Electron-rich carbon nanorings as macrocyclic hosts for fullerenes.

Miki, Koji; Matsushita, Tsuyoshi; Inoue, Yuki; Senda, Yoshinori; Kowada, Toshiyuki; Ohe, Kouichi

© The Royal Society of Chemistry 2013; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。; This is not the published version. Please cite only the published version.
Electron-rich Carbon Nanorings as Macro cyclic Hosts for Fullerenes†

Koji Miki,∗ Tsuyoshi Matsushita, Yuki Inoue, Yoshinori Senda, Toshiyuki Kowada† and Kouichi Ohe∗

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x

Host molecules of fullerene have been intensively investigated in recent years for roles as separators of specific fullerenes as well as building blocks of well-ordered fullerene-based nanostructures.1 After the discovery of the complexation of fullerenes with azacrown compounds2 and γ-cyclodextrin,3 a range of host molecules for constructing fullerene-containing electroactive nanomaterials has been developed.4–6 Because fullerene is a π-conjugated spherical molecule, convex-concave π–π interactions between a fullerene and a π-conjugated tube-like structure have also been envisioned to form much more stable complexes. In fact, it was found that fullerenes can be included inside single-walled carbon nanotubes (SWNTs).4 After this intriguing study, two examples of host-guest complexes of fullerene with carbon nanorings (CNRs), π-conjugated hydrocarbon macrocycles such as [6]cycloparaphenylenecetylene (6CPPA)5 and [10]cycloparaphylene,6 were reported (Fig. 1). Most recently, the synthesis of SWNTs with perfectly defined diameters as well as their fullerene-included peapods from [n]cycloparaphenylenes has aroused much interest.7–11 Although much attention has been paid to the properties of clusters consisting of multiple CNR-fullerene complexes, there are no examples of complexes of fullerenes with two or more CNR conjugates. The inclusion properties of [6]CPPA revealed both experimentally5,12 and theoretically13 prompted us to investigate a conjugate of two [6]CPPAs for inclusion of fullerenes.

Recently, we reported the efficient synthesis of strained pyridine-containing macrocycles via a tin-mediated reductive aromatisation reaction.14 A cross-coupling and reduction sequence for [6]CPPA precursors allowed us to find the [6]CPPAs formation via tin-mediated reduction of 1,4-methoxy cyclohexa-2,5-diene moieties (Scheme 1). Furthermore, this approach is applicable to synthesis of “glasses-like” twin CNRs, in which two [6]CPPA moieties are covalently joined by a phenyl ring (Fig. 2).15 Here, we report the complexation of fullerenes with anthracene-containing [6]CPPAs and twin CNRs synthesised via the new synthetic approach.

