorem 5.1:

FM ¼ C
l=2
M CM?ð�;FM?Þ2gðMÞ�1l n J �

Mw8l
gðMÞ:

Proof. By our assumption rðMÞf 10, we get rðM?Þe 12. If the equality
rðM?Þ ¼ 12 holds, then dðMÞ ¼ 1. We set L ¼ M? in Theorem 8.1. Then we have

16 � rðLÞ ¼ rðMÞ � 6;
rðLÞ � lðLÞ

2
¼ 11 � rðMÞ þ lðMÞ

2
¼ gðMÞ:

Recall that the Bergman kernel KM? A CyðWþ
M?Þ was defined in Section 4.2. Let oM?

be the Kähler form of the Bergman metric on Wþ
M? , i.e.,

oM? :¼ �dd c log KM? :
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By [62], Eq. (7.1), and [66], Theorem 4.1, we have the following equation of currents on
WM? :

dd c log tM ¼ rðMÞ � 6

4
oM? þ J �

MoAgðMÞ �
1

4
dDM? :ð9:1Þ

By Theorem 8.1, by (4.17) and the Poincaré–Lelong formula, we get

�2gðMÞ�1 dd c logkCM?ð�;FM?Þk2ð9:2Þ

¼ 2gðMÞ�1ð2gðMÞ þ 1Þ
�
rðMÞ � 6

�
oM?

� 2gðMÞ�1dD 0
M?

� 2gðMÞ�1ð2gðMÞ þ 1ÞdD 00
M?

:

By Proposition 4.2 (2), there exist a A Zf0 and an OþðM?Þ-invariant e¤ective divisor E on
Wþ

M? such that

�dd c logkJ �
Mw8l

gðMÞk
2ð9:3Þ

¼ 2gðMÞþ1ð2gðMÞ þ 1ÞlJ �
MoAgðMÞ � 2ð22gðMÞ�2 þ aÞldD 0

M?
� dE :

By (9.1), (9.2), (9.3), we get the following equation of currents on Wþ
M? :

�dd c log½t2gðMÞþ1ð2gðMÞþ1Þl
M kCM?ð�;FM?Þ2gðMÞ�1ln J �

Mw8l
gðMÞk

2�ð9:4Þ

¼ �2aldD 0
M?

� dE :

Since log tM , logkCM?ð�;FM?Þk and logkJ �
Mw8l

gðMÞk are OþðM?Þ-invariant L1
loc-functions

on Wþ
M? , we deduce from (9.4), [62], Theorem 3.17, and [66], Eq. (4.8), the existences of

an integer m and an OþðM?Þ-invariant meromorphic function j on Wþ
M? with divisor

mð2alD 0
M? þ EÞ such that

t
2gðMÞþ1ð2gðMÞþ1Þl
M kCM?ð�;FM?Þ2gðMÞ�1ln J �

Mw8l
gðMÞk

2 ¼ jjj2=m:ð9:5Þ

Since af 0, l > 0 and E is e¤ective, j is holomorphic. By the OþðM?Þ-invariance of j,
there exists a holomorphic function ~jj on MM? such that

P�
M? ~jj ¼ j;

where PM? : Wþ
M? ! MM? is the projection. Recall that M�

M? is the Baily–Borel–Satake
compactification of MM? . We define BM? :¼ M�

M?nMM? .

Case 1. Assume that rðMÞe 17. Since M�
M? is an irreducible normal projective

variety and since dim BM? e dimM�
M? � 2 by the condition rðMÞe 17, ~jj extends to a

holomorphic function on M�
M? . Since M�

M? is compact, ~jj must be a constant function on
M�

M? . Hence a ¼ 0, E ¼ 0 and j is a constant. Setting CM :¼ jjj�2=m in (9.5), we get the
result.
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Case 2. Assume that rðMÞf 18. Then gðMÞ ¼ 11 � rðMÞ þ lðMÞ
2

e 2. By Prop-

osition 4.2 (3), we get a ¼ 0 and E ¼ 0. Hence ~jj is a nowhere vanishing holomorphic func-
tion on MM? . By [66], Theorem 1.1, ~jj has at most zeros or poles on BM? . In particular, ~jj
extends to a meromorphic function on M�

