17 Abstract:
The names of the authors:

Title: University

The address of authors:

E-mail:

Telephone:
+81-75-921-0652

Fax:

Shotaro TAKENAKA, Taihachi KAWAHARA

Evolution of tetraploid wheat based on variations in 5' UTR regions of Ppd-A1: evidence of gene flow between emmer and timopheevi wheat

The affiliation of the authors:

Laboratory of Crop Evolution, Plant Germ-plasm Institute, Graduate School of Agriculture, Kyoto

Muko, Kyoto 617-0001, Japan
takenaka.shotaro.33c@st.kyoto-u.ac.jp

AII) based on sequences around Ppd-A1 gene (Takenaka and Kawahara 2012). That study focused on domesticated emmer wheat and used only 19 wild emmer wheat, so could not be clear the evolutional relationship between Type AI and Type AII. Here, a total of 669 accessions comprising 65 einkorn wheat, 185 wild emmer wheat, 107 hulled emmer wheat, 204 free-threshing (FT) emmer wheat, and 108 timopheevii wheat were studied by PCR assay and DNA sequencing for Type AI/AII. Type AII was an older type than Type AI because all einkorn accessions had Type AII. In wild emmer, Type AI was distributed in the northeast regions of its distribution and Type AII was found to be centered on Israel. A total of 37.4% of hulled emmer accessions were Type AI, while 92.2% of FT emmer accessions were Type AI. Differences in the proportion of Type AI/AII in domesticated emmer suggested a strong bottle-neck effect. We also found two MITE-like sequence deletion patterns from a part of Type AII accessions (dic-del and ara-del). Dic-del was found from only Israeli wild emmer accessions and ara-del was found from almost all timopheevii wheat accessions. Only three timopheevii accessions did not have ara-del, and one wild emmer accession and ten hulled emmer accessions had ara-del. These accessions suggested gene flow between emmer and timopheevii wheat.

Key Words:
tetraploid wheat, Ppd-1, domestication, evolution, gene flow

Introduction

Wheat is the one of the most important staple crops and is cultivated all over the world. Today, it accounts for more than 20% of total human food calories (faostat.fao.org). There is an urgent need to improve wheat for sustainable production in response to an explosion in world population and global climate change (wheat.org). For wheat breeding to satisfy such requirements, the genetic diversity of wild relatives and wheat landraces adapting to various environment is very important as genetic resources (Harlan 1975).

The genus Triticum L. consists of diploid einkorn wheat ($2 \mathrm{n}=14$, AA), tetraploid emmer ($2 \mathrm{n}=$ 28, $\left.B_{B A}{ }^{u} A^{u}\right)$ and timopheevii wheats $\left(G G A^{u} A^{u}\right)$, and hexaploid common wheat ($2 \mathrm{n}=42$, DDBBA $^{u} A^{u}$) (for a review, see Lilienfeld 1951). Tetraploid wheats originated independently by hybridization and amphiploidization between Aegilops speltoides (SS) (or a genotype similar to it) as the female parent and T. urartu ($\mathrm{A}^{\mathrm{u}} \mathrm{A}^{\mathrm{u}}$) as the male parent (Hori and Tsunewaki 1967; Maan and Lucken 1971; Ogihara and Tsunewaki 1982; Dvořák et al. 1993; Tsunewaki 2009). The hybridization that generated wild emmer wheat (T. dicoccoides) may have occurred between 0.25 to 1.3 Mya ago (Mori et al. 1995; Huang et al. 2002), while the hybridization that led to wild timopheevii wheat (T. araraticum) is likely to have occurred later (Mori et al. 1995; Brown-Guedira et al. 1996; Rodriguez, Perera et al. 2000; Huang et al. 2002; Kilian et al. 2007). Wild emmer wheat was domesticated in the Levant (southeastern Turkey to Syria) about 10,000 years before present (BP) (Nesbitt and Samuel 1998; Özkan et al. 2002, 2005; Mori et al. 2003; Tanno and Willcox 2006; Luo et al. 2007; Dubcovsky and Dvorake 2007). As an important component of the West Asian agriculture complex, domesticated hulled emmer (T. dicoccon etc.) spread throughout the world (Bellwood 2005; Luo et al. 2007). By about 8,500 years BP, hulled emmer wheat with tough glumes had evolved to free-threshing (FT) emmer wheat (T. durum etc.) (Salamini et al. 2002). Wild timopheevii wheat was also domesticated in southern Turkey and northern Syria (Mori et al. 2009).

However, unlike emmer wheat, domesticated timopheevii wheat (T. timopheevii) is an endemic crop restricted to western Georgia in Transcaucasia (Zohary and Hopf 2000).

Our previous study shows that emmer wheat is divided into two groups (Type AI and Type AII) based on about 200 bp sequences, which are around 1 kbp upstream of the Ppd-A1 gene and include insertion/deletion mutations (Fig. 1, Takenaka and Kawahara 2012). Some hulled emmer wheat of Type AII are devoid of about 100 bp of MITE-like sequences (Type AIIa). They also report that in domesticated emmer, less than half of hulled emmer (44.4\%) are Type AI and most FT emmer (94.7\%) are Type AI and Type AII FT emmer are restricted to former Yugoslavian countries, while in wild emmer, Type AI are distributed in Turkey, Iran, Iraq, and Israel and Type AII are distributed in Israel, Syria, and Turkey. That study focused on domesticated emmer and used only 19 wile emmer accessions, so could not clarify the evolution of emmer wheat. In this paper, we focus on the regions dividing Type AI and Type AII, and the deletion pattern of MITE-like sequences. We also discuss the evolution of tetraploid wheats using more wheat accessions than the previous study.

Materials and Methods

Plant Materials

A total of 669 accessions of wheat comprising 185 wild emmer wheat (Triticum dicoccoides (Körn. ex Asch. et Graebn.) Schweinf.), 107 domesticated hulled emmer wheat (T. dicoccon Schrank, T. karamyschevii Nevski and T. ispahanicum Heslot), 204 domesticated free-threshing (FT) emmer wheat (T. durum Desf., T. turgidum L. s. str., T. polonicum L., T. carthlicum Nevski, T. turanicum Jakubz., T. aethiopicum Jakubz. and T. pyramidale (Del.) Perc.), 103 wild timopheevii wheat (T. araraticum Jakubz.), 5 domesticated timopheevii wheat (T. timopheevii (Zhuk.) Zhuk. s. str.), 60 wild einkorn wheat (T. boeoticum Boiss. and T. urartu Thum. ex Gandil.), and 5 domesticated einkorn wheat (T. monococcum L.)
were used (Table S). A total of 158 accessions had been analyzed by Takenaka and Kawahara (2012), of which 19 were wild emmer wheat accessions, 45 hulled emmer wheat accessions, and 94 FT emmer wheat accessions. Sixty-seven wild emmer accessions had been analyzed by Özkan et al. (2011). These accessions were maintained at National BioResources Project KOMUGI (Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University) and USDA. Seeds of 12 wild timopheevii accessions were kindly provided by Dr. Sasanuma, Yamagata University, Japan and Dr. Mori, Kobe University, Japan. In this paper, the nomenclature and genome formula is followed from Hammer et al. (2011) and the Catalogue of NBRP KOMUGI with little changes.

PCR assays for Type AI and Type AII

Total DNA was extracted from young leaves from each accession by the CTAB method (Escaravage et al. 1998). Extracted DNA was stored in $100 \mu \mathrm{~L}$ of TE buffer at $4^{\circ} \mathrm{C}$. DNA was amplified by PCR using specific primers for Type AI and Type AII, which corresponded to Type AI and Type AII and produced a band (Takenaka and Kawahara 2012). PCR amplification involved 50 ng of template DNA, $1 \mu \mathrm{M}$ each primer, $1.5 \mathrm{mM} \mathrm{MgCl} 2,0.2 \mathrm{mM}$ dNTPs, $1.5 \mu \mathrm{~L}$ of $10 \times$ PCR Buffer (TaKaRa, Japan), and 0.5 U of Taq Polymerase (TaKaRa, Japan) in a total volume of $15 \mu \mathrm{~L}$. Amplification conditions were $96^{\circ} \mathrm{C}$ for 2 min followed by 30 cycles of $96^{\circ} \mathrm{C}$ for $20 \mathrm{sec}, 62^{\circ} \mathrm{C}$ for 20 sec , and $72^{\circ} \mathrm{C}$ for 30 sec . PCR products were separated on 2\% agarose gels in TAE buffer.