The D₃h symmetric CNR precursors 1 were synthesised from cis-9,10-diethyl-9,10-dimethoxy-9,10-dihydroanthracene with the corresponding p-diodobenzene by means of palladium and copper catalysts (see the Electronic Supplementary Information (ESI)).16 Subsequently, the tin-mediated reductive aromatisation of CNR precursors 1 with one equivalent of fullerene was carried out (Scheme 2). After the reduction, the corresponding CNR–fullerene complex 2≈C₆₀ was successfully isolated in 51% yield.17 The reductive aromatisation of 1′ bearing electron-donating butoxy groups proceeded smoothly to afford the complex 2≈C₆₀ in 35% yield. The CNR–fullerene complexes 2≈C₆₀ and 2≈C₆₀ in the solid state are stable in the dark, but those in solution are not stable, especially under air. In the measurement of variable temperature (VT) ¹H NMR of 2≈C₆₀ (-90 °C to 30 °C in CD₂Cl₂), no temperature-dependent signal separations were observed (concentration: 8.2×10⁻⁴ mol·dm⁻³).18 Because no notable signals of free host 2 were observed using ¹H NMR, even at low temperature, the association constant (Kₐ) of 2≈C₆₀ is estimated to be larger than 5×10⁶ dm³·mol⁻¹ by considering the concentration.
Because as we established the new synthetic route to obtain stable CNR-fullerene complexes, we focused our attention on twin CNR-fullerene complexes generated from twin CNR precursors 3 (Fig. 3). Although the twin CNR precursor 3a was not obtained, the double macrocyclization of 4 with diiodide 5a afforded twin CNR precursors 3b and 3c in 11% and 9% yields, respectively (Scheme 3)20 Instead, precursors 3a and 3a' bearing butoxy groups were selectively prepared via a stepwise coupling reaction of 6 with 5a or 5a' (Scheme 4). With CNR precursors 3a and 3a' in hand, we carried out the synthesis of a complex of twin CNRs with two fullerene molecules. Although twin macrocycles 3b and 3c did not afford 1:2 complexes with fullerene,21 3a and 3a' underwent reductive aromatisation in the presence of excess amounts of fullerene to afford 1:2 complexes of twin CNRs 7 and 7' with fullerene (Scheme 5). The complex 7$\rightarrow 2$C$_{60}$ was detected by matrix assisted laser desorption/ionization–time of flight (MALDI–TOF) mass spectroscopy (Fig. S4 in the ESI), but unfortunately could not be isolated successfully. This might be caused by its low stability. When one fullerene molecule interacts with one of two CNRs in 7, the electron density of another CNR is decreased by charge transfer interaction. Therefore, the second complexation of 1:1 complex 7\rightarrowC$_{60}$ with fullerene gave the unstable 1:2 complex 7$\rightarrow 2$C$_{60}$, which in fact was detectable by mass spectroscopy just after the reduction but decomposed under purification. Instead, a 1:2 complex 7'$\rightarrow 2$C$_{60}$ bearing butoxy substituents on the CNRs was isolated in 79% yield, and its isotropic patterns was confirmed by MALDI-TOF mass spectroscopy (Figs. S5 and S6 in the ESI). Furthermore, bis(ethoxycarbonyl)methanofullerene (mC$_{60}$)22 could be included inside twin CNRs 7' to form the corresponding 7'$\rightarrow 2$mC$_{60}$ (Figs. S7 and S8 in the ESI).23 These results suggest that the charge transfer interaction between electron-accepting fullerenes and twin CNRs 7' having electron-donating butoxy groups might stabilise the 1:2 complexation. Because no significant changes were observed in VT 1H NMR spectra of 7'$\rightarrow 2$C$_{60}$, the inclusion of two fullerene molecules with two CNRs was considered to be strong (Fig. S9 in the ESI). It is important to note that the high electron density of 7' is essential in the formation of their stable 1:2 complexes with fullerene as well as mC$_{60}$ molecules.

We carried out cyclic voltammetry of twin CNR-fullerene complex 7'$\rightarrow 2$C$_{60}$ as well as CNR-fullerene complexes 2\rightarrowC$_{60}$ and 2'\rightarrowC$_{60}$ with tetrabutylammonium hexafluorophosphate as the supporting electrolyte in o-dichlorobenzene (see the ESI). The cyclic voltammogram of 2\rightarrowC$_{60}$ exhibits a reversible one-electron reduction peak of the fullerene entity at -1.16 V (vs. Fe$^+/\text{Fc}$), which was cathodically shifted by 60 mV as compared with that of pristine fullerene (-1.10 V). With 2'\rightarrowC$_{60}$, the peaks retained their
reversible shape and were shifted to a more negative potential (-1.29 V). The first cathodic process corresponding to the reduction of the fullerene entity of $7^+ \rightarrow 2C_{60}$ was observed at -1.28 V, which is similar to that of $2^- \rightarrow C_{60}^-$. This difference in cathodic shifts of the reduction potential between these complexes indicates that there is a stronger charge transfer interaction between a fullerene and butoxy-containing CNRs 2' and 7', and that the association constants of electron-rich 2' and 7' with fullerences are larger than that of 2 (K = 5 x 10^7 dm^3 mol^-1). Interestingly, no significant decrement of reversible one-electron redox signals was observed in electrochemical reduction-oxidation cycles in either case. This indicates that the present CNR-fullerene complexes as well as reduced complexes are stable under the measurement conditions.