M? such that divð~jjÞHBM? . Since BM? is irreduc-
ible when rðMÞf 18 by Proposition 11.7 below, either divð~jjÞ or �divð~jjÞ is e¤ective. In
both cases, ~jj must be a constant. This completes the proof. r

Remark 9.2. The same proof does not work in the case rðMÞ ¼ 9. Since we get by

Theorem 8.1 an extra contribution of the divisor �8HM? 1M? ;� 1

2

� �
in (9.2) in this case,

the divisor corresponding to (the minus sign of) the right-hand side of (9.4) may not be
e¤ective. As a result, j in (9.5) may not be a constant.

Table 1 lists all M? such that M is a primitive 2-elementary Lorentzian sublattice
M H LK3 with rðMÞ > 10 or

�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ.

When ðr; dÞ ¼ ð10; 0Þ, the same formula for tM as in Theorem 9.1 does not hold.

Proposition 9.3. If
�
rðMÞ; dðMÞ

�
¼ ð10; 0Þ and M YUð2Þl E8ð2Þ, then

J o
MðWo

M?ÞH ynull;gðMÞ:

Proof. We prove that J o
MðWo

M?ÞS ynull;gðMÞ yields a contradiction. In what follows,
assume J o

MðWo
M?ÞS ynull;gðMÞ. Since dðM?Þ ¼ 0 and rðM?Þ ¼ 12,

j :¼ CM?ð�;FM?Þ2gðMÞ�1ð2gðMÞþ1Þl n ðJ �
Mw8l

gðMÞÞ
2gðMÞ�1

is an automorphic form on Wþ
M? for OþðM?Þ of weight 2gðMÞ�1ð22gðMÞ � 1Þlð4; 4Þ by The-

orem 8.1. Since J o
MðWo

M?ÞS ynull;gðMÞ, we get jE 0. We can put n ¼ 2gðMÞ�1ð2gðMÞ þ 1Þl in

Theorem 5.1. Set c :¼ j=F2gðMÞ�1
M . Since c is an OþðM?Þ-invariant meromorphic function

on Wþ
M? , we identify c with the corresponding meromorphic function on M�

M? . We com-
pute the divisor of c.

gðMÞ M? with dðM?Þ ¼ 1 M? with dðM?Þ ¼ 0

0 ðAþ
1 Þ

l2 lAlk
1 ð0e k e 9Þ Uð2Þl2

1 UlAþ
1 lAlk

1 ð0e k e 9Þ Uð2Þl2 lD4, UlUð2Þ

2 Ul2 lAlk
1 ð1e k e 8Þ UlUð2ÞlD4, Ul2

3 Ul2 lD4 lAlk
1 ð1e k e 4Þ Ul2 lD4

4 ðAþ
1 Þ

l2 l E8 lAlk
1 ð0e k e 2Þ

5 UlAþ
1 l E8 lAlk

1 ð0e k e 1Þ

Table 1. List of M? with rðMÞ > 10 or
�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ.
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Since dðM?Þ ¼ 0 implies D00
M? ¼ j, we get D 00

M? ¼ j. Since rðMÞ ¼ 10 and
M YUð2Þl E8ð2Þ, we get gðMÞ > 0 by Proposition 2.1. By Proposition 4.2 (2) and
Theorem 8.1, we get

divðjÞ ¼ 2gðMÞ�1ð2gðMÞ þ 1ÞlD 0
M? þ ð2gðMÞ � 1Þf2ð22gðMÞ�2 þ aÞlD 0

M? þ Egð9:6Þ

¼ f2gðMÞ�1ð22gðMÞ þ 1Þ þ 2að2gðMÞ � 1ÞglD 0
M? þ ð2gðMÞ � 1ÞE:

By Theorem 5.1, divðFMÞ ¼ nD 0
M? ¼ 2gðMÞ�1ð2gðMÞ þ 1ÞlD 0

M? , which, together with (9.6),
yields that

divðcÞ ¼ divðjÞ � ð2gðMÞ � 1Þ divðFMÞð9:7Þ

¼ f2gðMÞ þ 2að2gðMÞ � 1ÞglD 0
M? þ ð2gðMÞ � 1ÞE:

Since lf 1, af 0 and since E is an e¤ective divisor, divðcÞ is a non-zero and e¤ective

divisor on Wþ
M? by (9.7). This contradicts the fact that c descends to a meromorphic func-

tion on M�
M? . r

When 2e gðMÞe 5, one can verify Proposition 9.3 by using the explicit equations
defining the corresponding log del Pezzo surfaces [44], pp. 494–495, Table 14.

Theorem 9.4. If M GAþ
1 lAl8

1 , then there exists a constant CM > 0 depending

only on M such that for every 2-elementary K3 surface ðX ; iÞ of type M,

tMðX ; iÞ�40 ¼ CM

��CM?
�
$MðX ; iÞ;FM?

���4��wgðMÞ
�
WðX iÞ

���16
:

Proof. Since M GAþ
1 lAl8

1 , we get M? GUl2 l E8ð2ÞlA1 by, e.g., [21],
Appendix, Table 2. By (9.1) and Proposition 4.4, we get

dd cf�40l log tM � logkJ �
Mw8l

2 k2gð9:8Þ

¼ lf�30oM? þ 10dDM? � 8dD 0
M?

� 16dHM? 1M? ;�1
2ð Þg

¼ lf�30oM? þ 2dD 0
M?

þ 10dD 00
M?

� 16dHM? 1M? ;�1
2ð Þg:

By (9.8) and [62], Theorem 3.17, there is a meromorphic automorphic form jM on Wþ
M? for

OþðM?Þ of weight 30l with

div jM ¼ l 2D 0
M? þ 10D 00

M? � 16HM? 1M? ;� 1

2

� �� �
ð9:9Þ

such that

40l log tM þ logkJ �
Mw8l

2 k2 ¼ �logkjMk2:ð9:10Þ

Since OþðM?Þ=½OþðM?Þ;OþðM?Þ� is a finite Abelian group, there exists n A Z>0 such
that jn

M and CM?ð�;FM?Þ2n are automorphic forms with trivial character. By Theorem 8.16
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and (9.9),
�
CM?ð�;FM?Þ2l=jM

�n
is an OþðM?Þ-invariant meromorphic function on Wþ

M?

with

div
�
CM?ð�;FM?Þ2l=jM

�n ¼ nl 2D 0
M? þ 10D 00

M? � 16HM? 1M? ;� 1

2

� �� �
ð9:11Þ

� nl 2D 0
M? þ 10D 00

M? � 16HM? 1M? ;� 1

2

� �� �
¼ 0:

Since div
�
CM?ð�;FM?Þ2l=jM

�n
is empty, there exists a non-zero constant CM with

jM ¼ C
l=2
M CM?ð�;FM?Þ2l:

By (9.10), (9.11), we get the result. r

Question 9.5. Is divðJ �
Mw8l

gðMÞÞ a linear combination of Heegner divisors on Wþ
M?? If

it is the case and if M?GUl2 lK for some lattice K , FM=J �
Mw8l

gðMÞ will be expressed as a

Borcherds product by [14], Theorem 0.8. Is there a Siegel modular form c on SgðMÞ such
that divðJ �

McÞ is a linear combination of Heegner divisors on Wþ
M??

10. Equivariant determinant of the Laplacian on real K3 surfaces

In this section, we give an explicit formula for the equivariant determinant of real K3
surfaces. We refer to [17], [64] for more details about real K3 surfaces.