DNA Sequencing

All accessions that were divided into Type AIIa by PCR assays were sequenced and the deletion pattern of MITE-like sequences was checked. PCR amplification involved 50 ng of template DNA, $1 \mu \mathrm{M}$ each primer (up A F9: aacaacgagcatggacgagac, up_A_R600: ctggatccgcatatctttctc), 0.2 mM
dNTPs, $2 \mu \mathrm{~L}$ of $10 \times$ Ex Taq Buffer (TaKaRa, Japan), $0.6 \mu \mathrm{~L}$ of DMSO, and 0.5 U of TaKaRa Ex Taq HS (TaKaRa, Japan) in a total volume of $20 \mu \mathrm{~L}$. Amplification conditions were 30 cycles of $98^{\circ} \mathrm{C}$ for 10 s , $62^{\circ} \mathrm{C}$ for 15 s , and $72^{\circ} \mathrm{C}$ for 2 min . PCR products were cleaned using the AMPure ${ }^{\circledR}$ kit (Bio Medical Science, Tokyo, Japan). The BigDye Terminator v3.1 Cycle Sequencing® kit (Applied Biosystem, Tokyo, Japan) and a primer (up_A_R601: cgcatatctttctcctctcc) were used for sequencing reactions. Sequencing reaction products were cleaned using CleanSEQ ${ }^{\circledR}$ (Applied Biosystem, Tokyo, Japan) and sequenced using an ABI PRISM® 3100 Genetic Analyzer. The primers used for PCR amplification and sequencing, designed for use with primer 3 (Rozen and Skaletsky 2000), were based on sequence data from the DDBJ website (http://www.ddbj.nig.ac.jp/). The sequence data from Ppd-A1, Ppd-B1, and Ppd-G1 and their adjacent regions were obtained from a total of 77 accessions (5 wild emmer wheat, 9 hulled emmer wheat, 2 FT emmer wheat, 10 wild timopheevii wheat, 5 domesticated timopheevii wheat, 43 wild einkorn wheat, and 3 domesticated einkorn wheat, table S) according to a previous study (Takenaka and Kawahara 2012).

Data analyses

Sequences were manually inspected with BioEdit ver. 7.0.9 (Hall 1999) and alignments were generated with MAFFT v6.846b (Kato and Toh 2008). The sequence data from 5’ UTR, intronic, coding, and 3' UTR regions of Ppd-A1 and intronic and coding regions of Ppd-B1 and Ppd-G1 were analyzed for phylogenetic relationships by the neighbor-joining (NJ) method (Saitou and Nei 1987) using MEGA ver. 5.0 (Tamura et al. 2011). Evolutionary distances were computed using the Kimura 2-parameter method (Kimura 1980) and all positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons. The percentage of replicate trees in which associated haplotypes clustered together was calculated in the bootstrap test (1,000 replicates). Haplotypes based on sequencing data of Ppd-1 genes (cording and intronic regions) were scored with DnaSP ver. 5.1 (Librado and Rozas
2009) and Median-Joining (MJ) networks (Bandelt et al. 1999) were constructed with the Network 4.610 program (Fluxus Technology Ltd, Clare, Suffolk, UK). GenBank sequencing accessions analyzed in this study were AB691782-AB691938, AB693038, AB692786-AB692942, AB693039 (Takenaka and Kawahara 2012), and AB745510-AB745620 (sequenced in this study).

Results

PCR assay for Type AI / Type AII and their geographical distribution

All diploid species (T. boeoticum, T. monococcum, and T. urartu) and timopheevii wheat (T. araraticum and T. timopheevii) were Type AII. Type AI was found only in emmer wheat (Table 1). In wild emmer wheat, 82 accessions (44.3\%) were Type AI. Type AI wild emmer wheat was distributed across a wide range. In particular, central-eastern wild emmer accessions were all Type AI. On the other hand, Type AII wild emmer accessions were distributed centering on Israel (Fig. 2a). In hulled emmer wheat, 67 accessions (62.6\%) were Type AII (Table 2). Both Type AI and Type AII were widely distributed in the collection area. However, many accessions of Type AI were spread on the western side centered on Europe, and many accessions of Type AII were spread on the eastern side centered on the Middle East (Fig. 2b). In FT emmer wheat, 188 accessions (92.2\%) were Type AI and a few FT emmer accessions of Type AII were distributed centering on Former Yugoslavian countries (Table 2 and Fig. 2c). We could not identify two FT emmer accessions (PI244061 and KU-146) by the PCR assay for Type AI / Type AII because they had a GS-105-type deletion (Fig. 1 and Table 2) (Wilihelm et al. 2009).

The deletion patterns of MITE-like sequences found in Type AII accessions

In the PCR assay, a small band was produced from some accessions of Type AII. The small band was caused by a deletion (ca. 100 bp) of MITE-like sequences. This deletion was mentioned as Type

AIIa in a previous study (Takenaka and Kawahara 2012). In this study, we found that there were two deletion patterns based on sequencing data. Differences in deletion patterns were shown in Fig. 1. One type of deletion was found in most timopheevii wheat, so we named it as araraticum-type-deletion (ara-del). The other type of deletion was found only in wild emmer wheat, so we named it as dicoccoides-type-deletion (dic-del). Dic-del was found in 32 wild emmer accessions in Israel (Fig. 2a,b and Table 3). On the other hand, ara-del was found from most wild timopheevii accessions (100 accessions, 97.1%), all domesticated timopheevii accessions, one wild emmer accession (KU-14531), and ten hulled emmer accessions (T. dicoccon; PI94633, PI94663, PI254177, PI254189, PI 272533, KU-1533, KU-1538, and KU-3371, T. ispahanicum; KU-145 and KU-4580). Only three wild timopheevii accessions (KU-1943, KU-1990, and IG 116177) did not have ara-del and were all found in Turkey.

Sequence diversity and phylogenetic analysis
Genetic relationships among accessions are shown by an NJ tree based on all sequence data (5 ’ UTR , intronic, cording, and 3' UTR regions of Ppd-A1, Fig. 3). Accessions were divided into three clades. The first clade was constituted by the A^{m} genome diploid species (T. boeoticum and T. monococcum), the second one was constituted by the A" genome diploid species (T. urartu), and the third one was constituted by tetraploid wheat (BBAA and GGAA genome species).

The A^{m} genome clade was divided into two groups. One group contained only T. boeoticum and another group included both T. boeoticum and T. monococcum (Fig. 3). The two groups in the A^{m} genome clade were divided based on some SNPs and three insertion/deletion mutations (14bp, 177bp, and 23bp), which were all found in the 5' UTR region of Ppd-A1 (23bp insertion mutations are shown in Fig. 1). In Ppd-A1 cording and intronic regions, no mutation specific for each group was found.

The A^{u} genome clade was also divided into two groups. The genetic distance between the two
groups of the A^{u} genome clade was smaller than the distance between the two groups of the A^{m} genome clade (Fig. 3). The two groups were divided based on some SNPs, which were all found in the 5' UTR region of Ppd-A1. One 9 bp deletion (CCA repeats), which was specific for one group, was found in the $1^{\text {st }}$ exon.

The tetraploid wheat clade was divided into two sub-clades. The GGAA genome sub-clade included most GGAA genome accessions and all BBAA genome accessions with ara-del. The BBAA genome sub-clade consisted of most BBAA genome accessions and T. araraticum accessions (KU-1943 and IG 116177), which do not have ara-del. Wild emmer accessions with dic-del and Type AI emmer accessions formed distinct groups in the BBAA genome sub-clade (Fig. 3).

There were 65 SNPs and insertion/deletion variants in Ppd-A1 cording and intronic regions of tetraploid wheat. Ten polymorphic sites were specific each for timopheevii wheat (excluded accessions without ara-del) or emmer wheat (excluded accessions with ara-del). Emmer wheat that had ara-del was shared in seven polymorphic sites with timopheevii wheat, and timopheevii wheat without ara-del shared these with most emmer wheat (Table 4).

Even when the haplotype network based on Ppd-A1 was constructed, three main clades of Ppd-A1 were also formed (Fig. 4a). However, in the BBAA sub-clade, the distinction between Type AI and Type AII disappeared. As different from the Ppd-A1 haplotype network, there were many differences between Ppd-B1 of emmer wheat and Ppd-G1 of timopheevii wheat (Fig. 4b). Unlike the phylogenetic tree based on Ppd-A1, all hulled emmer wheat with ara-del was included in the Ppd-B1 group. T. araraticum accessions without ara-del were also included in the Ppd-B1 group. On the other hand, one wild emmer accession with ara-del (KU-14531) was included in the Ppd-G1 group (Fig. 4b).