In summary, we have synthesised π-conjugated CNRs via a cross-coupling and tin-mediated reductive aromatisation sequence. This methodology was applied to the synthesis of more complicated twin CNRs including two fullerene molecules. This is the first example of 1:2 complexation between a π-conjugated hydrocarbon macromolecular system and two fullerene molecules. We found that the introduction of electron-donating groups on the CNRs significantly enhances the stability of the CNR-fullerene complexes by charge transfer interaction between the CNRs and fullerenes. The complexation of fullerences with a range of CNR systems will find application in designing buckyball-nanotube structures and investigating their unique function.

This work was supported by the Kurata Memorial Hitachi Science and Technology Foundation, a Grant-in-Aid for Scientific Research (C) and a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We would like to thank Prof. Norhiro Tokito, Dr. Takahiro Sasamori and Dr. Tetsuaki Fujihara in Kyoto University for helpful discussions and supports of X-ray crystallographic analysis, and Dr. Keiko Kuwata in Kyoto University for measurements of MALDI-TOF mass spectrometry.

Notes and references

1 Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. Fax: +81-75-383-2495; Tel: +81-75-383-2499; E-mail: kojimikili@sc.kyoto-u.ac.jp; ohe@sci.kyoto-u.ac.jp
2 Present Address: Immunology Frontier Research Center (IFReC), Osaka University, 5-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
3 Electronic Supplementary Information (ESI) available: experimental details and characterisation data for all compounds. X-ray crystallographic data of 1, 3b and 3c, cyclic voltagammograms of $2C_{60}$, $2C_{70}$ and $7C_{60}$, and NMR spectra of the new compounds. See DOI: 10.1039/b000000x/1
16 Most recently, Jasti et al. reported the synthesis of cyclopentadienyl dimers as a twin CNR system, see: J. Xia, M. R. Golder, M. E. Foster, B. M. Wong, R. Jasti, J. Am. Chem. Soc., 2012, 134, 19709.
17 The structure of cyclotrim 1 was confirmed by X-ray crystallographic analysis. See the SI.
18 CNR–fullerene complexes, $2C_{60}$ and $3C_{60}$ were detectable as 1:1 complexes in high resolution FAB mass spectrometry. See the SI.
19 In the case of $2C_{60}$, the signals of the methylene protons on butoxy groups separated into two independent peaks below -60 °C. We suppose that this might be caused by the existence of two possible supramolecular isomers of $2C_{60}$ related to the positions of butoxy groups. See the SI.
20 According to the instrument manual, the minimum sample concentration of solute for 1H NMR is usually 4×10^{-4} mol-dm^-3. Although the detection limit differs according to measuring object, we used this minimum concentration to estimate the equilibrium constant.
21 The structures of twin CNR precursors 3b and 3c were confirmed by X-ray crystallographic analyses. See the SI.
22 After the reductive amination of 3b with 2 equivalents of fullerene, the corresponding twin CNR and their 1:1 complex were detected by MALDI-TOF mass spectrometry, but 1:2 complex was not observed at all (Figure S9 in the SI).
24 By measuring 1H NMR, we confirmed that 7' and mC_{60} form a 1:2 complex (Figure S10 in the SI).
26 The irreversible second electron reduction peaks of $2C_{60}$, $2C_{70}$ and $7C_{60}$ were observed around -1.50 V.
27 Recently, the 1:2 complexation of π-conjugated porphyrin-based macromolecules with fullerenes were reported, see: J. Song, N. Aratani, H. Shinokubo, A. Osaka, Chem. Sci., 2011, 2, 748.