The pair of a K3 surface and an anti-holomorphic involution is called a real K3
surface. Let ðY ; sÞ be a real K3 surface. There exists a primitive 2-elementary Lorentzian
sublattice M H LK3 and a marking a of Y such that as�a�1 ¼ IM . A holomorphic 2-form h

on Y is said to be defined over R if s�h ¼ h. Let g be a s-invariant Ricci-flat Kähler metric
on Y with volume 1. Let DðY ; gÞ be the Laplacian of ðY ; gÞ. Since s preserves g, DðY ; gÞ com-
mutes with the s-action on CyðYÞ. We define Cy

G ðY Þ :¼ f f A CyðY Þ; s�f ¼Gf g, which

are preserved by DðY ; gÞ. We set DðY ; gÞ;G :¼ DðY ; gÞjCy
G ðYÞ. Let zGðY ; gÞðsÞ denote the spectral

zeta function of DðY ; gÞ;G. Then it converges absolutely for Re sg 0 and extends mero-
morphically to the complex plane C, and it is holomorphic at s ¼ 0. We define

det�Z2
DðY ; gÞðsÞ :¼ exp½�z 0þðY ; gÞð0Þ þ z 0�ðY ; gÞð0Þ�:

Let Y ðRÞ :¼ fy A Y ; sðyÞ ¼ yg be the set of real points of ðY ; sÞ and let Y ðRÞ ¼
‘

i

Ci

be the decomposition into the connected components. Then YðRÞ is the disjoint union
of oriented two-dimensional manifolds. The Riemannian metric gjY ðRÞ induces a complex
structure on YðRÞ. The period of Y ðRÞ with respect to this complex structure is denoted by
W
�
Y ðRÞ; gjY ðRÞ

�
. Let DðCi; gjCi

Þ be the Laplacian of the Riemannian manifold ðCi; gjCi
Þ and

let zðCi; gjCi
ÞðsÞ denote the spectral zeta function of DðCi; gjCi

Þ. The regularized determinant
of DðCi; gjCi

Þ is defined as

det� DðCi; gjCi
Þ :¼ exp½�zðCi; gjCi

Þ0ð0Þ�:
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After [64], Definition 4.4, we define

tðY ; s; gÞ :¼ fdet�Z2
DðY ; gÞðsÞg�2Q

i

VolðCi; gjCi
Þðdet� DðCi; gjCi

ÞÞ�1:

Theorem 10.1. Let ðY ; sÞ be a real K3 surface and let a be a marking of Y such

that as�a�1 ¼ IM. Let g be a s-invariant Ricci-flat Kähler metric on Y with volume 1. Let

og be the Kähler form of g, and let hg be a holomorphic 2-form on Y defined over R such

that hg5hg ¼ 2o2
g . If rðMÞ > 10 or

�
rðMÞ; dðMÞ

�
¼ ð10; 1Þ, then the following identity

holds:

�4ð2gðMÞ þ 1Þ log tðY ; s; gÞ ¼ log
��CM?

�
aðog þ i Im hgÞ;FM?

���2

þ 2ð4�gðMÞÞ log
��wgðMÞ

�
W
�
Y ðRÞ; gjY ðRÞ

����2 þ C 0
M ;

where C 0
M ¼ 2 log CM and og, hg are identified with their cohomology classes.

Proof. The result follows from Theorem 9.1 and [64], Lemma 4.5, Eq. (4.6). r

11. Appendix

In this section, we prove some technical results about lattices.

11.1. A proof of the equality GM FO(M?). Let M be a primitive sublattice of LK3

and set HM :¼ LK3=ðM lM?Þ. Since LK3 is unimodular, we get

M lM? H LK3 ¼ L4K3 HM4l ðM?Þ4;

so that HM HAM lAM? . Let p1 : HM ! AM and p2 : HM ! AM? be the homomorphism
induced by the projections AM lAM? ! AM and AM lAM? ! AM? , respectively. By
[46], Propositions 1.5.1 and 1.6.1, the following hold:

(a) p1 and p2 are isomorphisms.

(b) AM GAM? via the isomorphism gLK3

M;M? :¼ p2 � p�1
1 .

(c) qM? � gLK3

M;M? ¼ �qM .

Recall that g A OðM?Þ induces g A OðqM?Þ. For g A OðM?Þ, we set

cg :¼ ðgLK3

M;M?Þ�1 � g � gLK3

M;M? :

Then cg A AutðAMÞ.

Lemma 11.1. The automorphism cg preserves qM , i.e., cg A OðqMÞ.