Discussion

Evolution of emmer wheat based on Type AI and Type AII

In wild emmer wheat, both Type AI and Type AII existed but all diploid species were Type AII (Table 1). The phylogenetic tree based on Ppd-A1 shows that all Type AI accessions are monophyletic (Fig. 3). These results suggest that Type AII is an older type than Type AI and that the Type AI line was derived partially from Type AII lines. Most Type AI wild emmer wheat was found in central-eastern parts of distributions and Type AII wild emmer wheat was found in western parts of distributions centering on Israel (Fig. 2a). This suggests that characteristic mutations of Type AI occurred in central-eastern wild emmer wheat. Luo et al. (2007) and Özkan et al. (2005 and 2011) showed that wild emmer is divided into central-eastern and western lines and that central-eastern one contributed to domestication. Sixty-seven wild emmer accessions used in this study were typed by Özkan et al. (2011) based on ALFP analysis (Table 5 and Table S). Accessions typed as Ib, Ic, and III by Özkan et al. (2011) were all Type AI and accessions typed as V were all Type AII with dic-del. Accessions typed as II and IV were both Type AI and Type AII (Table 5). Özkan et al. (2011) defined groups I, II and III as central-eastern wild emmer lines and groups IV and V as western wild emmer lines. ALFP analysis detects variations in the whole genome but our study targeted variations that existed in very limited regions. Because of this difference, these results did not correspond completely. However, the differences between Type AI and Type AII may show the differences between central-eastern and western wild emmer. Therefore, we thought that Type AI domesticated hulled emmer was directly domesticated from Type AI wild emmer lines and that Type AII domesticated hulled emmer was not domesticated from Type AII wild emmer lines, but rather arouse by introgression between domesticated emmer and Type AII wild emmer around Israel. The introgression between hulled emmer and wild emmer in Israel has already reported (Luo et al. 2007). Our previous study dealing with this problem had used only 19 wild emmer accessions (Takenaka and Kawahara 2012), but here we used 185 wild emmer accessions, which further supported the results.

More than half of hulled emmer accessions (62.6\%) were Type AII (Table 2). This suggested that the introgression between domesticated emmer and Type AII wild emmer occurred at an early stage of evolution and diffusion of hulled emmer wheat. Different from hulled emmer, most accessions of free-threshing (FT) emmer were Type AI (92.2\%, Table 2). Type AII FT emmer accessions were rare, but they were distributed in wide areas (Iran, Turkey, Bosnia and Herzegovina, Croatia, Macedonia, Montenegro, Spain, Portugal, and Algeria, Fig. 2c). In Turkey and Iran, there were both Type AII hulled emmer accessions and Type AII FT emmer accessions (Fig. 2b,c). Therefore, Type AII FT emmer may be evolved from Type AII hulled emmer in these regions. On the other hand, we could not find Type AII hulled emmer accessions from other regions where Type AII FT emmer accessions grow. These Type AII FT emmer accessions may have arisen in each region independently or may have been derived from other regions (e.g. Turkey and Iran). More research on this unique type of emmer is needed. Whether Type AII FT emmer races were of single origin or multiple origins, the result that almost all FT emmer accessions were Type AI suggested a strong bottleneck effect for domesticated emmer. As the result of this strong bottleneck effect, we could not fully apply the genetic resources of Type AII emmer for wheat cultivated today.

Evolution of tetraploid wheat based on deletion patterns of MITE-like sequences

Type AII accessions with dic-del were found only from wild emmer wheat in Israel (Fig. 2a). This suggested that dic-del was a specific variation for wild emmer in Israel and that wild emmer with dic-del have not influenced domesticated emmer wheat. Therefore, wild emmer accessions with dic-del would contribute greatly as genetic resources of domesticated emmer wheat.

Almost all timopheevii wheat having ara-del (Table 3) suggested that this mutation occurred in timopheevii wheat soon after it arrived or in ancestral diploid species, which donated A genomes to
timopheevii wheat, and that this mutation was specific for timopheevii wheat. In this study, we found ten hulled emmer accessions with ara-del. This indicated that ara-del, which was found in hulled emmer wheat, was derived from timopheevii wheat. Phylogenetic trees, MJ networks, and SNPs information based on Ppd-A1 gene regions also supported that the regions of ten hulled emmer wheat accessions originating from timopheevii wheat (Fig. 3, 4a and Table 4). MJ networks based on Ppd-B1/Ppd-G1 showed that ten hulled emmer wheat accessions with ara-del had not Ppd-G1 but Ppd-B1 (Fig. 4b). Their morphological appearances were also accorded with emmer wheat. Moreover, previous studies had treated some hulled emmer accessions with ara-del as emmer wheat and these studies did not report that these accessions had the characteristics of timopheevii wheat (Mori et al. 1997; Ishii et al. 2001; Asakura et al. 2001; Hirosawa et al. 2004). Thus, we thought that these ten hulled emmer accessions with ara-del originated from introgression from timopheevii wheat and that chromosome substitution occurred at regions including the Ppd-A1 gene. T. araraticum distributed from the east side of the Fertile Crescent to Transcaucasia, and most hulled emmer accessions with ara-del were found in this region (Iran and Georgia, Fig. 2b). In these regions, populations of T. araraticum were colonized as a weed in fields of emmer wheat (Nesbitt and Samuel 1996). Such a situation had chances of interspecific crossing between emmer wheat and weed timopheevii wheat. Because of hybrid sterility, their F_{1} usually could not leave F_{2} generations (Tanaka et al. 1979). Hybrid sterility, however, recovered when F_{1} hybrids were backcrossed (Maan 1972). In fields of emmer wheat, successive backcrossing with emmer wheat could cause hulled emmer wheat that has part of the timopheevii wheat chromosome. Hulled emmer accessions with ara-del were also found in Europe and North Africa (Hungary, Germany, and Morocco) where timopheevii wheat did not distribute (Fig. 2b). This suggested that hulled emmer wheat, which originated around Transcaucasia, was introduced into Europe and North Africa, via the northern shore of the Black Sea and through the Strait of Gibraltar.

One wild emmer accession in Israel (KU-14531) also had ara-del and MJ networks based on Ppd-B1/Ppd-G1 showed that this accession did not have Ppd-B1 but Ppd-G1 (Fig. 4b). This may indicate that the accession was not T. dicoccoides but T. araraticum. However, T. araraticum was not found in Israel where the accession came from, and morphological characteristics showed that the accession was T. dicoccoides. We need to perform more research on this accession.

Three T. araraticum accessions (KU-1943, KU-1990 and IG116177) did not have ara-del and a phylogenetic tree based on Ppd-A1 regions showed that these accessions were included in the BBAA genome sub-clade (Fig. 3). In addition, MJ networks based on Ppd-B1/Ppd-G1 showed that these accessions were included in the Ppd-B1 group (Fig. 4b). These results may suggest that these T. araraticum accessions were not timopheevii wheat but emmer wheat. These accessions had been analyzed as wild timopheevii wheat for RFLP analyses by Mori et al. (1995), SSLP by Ishii et al. (2001), and chloroplast DNA fingerprinting by Mori et al. (2009). These results and the morphological characteristics of these T. araraticum accessions showed that the accessions were timopheevii wheat. All T. araraticum accessions without MITE-like sequence deletions were found from Southeast Turkey where there were mixed populations of T. dicoccoides and T. araraticum (Nesbitt and Samuel 1996). In addition, some T. dicoccoides lines in Turkey produced hybrids with fertility when crossed with T. araraticum (Rawal and Harlan 1975). Thus, we thought that these T. araraticum accessions without MITE-like sequence deletions had originated from interspecific crossing with T. dicoccoides and that chromosome substitutions occurred at regions including both $P p d-A 1$ and $P p d-G 1$ genes.

Hulled emmer wheat with ara-del and wild timopheevii wheat without MITE-like sequence deletions particularly showed that the gene flow between emmer wheat and timopheevii wheat occurred and that timopheevii wheat, which was of a different linage to emmer and common wheat, also had important genetic resources for wheat breeding.

References

Asakura, N., Mori, N., Ishido, T., Ohtsuka, I., Nakamura, C. (2001). Single nucleotide polymorphisms in an STS region linked to the ncc-tmp1A locus are informative for characterizing the differentiation of chromosome 1A in wheat. Genes \& Genetic Systems 76(5): 295-304.

Bandelt H-J, Forster P, Röhl A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37-48.

Bellwood, P. S. (2005). First farmers: The origins of agricultural societies. Wiley-Blackwell, Oxford.

Brown-Guedira, G., Badaeva, E., Gill, B., Cox, T. (1996). Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species. Theor. Appl. Genet. 93(8): 1291-1298.

Dubcovsky, J., Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833): 1862.

Dvořák, J., di Terlizzi, P., Zhang, H. B., Resta, P. (1993). The evolution of polyploid wheats: Identification of the A genome donor species. Genome 36(1): 21-31.

Escaravage N, Questiau S, Pornon A, Doche B, Taberlet P. (1998) Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Mol. Ecol. 7(8):975-982

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

Hammer, K., Filatenko, A. A., Pistrick, K. (2011) Taxonomic remarks on Triticum L. and XTriticosecale Wittm. Genet. Resour. Crop Evol. 58: 3-10.