Proof. The result follows from condition (c) and the fact that g A OðqM?Þ. r
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Assume that M H LK3 is a primitive 2-elementary Lorentzian sublattice. Recall that
the isometry IM A OðLK3Þ was defined in Section 1.2. In [62], Section 1.4 (c), we introduced
the following subgroup GM HOðM?Þ:

GM :¼ fgjM? A OðM?Þ; g A OðLK3Þ; g � IM ¼ IM � gg:

Proposition 11.2. The following equality holds:

GM ¼ OðM?Þ:

Proof. By the definition of GM , it su‰ces to prove OðM?ÞHGM . Let g A OðM?Þ
be an arbitrary element. Since M is 2-elementary and indefinite, the natural homomor-
phism OðMÞ ! OðqMÞ is surjective by [46], Theorem 3.6.3, which implies the existence of
Cg A OðMÞ with cg ¼ Cg. Define ~gg :¼ Cg l g A OðM lM?Þ. Then

gLK3

M;M? �Cg ¼ gLK3

M;M? � cg ¼ g � gLK3

M;M? :ð11:1Þ

By (11.1) and the criterion of Nikulin [46], Corollary 1.5.2, we get ~gg A OðLK3Þ. We have
~gg � IM ¼ IM � ~gg on M lM? because for all ðm; nÞ A M lM?,

~gg � IMðm; nÞ ¼ ~ggðm;�nÞ ¼
�
CgðmÞ;�gðnÞ

�
¼ IM

�
CgðmÞ; gðnÞ

�
¼ IM � ~ggðm; nÞ:

Since M lM? linearly spans LK3 nQ, we have ~gg � IM ¼ IM � ~gg in OðLK3Þ. Hence ~gg A GM .
This proves the inclusion OðM?ÞHGM . r

11.2. A formula for g([M ? d ]).

Lemma 11.3. Let d A DM? . The smallest primitive 2-elementary Lorentzian sublattice

of LK3 containing M lZd is given by ½M ? d� ¼ ðM? X d?Þ?.

Proof. Set L :¼ Zd GA1. Then ½M ? d� is the smallest primitive Lorentzian
sublattice of LK3 containing M lL. Since M lLH ½M ? d�H ½M ? d�4HM4lL4

and hence ½M ? d�=ðM lLÞH ½M ? d�4=ðM lLÞHAM lAL GZ
lðMÞþ1
2 , we have that

A½M?d� ¼ ½M ? d�4=½M ? d� is a vector space over Z2. Hence ½M ? d� is 2-elementary.
r

Lemma 11.4. Let d A DM? . Then

lð½M ? d�Þ ¼ lðM?X d?Þ ¼ lðM?Þ þ 1 if d A D0
M? ;

lðM?Þ � 1 if d A D00
M? :

�
Proof. See [21], Proposition 3.1. r

Lemma 11.5. Let d A DM? . Then

gð½M ? d�Þ ¼ gðMÞ � 1 if d A D0
M? ;

gðMÞ if d A D00
M? :

�
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Proof. Since rðM?X d?Þ ¼ rðM?Þ � 1 and

gðMÞ ¼ frðM?Þ � lðM?Þg=2; gð½M ? d�Þ ¼ frðM? X d?Þ � lðM?X d?Þg=2;

the result follows from Lemma 11.4. r

11.3. The K3-graph. In [21], Finashin and Kharlamov introduced the notion of
the lattice graph GL for an even unimodular lattice L. When L ¼ LK3, the K3-graph
GK3 ¼ GLK3

is defined as follows (cf. [21], Section 3):

The set of vertices of GK3, denoted by VK3, consists of the isometry classes of primi-
tive 2-elementary Lorentzian sublattices of LK3. For a primitive 2-elementary Lorentzian
sublattice M H LK3, write ½M� A VK3 for its isometry class. We identify ½M� with the
triplet

�
rðMÞ; lðMÞ; dðMÞ

�
. The vertex ½M� A VK3 is even (resp. odd) if dðMÞ ¼ 0 (resp.

dðMÞ ¼ 1). In [21], an even (resp. odd) vertex is said to be of type I (resp. type II). The
set VK3 was determined by Nikulin [46], [48].