Harlan, J. R. (1975). Our vanishing genetic resources. Science 188(4188): 618-621.

Hirosawa, S., Takumi, S., Ishii, T., Kawahara, T., Nakamura, C., Mori, N. (2004). Chloroplast and nuclear DNA variation in common wheat: Insight into the origin and evolution of common wheat. Genes \& Genetic Systems 79(5): 271-282.

Hori, T., Tsunewaki, K. (1967). Study on substitution lines of several emmer wheats having the cytoplasm of Triticum boeoticum. Seiken Ziho 19: 55-59.

Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., et al. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99(12): 8133.

Ishii, T., Mori, N., Ogihara, Y. (2001). Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103(6): 896-904.

Katoh, K., Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9(4): 286-298.

Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., et al. (2007). Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mole. Bio. Evol. 24(1): 217.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mole. Evol. 16(2): 111-120.

Lilienfeld, F. (1951). H. Kihara: Genome-analysis in Triticum and Aegilops. X. Cytologia, 16(2), 101-123.

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451

Luo, M. C., Yang, Z. L., You, F. M., Kawahara, T., Waines, J. G., Dvorak, J. (2007). The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 114(6): 947-959.

Maan, S. (1973). Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22(2): 287-300.

Maan, S., Lucken, K. A. (1971). Nucleo-cytoplasmic interactions involving Aegilops cytoplasms and Triticum genomes. Journal of Heredity 62(3): 149-152.

Mori, N., Ishii, T., Ishido, T., Hirosawa, S., Watatani, H., Kawahara, T., et al. (2003). Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. Paper presented at the 10th International Wheat Genetics Symposium, pp. 1-6.

Mori, N., Kondo, Y., Ishii, T., Kawahara, T., Valkoun, J., Nakamura, C. (2009). Genetic diversity and origin of timopheevii wheat inferred by chloroplast DNA fingerprinting. Breed. Sci. 59(5): 571-578.

Mori, N., Liu, Y. G., Tsunewaki, K. (1995). Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. wild tetraploid wheats. Theor. Appl. Genet. 90(1): 129-134.

Mori, N., Moriguchi, T., Nakamura, C. (1997). RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes \& Genetic Systems 72(3): 153-161.

Nesbitt, M., Samuel, D. (1996). From staple crop to extinction? The archaeology and history of the hulled wheats. Pp. 41-100 in S. Padulosi, K. Hammer, J. Heller, eds. Hulled wheats. Proceedings of the 1st international workshop on hulled wheats. Castelvecchio Pascoli. Italy.

Nesbitt, M., Samuel, D. (1998). Wheat domestication: Archaeobotanical evidence. Science 279(5356): 1431-1431.

Ogihara, Y., Tsunewaki, K. (1982). Molecular basis of the genetic diversity of the cytoplasm in Triticum and Aegilops, 1: Diversity of the chloroplast genome and its lineage revealed by the restriction pattern of ct-DNAs. Japanese Journal of Genetics 57: 371-396.

Özkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J., Salamini, F. (2005). A reconsideration of the domestication geography of tetraploid wheats. Theor. Appl. Genet. 110(6): 1052-1060.

Özkan, H., Brandolini, A., Schäfer-Pregl, R., Salamini, F. (2002). AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mole. Bio. Evol. 19(10): 1797-1801.

Özkan, H., Willcox, G., Graner, A., Salamini, F., Kilian, B. (2011). Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet. Resour. Crop Evol. 58(1): 11-53.

Rawal, K., Harlan, J. (1975). Cytogenetic analysis of wild emmer populations from Turkey and Israel. Euphytica 24(2): 407-411.

Rodriguez, S., Perera, E., Maestra, B., Diez, M., Naranjo, T. (2000). Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 43(6): 923-930.

Rozen, S., Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132(3): 365-386.

Saitou, N., Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mole. Bio. Evol. 4(4): 406.

Salamini, F., Özkan, H., Brandolini, A., Schafer-Pregl, R., Martin, W. (2002). Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics 3(6): 429-441.

Takenaka, S., Kawahara, T. (2012). Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. Theor. Appl. Genet. 125(5): 999-1014.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Bio. Evol. 28(10): 2731-2739.

Tanaka, M., Kawahara, T., Sano, J. (1978). The origin and the evolution of tetraploid wheats. Wheat Inf. Serv. 47-48: 7-11.

Tanno, K., Willcox, G. (2006). How fast was wild wheat domesticated? Science 311(5769): 1886. Tsunewaki, K. (2009). Plasmon analysis in the Triticum-Aegilops complex. Breed. Sci. 59(5): 455-470. Wilhelm, E. P., Turner, A. S., Laurie, D. A. (2009). Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor. Appl. Genet. 118(2): 285-294.

Zohary, D., Hopf, M. (2000). Domestication of plants in the old world: The origin and spread of cultivated plants in west Asia, Europe, and the Nile valley. Oxford University Press, USA.

Figure Legends

Fig. 1 Consensus sequences around MITE-like deletions. Gray parts show unique sequences of Type AI/AII and ara-del/dic-del. (1) Type AI including 10 wild emmer, 23 hulled emmer, and 90 FT emmer accessions (2) Type AI including 4 wild emmer accessions. (3) Type AII including 4 T. boeoticum accessions. (4) Type AII including 2 T. boeoticum and 3 T. monococcum accessions. (5) Type AII with dic-del including 4 wild emmer accessions. © Type AII with ara-del including 1 wild emmer, 10 hulled emmer, and 13 timopheevii accessions. (7) Type AII without MITE-like sequence deletions including 37 T . urartu, 8 wild emmer, 21 hulled emmer, 4 FT emmer, and 2 wild timopheevii accessions. 88 GS-105 deletion including 2 FT emmer accessions.

Fig. 2 Geographical distribution of Type AI and Type AII emmer accessions. Only the ratio of each type is shown. (a) Distribution of wild emmer accessions shown by collected regions. (b) Distribution of hulled emmer accessions shown by collected countries. (c) Distribution of FT emmer accessions shown by collected countries.

Fig. 3 Neighbor-joining phylogenetic tree built with the 5’ UTR, intronic, coding, and 3' UTR regions of Ppd-A1. Bootstrap values (1,000 replicates, more than 80) are shown next to the branches. Analyses include 233 accessions. Type AI emmer, partial Type AII emmer, Type AII emmer with dic-del and diploid accessions are compressed.

Fig. 4 MJ networks derived from DNA sequence haplotypes among accessions. (a) Haplotypes of Ppd-A1. (b) Haplotypes of Ppd-B1 and Ppd-G1. Black part, gray part, hatched part on white background, and hatched part on gray background show emmer wheat, timopheevii wheat, the A^{u} genome species (T. urartu), and A^{m} genome species (T. boeoticum and T. monococcum). A small white circle means a substitution and many substitutions are shown by figures.

Table 1 The number of accessions divided by collected countries, excluding domesticated emmer.

Species (genome)	Country	Type AI		Type AII		total
		n	\%	n	\%	
T. urartu$\left(\mathrm{A}^{\mathrm{u}} \mathrm{~A}^{\mathrm{u}}\right)$	Iran	0	0.0	2	100.0	2
	Lebanon	0	0.0	10	100.0	10
	Turkey	0	0.0	21	100.0	21
	USSR	0	0.0	4	100.0	4
	total	0	0.0	37	100.0	37
T. boeoticum$\left(\mathrm{A}^{\mathrm{m}} \mathrm{~A}^{\mathrm{m}}\right)$	Greece	0	0.0	1	100.0	1
	Iran	0	0.0	2	100.0	2
	Iraq	0	0.0	5	100.0	5
	Turkey	0	0.0	14	100.0	14
	USSR	0	0.0	1	100.0	1
	total	0	0.0	23	100.0	23
T. monococcum$\left(\mathrm{A}^{\mathrm{m}} \mathrm{~A}^{\mathrm{m}}\right)$	Romania	0	0.0	1	100.0	1
	Spain	0	0.0	1	100.0	1
	Turkey	0	0.0	1	100.0	1
	unknown	0	0.0	2	100.0	2
	total	0	0.0	5	100.0	5
T. araraticum$\left(\mathrm{GGA}^{\mathrm{u}} \mathrm{~A}^{\mathrm{u}}\right)$	Iran	0	0.0	4	100.0	4
	Iraq	0	0.0	65	100.0	65
	Syria	0	0.0	3	100.0	3
	Turkey	0	0.0	27	100.0	27
	USSR	0	0.0	4	100.0	4
	total	0	0.0	103	100.0	103
T. timopheevii (GGA ${ }^{\mathrm{u}} \mathrm{A}^{\mathrm{u}}$)	Turkey	0	0.0	1	100.0	1
	USSR	0	0.0	1	100.0	1
	unknown	0	0.0	3	100.0	3
	total	0	0.0	5	100.0	5
T. dicoccoides ($\mathrm{BBA}^{\mathrm{u}} \mathrm{A}^{\mathrm{u}}$)	Iran	4	100.0	0	0.0	4
	Iraq	22	100.0	0	0.0	22
	Israel	39	28.9	96	71.1	135
	Syria	1	50.0	1	50.0	2
	Turkey	14	73.7	5	26.3	19
	unknown	2	66.7	1	33.3	3
	total	82	44.3	103	55.7	185

Table 2 The number of domesticated emmer accessions divided by PCR assays.

Grain	Species	Type AI		Type AII		GS-105		total
		n	\%	n	\%	n	\%	
Hulled	T. dicoccon	38	36.9	65	63.1	0	0.0	103
	T. ispahanicum	0	0.0	2	100.0	0	0.0	2
	T. karamyschevii	2	100.0	0	0.0	0	0.0	2
	total	40	37.4	67	62.6	0	0.0	107
FT	T. durum	116	92.1	9	7.1	1	0.8	126
	T. turgidum	18	78.3	5	21.7	0	0.0	23
	T. polonicum	11	100.0	0	0.0	0	0.0	11
	T. turanicum	13	100.0	0	0.0	0	0.0	13
	T. carthlicum	8	100.0	0	0.0	0	0.0	8
	T. aethiopicum	21	100.0	0	0.0	0	0.0	21
	T. pyramidale	1	50.0	0	0.0	1	50.0	2
	total	188	92.2	14	6.9	2	1.0	204

*GS-105: 1017bp of deletion (Wilihelm et al. 2009)

Table 3 The number of Type AII tetraploid wheat accessions divided by MITE-like sequence deletion patterns.

	non del*	dic-del	ara-del	total
T. dicoccoides	70	32	1	103
T. dicoccon	57	0	8	65
T. ispahanicum	0	0	2	2
T. durum	9	0	0	9
T. turgidum	5	0	0	5
T. araraticum	3	0	100	103
T. timopheevii	0	0	5	5
total	144	32	116	292

*non-del: Type AII accessions without MITE-like sequences deletion.

Table 4 Ppd-A1 gene sequence polymorphisms in emmer and timopheevii wheat.

Polymorphism	Position relative to Chinese Spring (DQ885753)	Chinese Spring	emmer					timopheevii		
			Type AI	no MITE-like del	dic-del	ara-del (wild emmer)	Type AII ara-del (hulled emmer)	no MITE-like del	ara-del (wild)	ara-del (domestica ted)
1	7460 SNP, exon 1	C	C	C	C	G	C	C	G	C
2	7463 SNP, exon 1	G	C/G	C/G	G	G	G	G	G	G
3	7466 SNP, exon 1	G	C/G	C/G	G	G	G	G	G	G
4*	7535 SNP, exon 1	G	G	G	G	C	C	G	C	C
5	7562 SNP, exon 1	C	C/T	C	C	C	C	C	C	C
6	7680 SNP, intron 1	G	G	A/G	G	G	G	A	G	G
7	7692 SNP, intron 1	G	G	C/G	G	G	G	G	G	G
8	7716 SNP, intron 1	T	T	T	T	T	T	T	C/T	T
9*	7725 indel, intron 1	T	T	T	T	-	-	T	-	-
10*	7747 SNP, exon 2	T	T	T	T	C	C	T	C	C
11	7777 SNP, exon 2	C	C	C	C	T	C	C	C/T	T
12*	7811 SNP, exon 2	G	G	G	G	A	A	G	A	A
13*	7813 SNP, exon 2	C	C	C	C	G	G	C	G	G
14	7861 SNP, exon 2	G	G	G	A/G	G	G	G	G	G
15	7892 SNP, exon 2	A	A/G	A	A	A	A	A	A	A
16	7919 SNP, intron 2	C	C	C	C	T	C	C	C	C
17	7926 SNP, intron 2	C	C	C	C	C	C/G	C	C	C
18	8062 SNP, exon 3	C	C/G	C/G	C	C	C	C	C	C
19	8166 SNP, intron 3	G	C/G	C/G	G	G	G	G	G	G
20	8213 SNP, intron 3	T	T	T	C/T	T	T	T	T	T
21	8281 SNP, intron 3	T	C/T	C/T	T	T	T	T	T	T
22	8503 indel, intron 4	--	T-	T-/--	--	--	--	--	TT	--
23	8504 indel, intron 4	T	T	T/-	T	T	-	-	T	T
24	8506 SNP, intron 4	T	G/T	G/T	T	T	T	T	T	T
25	8512 SNP, intron 4	T	G/T	T	T	T	T	T	T	T
26	8537 SNP, intron 4	C	C	C	C	C	T	C	C	C
27	8541 indel, intron 4	C	-	-	-	-	-	-	-	-
28	8578 SNP, intron 4	A	A/C	A/C	A	A	A	A	A	A
29	8642 SNP, intron 4	C	C	C	C	T	C/T	C	T	T
30	8696 SNP, intron 4	T	T	T	T	C	C/T	T	C	C
31	8711 SNP, intron 4	A	A	A	A/G	A	A	A	A	A
32	8716 SNP, intron 4	G	G	A/G	A/G	G	G	G	G	G
33	8760 SNP, intron 4	G	G	G	G	G	G	G	A/G	G
34	8823 SNP, intron 4	A	A	A/G	A	A	A	A	A	A

35	8876 SNP, intron 4	C	C/T	C/T	C	C	C	C	C	C
36	8909 SNP, intron 4	C	C/G	C/G	C	C	C	C	C	C
37	8910 SNP, intron 4	T	T	T	T	T	T	T	T	C
38	TE in intron 5	Yes	No							
39*	10369 SNP, intron 5	C	C	C	C	A	A	C	A	A
40*	10650 SNP, exon 6	A	A	A	A	G	G	A	G	G
41	10727 SNP, exon 6	G	A/G	A/G	G	G	G	G	G	G
42	10791 SNP, exon 6	A	A/G	G	G	G	G	G	G	G
43	10818 SNP, exon 6	A	A/G	A/G	G	A	A	G	A	A
44	10872 SNP, intron 6	A	A/G	A/G	A	A	A	A	A	A
45	10874 SNP, intron 6	T	A/T	A/T	T	T	T	T	T	T
46	10878 SNP, intron 6	A	A	A/C	A	A	A	A	A	A
47	10889 SNP, intron 6	C	C/G	C/G	C	C	C	C	C	C
48	10896 SNP, intron 6	T	T	T	A/T	T	T	T	T	T
49	10974 SNP, exon 7	C	C/G	G	G	G	G	G	G	G
50	11013 SNP, exon 7	A	A/G	A/G	A	A	A	A	A	A
51	11053 SNP, exon 7	A	A	A	A	A	A/T	A	A	A
52	11066 SNP, exon 7	C	C	C	C/T	C	C	C	C	C
53	11081 SNP, exon 7	C	C	C	C	T	C	C	C/T	T
54	11120 SNP, exon 7	C	C	C	C	T	C	C	C/T	T
55	11210 SNP, exon 7	A	A	A/T	A	A	A	T	A	A
56	11225 SNP, exon 7	G	A/G	G	G	G	G	G	G	G
57	11320 SNP, exon 7	C	C/T	C/T	C	C	C	C	C	C
58	11381 SNP, exon 7	G	G	A/G	G	G	G	A	G	G
59	11612 SNP, intron 7	A	A	A/G	A	A	A	A	A	A
60	11630 SNP, intron 7	C	C	C/T	C	C	C	C	C	C
61	11632 SNP, intron 7	G	G	G	G	G	G	G	A/G	G
62	11647 SNP, intron 7	C	C	C	C	C	C	C	C/T	C
63	11656 SNP, intron 7	G	G	A/G	A/G	G	G	A	G	G
64	11670 SNP, intron 7	A	A	A	A	A	A	A	A/G	A
65	11707 SNP, intron 7	A	A	A/G	A/G	A	A	A	A	A
66	11725 SNP, exon 8	G	G	G	G	G	A/G	G	G	G

* polymorphic site shared by accessions with ara-del.