The set of oriented edges of GK3, denoted by EK3, consists of the OðLK3Þ-orbits of
the pairs ðM; ½d�Þ, where M is a primitive 2-elementary Lorentzian sublattice of LK3 and
½d� A DM?=OðM?Þ. The oriented edge represented by ðM; ½d�Þ is denoted by ½ðM; ½d�Þ�.
Then ½ðM; ½d�Þ� connects the vertices ½M� and ½M ? d� with arrow starting from ½M� to
½M ? d�. By identifying ðM; ½d�Þ with the divisor Hd ¼ OðM?Þ � Hd HDM? , there is a
bijection between the following sets:

(i) The edges of GK3 starting from ½M�.

(ii) The irreducible components of DM? .

By the equivalence of (i) and (ii), two vertices ½M�; ½M 0� A GK3 are connected by
an oriented edge of GK3 going from ½M� to ½M 0� if and only if there exist g A OðLK3Þ and
d A DM? such that MgðM 0Þ? is an irreducible component of DM? .

An edge ½ðM; ½d�Þ� with ½d� A D0
M?=OðM?Þ is called an odd edge. An edge ½ðM; ½d�Þ�

with ½d� A D00
M?=OðM?Þ is called an even edge. If an even edge ½ðM; ½d�Þ� satisfies

dðd? XM?Þ ¼ 0, then ½ðM; ½d�Þ� is called an even Wu edge. If dðd? XM?Þ ¼ 1, ½ðM; ½d�Þ�
is called an even non-Wu edge. The set EK3 was determined by Finashin–Kharlamov [21].
See [21], p. 694, Figure 1, for the K3-graph GK3.

Proposition 11.6. The following hold:

(1) ðM; ½d�Þ ¼ ðM; ½d 0�Þ in EK3 if and only if ½M ? d� ¼ ½M ? d 0� in VK3.

(2) If ½ðM; ½d�Þ� A EK3 is odd, then�
rð½M ? d�Þ; lð½M ? d�Þ; dð½M ? d�Þ

�
¼
�
rðMÞ þ 1; lðMÞ þ 1; 1

�
:

(3) If ½ðM; ½d�Þ� A EK3 is even Wu, then�
rð½M ? d�Þ; lð½M ? d�Þ; dð½M ? d�Þ

�
¼
�
rðMÞ þ 1; lðMÞ � 1; 0

�
:
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(4) If ½ðM; ½d�Þ� A EK3 is even non-Wu, then�
rð½M ? d�Þ; lð½M ? d�Þ; dð½M ? d�Þ

�
¼
�
rðMÞ þ 1; lðMÞ � 1; 1

�
:

(5) GK3 contains no multiple edges. In particular, K½D0
M?=OðM?Þ�e 1 and

K½D00
M?=OðM?Þ�e 2.

Proof. The proof can be found in [21], Section 3. For the sake of completeness, we
give it here.

We get (1) by [21], Proposition 3.3. When ½ðM; ½d�Þ� A EK3 is odd, the equality
rð½M ? d�Þ ¼ rðMÞ þ 1 is trivial, the equality lð½M ? d�Þ ¼ lðMÞ þ 1 follows from [21],
Proposition 3.1, and the equality dð½M ? d�Þ ¼ 1 follows from [21], proof of Proposition 3.3,
because Ah2i is a direct summand of A½M?d�. This proves (2). When ½ðM; ½d�Þ� A EK3 is
even Wu (resp. non-Wu), the equality rð½M ? d�Þ ¼ rðMÞ þ 1 is trivial, the equality
lð½M ? d�Þ ¼ lðMÞ � 1 follows from [21], Proposition 3.1, and the equality dð½M ? d�Þ ¼ 0
(resp. dð½M ? d�Þ ¼ 1) follows from the definition of a Wu (resp. non-Wu) edge. This
proves (3) and (4). We get (5) by (1), (2), (3), (4). r

11.4. The irreducibility of the boundary locus: the case r(L)j 4. The following was
used in the proof of Theorem 9.1.

Proposition 11.7. If rðLÞe 4, then BL ¼ M�
LnML is irreducible.