Table 5 The number of wild emmer accessions used in this study and typed by Özkan et al. (2011)

Type of wild emmer	Ib	Ic	II	III	IV	V	total
Type AI	6	11	10	12	8	0	47
Type AII non-del	0	0	5	0	9	0	14
Type AII dic-del	0	0	0	0	1	4	5
total	6	11	15	12	18	4	66

Fig. 1

Fig. 2

0.002

Fig. 3

(b)

Fig. 4

AccessionNo.	Accession No.	Taxon	Country	Sequence	Typed in this stydy	Type by AFLP **
KU-101-2		T. boeoticum	USSR	Yes	AII non-del	-
KU-3601		T. boeoticum	Turkey	Yes	AII non-del	-
KU-3615		T. boeoticum	Turkey	No	AII non-del	-
KU-3630		T. boeoticum	Greece	Yes	AII non-del	-
KU-8026		T. boeoticum	Iraq	No	AII non-del	-
KU-8120		T. boeoticum	Iraq	Yes	AII non-del	-
KU-8128		T. boeoticum	Iraq	No	AII non-del	-
KU-8139		T. boeoticum	Iraq	No	AII non-del	-
KU-8223		T. boeoticum	Iraq	No	AII non-del	-
KU-8279		T. boeoticum	Turkey	Yes	AII non-del	-
KU-8307		T. boeoticum	Turkey	No	AII non-del	-
KU-8327		T. boeoticum	Turkey	No	AII non-del	-
KU-8358		T. boeoticum	Turkey	No	AII non-del	-
KU-8392		T. boeoticum	Iran	Yes	AII non-del	-
KU-8405		T. boeoticum	Iran	No	AII non-del	-
KU-10603		T. boeoticum	Turkey	No	AII non-del	-
KU-10653		T. boeoticum	Turkey	No	AII non-del	-
KU-10681		T. boeoticum	Turkey	No	AII non-del	-
KU-10773		T. boeoticum	Turkey	No	AII non-del	-
KU-10774		T. boeoticum	Turkey	No	AII non-del	-
KU-10834		T. boeoticum	Turkey	No	AII non-del	-
KU-10901		T. boeoticum	Turkey	No	AII non-del	-
KU-10908		T. boeoticum	Turkey	No	AII non-del	-
KU-104-2		T. monococcum	-	No	AII non-del	-
KU-104-4		T. monococcum	-	No	AII non-del	-
KU-1001		T. monococcum	Spain	Yes	AII non-del	-
KU-1404		T. monococcum	Romania	Yes	AII non-del	-
KU-3636		T. monococcum	Turkey	Yes	AII non-del	-
KU-199-1		T. urartu	USSR	Yes	AII non-del	-
KU-199-2		T. urartu	USSR	Yes	AII non-del	-
KU-199-3		T. urartu	USSR	Yes	AII non-del	-
KU-199-4		T. urartu	USSR	Yes	AII non-del	-
KU-199-5		T. urartu	Turkey	Yes	AII non-del	-
KU-199-6		T. urartu	Lebanon	Yes	AII non-del	-
KU-199-7		T. urartu	Lebanon	Yes	AII non-del	-
KU-199-8		T. urartu	Lebanon	Yes	AII non-del	-
KU-199-9		T. urartu	Iran	Yes	AII non-del	-
KU-199-10		T. urartu	Iran	Yes	AII non-del	-
KU-199-11		T. urartu	Turkey	Yes	AII non-del	-
KU-199-12		T. urartu	Turkey	Yes	AII non-del	-
KU-199-13		T. urartu	Turkey	Yes	AII non-del	-
KU-199-14		T. urartu	Turkey	Yes	AII non-del	-
KU-199-15		T. urartu	Lebanon	Yes	AII non-del	-
KU-199-16		T. urartu	Lebanon	Yes	AII non-del	-
KU-13336	PI 428200	T. urartu	Turkey	Yes	AII non-del	-
KU-13337	PI 428201	T. urartu	Turkey	Yes	AII non-del	-
KU-13338	PI 428206	T. urartu	Turkey	Yes	AII non-del	-
KU-13339	PI 428213	T. urartu	Turkey	Yes	AII non-del	-
KU-13340	PI 428214	T. urartu	Turkey	Yes	AII non-del	-
KU-13341	PI 428219	T. urartu	Turkey	Yes	AII non-del	-
KU-13342	PI 428220	T. urartu	Turkey	Yes	AII non-del	-
KU-13343	PI 428221	T. urartu	Turkey	Yes	AII non-del	-
KU-13344	PI 428221	T. urartu	Turkey	Yes	AII non-del	-
KU-13345	PI 428223	T. urartu	Turkey	Yes	AII non-del	-
KU-13346	PI 428223	T. urartu	Turkey	Yes	AII non-del	-
KU-13347	PI 428227	T. urartu	Turkey	Yes	AII non-del	-
KU-13348	PI 428245	T. urartu	Turkey	Yes	AII non-del	-
KU-13349	PI 428250	T. urartu	Turkey	Yes	AII non-del	-
KU-13350	PI 428252	T. urartu	Turkey	Yes	AII non-del	-
KU-13351	PI 428291	T. urartu	Lebanon	Yes	AII non-del	-
KU-13352	PI 428291	T. urartu	Lebanon	Yes	AII non-del	-
KU-13353	PI 428293	T. urartu	Lebanon	Yes	AII non-del	-

KU-13354	PI 428311	T. urartu	Lebanon	Yes	AII non-del	-
KU-13355	PI 428318	T. urartu	Turkey	Yes	AII non-del	-
KU-13356	PI 428319	T. urartu	Lebanon	Yes	AII non-del	-
KU-108-1		T. dicoccoides	-	No	AII dic-del	-
KU-108-2		T. dicoccoides	Syria	Yes*	AII non-del	IV
KU-108-3		T. dicoccoides	Syria	No	AI	IV
KU-108-4		T. dicoccoides	-	No	AI	-
KU-108-5		T. dicoccoides	-	Yes	AI	-
KU-109		T. dicoccoides	Israel	No	AI	-
KU-110		T. dicoccoides	Israel	No	AI	-
KU-195		T. dicoccoides	Israel	No	AII non-del	-
KU-198		T. dicoccoides	Israel	Yes*	AII non-del	-
KU-1921		T. dicoccoides	Turkey	Yes*	AI	II or III
KU-1945		T. dicoccoides	Turkey	Yes*	AII non-del	II
KU-1947		T. dicoccoides	Turkey	No	AI	II
KU-1948		T. dicoccoides	Turkey	No	AI	II
KU-1949		T. dicoccoides	Turkey	No	AII non-del	II
KU-1951		T. dicoccoides	Turkey	No	AI	II
KU-1952		T. dicoccoides	Turkey	No	AI	II
KU-1953		T. dicoccoides	Turkey	No	AI	II
KU-1955		T. dicoccoides	Turkey	Yes*	AII non-del	II
KU-1959A		T. dicoccoides	Turkey	No	AI	II
KU-1959B		T. dicoccoides	Turkey	No	AI	II
KU-1972B		T. dicoccoides	Turkey	Yes*	AI	II
KU-1974		T. dicoccoides	Turkey	No	AI	II
KU-1976B		T. dicoccoides	Turkey	Yes*	AII non-del	II
KU-1978B		T. dicoccoides	Turkey	No	AI	II
KU-1991		T. dicoccoides	Turkey	No	AII non-del	II
KU-8536		T. dicoccoides	Iraq	Yes*	AI	Ic
KU-8537		T. dicoccoides	Iraq	No	AI	Ic
KU-8538		T. dicoccoides	Iraq	No	AI	Ic
KU-8539		T. dicoccoides	Iraq	No	AI	Ic
KU-8541		T. dicoccoides	Iraq	No	AI	Ic
KU-8736A		T. dicoccoides	Iraq	No	AI	Ic
KU-8736B		T. dicoccoides	Iraq	No	AI	Ic
KU-8737		T. dicoccoides	Iraq	Yes*	AI	Ic
KU-8804		T. dicoccoides	Iraq	No	AI	III
KU-8805		T. dicoccoides	Iraq	No	AI	III
KU-8806		T. dicoccoides	Iraq	No	AI	III
KU-8808		T. dicoccoides	Iraq	No	AI	III
KU-8809		T. dicoccoides	Iraq	No	AI	III
KU-8810		T. dicoccoides	Iraq	Yes*	AI	III
KU-8811		T. dicoccoides	Iraq	No	AI	III
KU-8812		T. dicoccoides	Iraq	No	AI	III
KU-8815		T. dicoccoides	Iraq	No	AI	III
KU-8816A		T. dicoccoides	Iraq	No	AI	III
KU-8816B		T. dicoccoides	Iraq	No	AI	III
KU-8817		T. dicoccoides	Iraq	No	AI	III
KU-8821A		T. dicoccoides	Iraq	Yes*	AI	lb
KU-8821C		T. dicoccoides	Iraq	No	AI	Ib
KU-8915A		T. dicoccoides	Turkey	Yes*	AI	lb
KU-8915B		T. dicoccoides	Turkey	No	AI	Ib
KU-8935		T. dicoccoides	Turkey	Yes*	AI	Ib
KU-8937B		T. dicoccoides	Turkey	No	AI	Ib
KU-8941		T. dicoccoides	Iran	Yes*	AI	Ic
KU-8942		T. dicoccoides	Iran	Yes*	AI	Ic
KU-8943		T. dicoccoides	Iran	Yes*	AI	Ic
KU-13441		T. dicoccoides	Israel	No	AII dic-del	-
KU-13442		T. dicoccoides	Israel	No	AII dic-del	-
KU-13444		T. dicoccoides	Israel	No	AII dic-del	-
KU-13445		T. dicoccoides	Israel	No	AII dic-del	-
KU-13446		T. dicoccoides	Israel	No	AII dic-del	-
KU-13447		T. dicoccoides	Israel	No	AI	-