Proof. When rðLÞ ¼ 2, we get LG ðAþ
1 Þ

l2 and BL ¼ j. Assume rðLÞf 3. Let
ImaxðLÞ be the set of maximal primitive isotropic sublattices of L. The number of the irre-
ducible components of BL of maximal dimension is given by K½ImaxðLÞ=OðLÞ� (cf. [53],
Section 2.1). We must prove that when 3e rðLÞe 4,

K½ImaxðLÞ=OðLÞ�e 1:ð11:2Þ

Since 3e rðLÞe 4, L is one of the following 7 lattices (cf. Table 1):

UðkÞl2ðk ¼ 1; 2Þ; ðAþ
1 Þ

l2 lAll
1 ðl ¼ 1; 2Þ; UlUð2Þ; UlAþ

1 lA1; UlAþ
1 :

Case 1. Assume that L ¼ UðkÞlUðkÞ ðk e 2Þ or L ¼ ðAþ
1 Þ

l2 lAll
1 ðl ¼ 1; 2Þ.

Since there exist an indefinite unimodular lattice L0 and k A Z>0 with L ¼ L0ðkÞ, we get
(11.2) by [46], Proposition 1.17.1.

Case 2. Assume that L ¼ UlAþ
1 . There exist isomorphisms Wþ

L GH and
OþðLÞG SL2ðZÞ such that the OþðLÞ-action on Wþ

L is identified with the projective
action of SL2ðZÞ on H via these isomorphisms (cf. [17], Theorem 7.1). Hence
MLG SL2ðZÞnHGC and M�

LnML ¼ fþiyg, which implies (11.2) in this case.

Case 3. Assume that L ¼ UlUð2Þ or L ¼ UlAþ
1 lA1. Let LHL be a primi-

tive isotropic sublattice of rank 2. Let fe1; e2g be a basis of L. Extending this basis of L, we
get a basis fe1; e2; e3; e4g of L with Gram matrix G as follows:

G ¼ ðhei; ejiÞ1ei; je4 ¼ O A

A B

� �
; A ¼ 1 0

0 2

� �
; B A M2ðZÞ; tB ¼ B:

67Yoshikawa, K3 surfaces with involution, II

Brought to you by | Kyoto University
Authenticated

Download Date | 1/14/15 8:01 AM



Set e 03 :¼ e3 þ ae1 þ be2 and e 04 :¼ e4 þ ge1 þ de2, where a; b; g; d A Z. The Gram matrix of
L with respect to fe1; e2; e

0
3; e

0
4g is given by

G 0 ¼ O A

A B þ C

� �
; C ¼ 2a gþ 2b

gþ 2b 4d

� �
:

Since L is even, we can write he4; e4i ¼ 4k or 4k þ 2. We set a :¼ �he3; e3i=2, b :¼ 0,
g :¼ �he3; e4i and d :¼ �2k. Then we get B þ C ¼ O if dðLÞ ¼ 0 (i.e., he4; e4i1 0 mod 4)

and B þ C ¼ 0 0

0 1

� �
if dðLÞ ¼ 1 (i.e., he4; e4i1 2 mod 4). This proves the existence of a

basis fe1;L; e2;L; e3;L; e4;Lg of L with L ¼ Ze1;L þ Ze2;L, such that the Gram matrix of L

with respect to this basis is of the form
O A

A B

� �
. Here A ¼ 1 0

0 2

� �
, B ¼ O if dðLÞ ¼ 0

and B ¼ 0 0

0 2

� �
if dðLÞ ¼ 1. If L 0 HL is another primitive isotropic sublattice of rank 2,

then we get an isometry of L sending L to L 0 by identifying the basis fe1;L; e2;L; e3;L; e4;Lg
and fe1;L 0 ; e2;L 0 ; e3;L 0 ; e4;L 0g via the map ei;L 7! ei;L 0 . This proves (11.2). r
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