KU-13448	T. dicoccoides	Israel	No	AI	
KU-13449	T. dicoccoides	Israel	No	AII non-del	
KU-13451	T. dicoccoides	Israel	No	AII non-del	
KU-13452	T. dicoccoides	Israel	No	AII non-del	-
KU-13453	T. dicoccoides	Israel	No	AII non-del	-
KU-13454	T. dicoccoides	Israel	No	AI	-
KU-14401	T. dicoccoides	Israel	No	AI	IV
KU-14402	T. dicoccoides	Israel	No	AI	-
KU-14403	T. dicoccoides	Israel	No	AII non-del	IV
KU-14404	T. dicoccoides	Israel	Yes*	AI	-
KU-14405	T. dicoccoides	Israel	No	AII non-del	-
KU-14406	T. dicoccoides	Israel	No	AII non-del	-
KU-14407	T. dicoccoides	Israel	No	AII non-del	-
KU-14408	T. dicoccoides	Israel	No	AI	-
KU-14409	T. dicoccoides	Israel	No	AI	-
KU-14410	T. dicoccoides	Israel	No	AI	-
KU-14411	T. dicoccoides	Israel	No	AII non-del	-
KU-14412	T. dicoccoides	Israel	No	AI	-
KU-14413	T. dicoccoides	Israel	No	AI	-
KU-14414	T. dicoccoides	Israel	No	AI	-
KU-14415	T. dicoccoides	Israel	No	AI	-
KU-14417	T. dicoccoides	Israel	Yes	AII dic-del	V
KU-14418	T. dicoccoides	Israel	No	AII dic-del	-
KU-14419	T. dicoccoides	Israel	No	AII dic-del	V
KU-14420	T. dicoccoides	Israel	Yes	AII dic-del	-
KU-14421	T. dicoccoides	Israel	No	AII dic-del	-
KU-14422	T. dicoccoides	Israel	No	AII dic-del	-
KU-14423	T. dicoccoides	Israel	Yes	AII dic-del	-
KU-14424	T. dicoccoides	Israel	No	AII dic-del	-
KU-14425	T. dicoccoides	Israel	No	AII dic-del	-
KU-14426	T. dicoccoides	Israel	No	AII dic-del	-
KU-14427	T. dicoccoides	Israel	Yes	AII non-del	IV
KU-14428	T. dicoccoides	Israel	No	AII non-del	-
KU-14429	T. dicoccoides	Israel	No	AII non-del	IV
KU-14430	T. dicoccoides	Israel	No	AII non-del	-
KU-14431	T. dicoccoides	Israel	No	AI	-
KU-14432	T. dicoccoides	Israel	No	AII non-del	-
KU-14434	T. dicoccoides	Israel	No	AII non-del	-
KU-14435	T. dicoccoides	Israel	No	AII non-del	-
KU-14436	T. dicoccoides	Israel	No	AII non-del	-
KU-14437	T. dicoccoides	Israel	No	AII non-del	-
KU-14438	T. dicoccoides	Israel	No	AII non-del	-
KU-14439	T. dicoccoides	Israel	No	AII non-del	-
KU-14440	T. dicoccoides	Israel	No	AII non-del	-
KU-14441	T. dicoccoides	Israel	No	AII non-del	-
KU-14442	T. dicoccoides	Israel	No	AI	-
KU-14443	T. dicoccoides	Israel	No	AI	IV
KU-14444	T. dicoccoides	Israel	No	AII non-del	-
KU-14445	T. dicoccoides	Israel	No	AI	IV
KU-14446	T. dicoccoides	Israel	No	AII non-del	-
KU-14447	T. dicoccoides	Israel	No	AII non-del	-
KU-14448	T. dicoccoides	Israel	No	AII non-del	-
KU-14449	T. dicoccoides	Israel	No	AII non-del	-
KU-14450	T. dicoccoides	Israel	Yes*	AI	-
KU-14451	T. dicoccoides	Israel	No	AI	IV
KU-14452	T. dicoccoides	Israel	No	AI	-
KU-14453	T. dicoccoides	Israel	No	AI	IV
KU-14455	T. dicoccoides	Israel	No	AI	-
KU-14456	T. dicoccoides	Israel	No	AI	-
KU-14457	T. dicoccoides	Israel	No	AI	-
KU-14458	T. dicoccoides	Israel	No	AI	-
KU-14459	T. dicoccoides	Israel	No	AI	-
KU-14460	T. dicoccoides	Israel	No	AI	-

KU-14461	T. dicoccoides	Israel	No	AI	-
KU-14462	T. dicoccoides	Israel	No	AI	IV
KU-14464	T. dicoccoides	Israel	No	AI	IV
KU-14465	T. dicoccoides	Israel	No	AI	-
KU-14468	T. dicoccoides	Israel	Yes	AI	-
KU-14469	T. dicoccoides	Israel	No	AI	-
KU-14470	T. dicoccoides	Israel	No	AI	-
KU-14471	T. dicoccoides	Israel	No	AII non-del	-
KU-14472	T. dicoccoides	Israel	No	AII non-del	-
KU-14474	T. dicoccoides	Israel	No	AII dic-del	V
KU-14475	T. dicoccoides	Israel	No	AII dic-del	-
KU-14476	T. dicoccoides	Israel	No	AII dic-del	V
KU-14477	T. dicoccoides	Israel	No	AII dic-del	-
KU-14478	T. dicoccoides	Israel	No	AII dic-del	-
KU-14480	T. dicoccoides	Israel	No	AI	-
KU-14481	T. dicoccoides	Israel	No	AII dic-del	-
KU-14482	T. dicoccoides	Israel	No	AII dic-del	-
KU-14483	T. dicoccoides	Israel	No	AI	-
KU-14484	T. dicoccoides	Israel	No	AII dic-del	-
KU-14485	T. dicoccoides	Israel	No	AII dic-del	-
KU-14486	T. dicoccoides	Israel	No	AII dic-del	-
KU-14487	T. dicoccoides	Israel	No	AII dic-del	-
KU-14488	T. dicoccoides	Israel	No	AII dic-del	-
KU-14489	T. dicoccoides	Israel	No	AII dic-del	-
KU-14490	T. dicoccoides	Israel	No	AII non-del	IV
KU-14491	T. dicoccoides	Israel	No	AII non-del	-
KU-14492	T. dicoccoides	Israel	No	AII non-del	IV
KU-14493	T. dicoccoides	Israel	Yes*	AII non-del	-
KU-14494	T. dicoccoides	Israel	No	AII non-del	-
KU-14495	T. dicoccoides	Israel	No	AII non-del	-
KU-14496	T. dicoccoides	Israel	No	AII non-del	-
KU-14497	T. dicoccoides	Israel	No	AII non-del	-
KU-14498	T. dicoccoides	Israel	No	AII non-del	-
KU-14499	T. dicoccoides	Israel	No	AII non-del	-
KU-14500	T. dicoccoides	Israel	No	AII non-del	-
KU-14501	T. dicoccoides	Israel	No	AII non-del	-
KU-14503	T. dicoccoides	Israel	No	AII non-del	-
KU-14504	T. dicoccoides	Israel	No	AII non-del	-
KU-14505	T. dicoccoides	Israel	No	AII non-del	IV
KU-14507	T. dicoccoides	Israel	No	AII dic-del	IV
KU-14509	T. dicoccoides	Israel	No	AII non-del	-
KU-14510	T. dicoccoides	Israel	No	AII non-del	-
KU-14511	T. dicoccoides	Israel	No	AII non-del	-
KU-14512	T. dicoccoides	Israel	No	AII non-del	-
KU-14514	T. dicoccoides	Israel	No	AII non-del	-
KU-14516	T. dicoccoides	Israel	Yes	AII dic-del	-
KU-14517	T. dicoccoides	Israel	No	AII non-del	IV
KU-14518	T. dicoccoides	Israel	No	AII non-del	-
KU-14519	T. dicoccoides	Israel	No	AII non-del	IV
KU-14520	T. dicoccoides	Israel	No	AII non-del	-
KU-14521	T. dicoccoides	Israel	No	AII non-del	-
KU-14522	T. dicoccoides	Israel	No	AII non-del	-
KU-14523	T. dicoccoides	Israel	No	AII non-del	-
KU-14524	T. dicoccoides	Israel	No	AII non-del	-
KU-14525	T. dicoccoides	Israel	No	AII non-del	-
KU-14526	T. dicoccoides	Israel	No	AII non-del	-
KU-14527	T. dicoccoides	Israel	No	AII non-del	-
KU-14528	T. dicoccoides	Israel	No	AII non-del	-
KU-14529	T. dicoccoides	Israel	No	AII non-del	-
KU-14530	T. dicoccoides	Israel	No	AII dic-del	-
KU-14531	T. dicoccoides	Israel	Yes	AII ara-del	-
KU-14532	T. dicoccoides	Israel	No	AI	-
KU-112	T. dicoccon	China (India)	Yes*	AII non-del	-

KU-491	T. dicoccon	India	Yes	AII non-del	-
KU-492	T. dicoccon	India	Yes	AI	
KU-493	T. dicoccon	India	No	AII non-del	
KU-494	T. dicoccon	India	No	AII non-del	-
KU-495	T. dicoccon	India	Yes*	AII non-del	
KU-496	T. dicoccon	India	No	AII non-del	-
KU-1023	T. dicoccon	Spain	Yes*	AI	
KU-1056	T. dicoccon	Spain	No	AI	
KU-1058	T. dicoccon	Spain	No	AI	
KU-1061	T. dicoccon	Spain	No	AI	
KU-1063a	T. dicoccon	Spain	No	AI	
KU-1065	T. dicoccon	Spain	No	AI	
KU-1071	T. dicoccon	Spain	Yes*	AI	
KU-1102	T. dicoccon	Spain	No	AI	
KU-1105	T. dicoccon	Spain	No	AI	
KU-1108	T. dicoccon	Spain	No	AI	
KU-1109	T. dicoccon	Spain	No	AI	
KU-1113	T. dicoccon	Spain	Yes*	AI	
KU-1123	T. dicoccon	Spain	No	AI	
KU-1533	T. dicoccon	USSR	Yes	AII ara-del	-
KU-1538	T. dicoccon	USSR	Yes	AII ara-del	
KU-1564	T. dicoccon	USSR	No	AI	-
KU-1582	T. dicoccon	USSR	No	AI	-
KU-3371	T. dicoccon	Iran	Yes	AII ara-del	-
KU-3722	T. dicoccon	Turkey	Yes*	AII non-del	-
KU-3723	T. dicoccon	Turkey	No	AII non-del	-
KU-4541	T. dicoccon	Iran	No	AI	-
KU-7301	T. dicoccon	Ethiopia	Yes*	AII non-del	
KU-7303	T. dicoccon	Ethiopia	No	AII non-del	-
KU-7305	T. dicoccon	Ethiopia	No	AII non-del	-
KU-7307	T. dicoccon	Ethiopia	No	AII non-del	-
KU-7309	T. dicoccon	Ethiopia	No	AII non-del	
KU-7311	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9001	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9003	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9005	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9007	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9011	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9013	T. dicoccon	Ethiopia	Yes*	AII non-del	-
KU-9015	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9017	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9021	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9023	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9025	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9027	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9029	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9031	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9763	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9765	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9767	T. dicoccon	Ethiopia	Yes*	AII non-del	-
KU-9769	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9771	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9773	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9777	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9779	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9781	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9783	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9785	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9787	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9789	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9791	T. dicoccon	Ethiopia	No	AII non-del	-
KU-9793	T. dicoccon	Ethiopia	No	AII non-del	-
KU-10490	T. dicoccon	Iran	Yes*	AI	-

KU-10492	T. dicoccon	Iran	No	AI	
KU-10494	T. dicoccon	Iran	Yes*	AI	
KU-10497	T. dicoccon	Iran	No	AI	
KU-10500	T. dicoccon	Iran	Yes*	AI	
KU-10501	T. dicoccon	Iran	No	AI	
KU-10503	T. dicoccon	Iran	No	AI	
CItr 7686	T. dicoccon	Russia	Yes*	AI	
CItr 12213	T. dicoccon	India	Yes*	AII non-del	
PI 94663	T. dicoccon	Germany	Yes*	AII ara-del	
PI 11650	T. dicoccon	France	Yes*	AII non-del	
PI 56234	T. dicoccon	Portugal	Yes*	AI	
PI 57536	T. dicoccon	Ukraine	Yes*	AII non-del	
PI 94618	T. dicoccon	Belarus	Yes*	AI	
PI 94633	T. dicoccon	Morocco	Yes*	AII ara-del	
PI 94664	T. dicoccon	Saudi Arabia	Yes*	AII non-del	
PI 94671	T. dicoccon	Afghanistan	Yes*	AII non-del	
PI 94682	T. dicoccon	Greece	Yes*	AI	
PI 182743	T. dicoccon	Turkey	Yes*	AII non-del	
PI 254177	T. dicoccon	Iran	Yes*	AII ara-del	
PI 254189	T. dicoccon	Georgia	Yes*	AII ara-del	
PI 272533	T. dicoccon	Hungary	Yes*	AII ara-del	
PI 277677	T. dicoccon	Spain	Yes*	AI	
PI 286061	T. dicoccon	Poland	Yes*	AI	-
PI 306534	T. dicoccon	Romania	Yes*	AII non-del	
PI 352361	T. dicoccon	Italy	Yes*	AI	
PI 352367	T. dicoccon	Ancient Palestine	Yes*	AII non-del	
PI 352369	T. dicoccon	Czech Republic	Yes*	AI	
PI 355488	T. dicoccon	Italy	Yes*	AI	
PI 355496	T. dicoccon	Ancient Palestine	Yes*	AII non-del	-
PI 355497	T. dicoccon	USSR	Yes*	AII non-del	-
PI 355498	T. dicoccon	Syria	Yes*	AII non-del	-
PI 355502	T. dicoccon	USSR	Yes*	AII non-del	-
PI 361833	T. dicoccon	Denmark	Yes*	AII non-del	-
PI 377658	T. dicoccon	Former Yugoslavia	Yes*	AI	-
PI 377672	T. dicoccon	Former Yugoslavia	Yes*	AI	-
PI 434993	T. dicoccon	Montenegro	Yes*	AI	-
PI 434995	T. dicoccon	Bosnia and Herzegovina	Yes*	AI	-
PI 470739	T. dicoccon	Turkey	Yes*	AI	
PI 532302	T. dicoccon	Oman	Yes*	AII non-del	-
KU-190-2	T. karamyschevii	USSR	Yes	AI	
KU-191	T. karamyschevii	-	Yes	AI	-
KU-145	T. ispahanicum	Iran	Yes	AII ara-del	
KU-4580	T. ispahanicum	Iran	Yes	AII ara-del	-
KU-128-2	T. durum	China	No	AI	-
KU-1156	T. durum	Turkey	No	AI	-
KU-1354	T. durum	Greece	Yes*	AI	-
KU-3654	T. durum	Egypt	Yes*	AI	-
KU-3658	T. durum	Egypt	Yes*	AI	-
KU-3661	T. durum	Jordan	Yes*	AI	-
KU-3673	T. durum	Jordan	Yes*	AI	-
KU-3674	T. durum	Jordan	Yes*	AI	-
KU-3675	T. durum	Lebanon	Yes*	AI	-
KU-3678	T. durum	Syria	No	AI	-
KU-3680	T. durum	Syria	No	AI	-
KU-3685	T. durum	Syria	No	AI	-
KU-3688	T. durum	Turkey	No	AI	-
KU-3697	T. durum	Turkey	No	AI	-
KU-3706	T. durum	Turkey	No	AI	-
KU-3714	T. durum	Turkey	No	AI	-
KU-3738	T. durum	Italy	Yes*	AI	-
KU-7342	T. durum	Afghanistan	No	AI	-
KU-7371	T. durum	Ethiopia	Yes*	AI	-
KU-9169	T. durum	Ethiopia	Yes*	AI	-

KU-9246	T. durum	Ethiopia	Yes*	AI	
KU-9339	T. durum	Ethiopia	Yes*	AI	-
KU-9415	T. durum	Ethiopia	Yes*	AI	
KU-9695	T. durum	Ethiopia	Yes*	AI	
KU-9745	T. durum	Ethiopia	Yes*	AI	
KU-10010	T. durum	Iraq	No	AI	
KU-10042	T. durum	Iraq	Yes*	AI	
KU-10077	T. durum	Iraq	Yes*	AI	
KU-10090	T. durum	Iraq	No	AI	
KU-10169	T. durum	Iraq	No	AI	-
KU-10466	T. durum	Iran	Yes*	AI	
KU-10508	T. durum	Iran	No	AI	-
KU-10513	T. durum	Iran	Yes*	AI	-
KU-11342	T. durum	Afghanistan	No	AI	-
KU-11731	T. durum	Greece	Yes*	AI	
KU-11811	T. durum	Greece	Yes*	AI	-
KU-11820	T. durum	Greece	Yes*	AI	-
KU-11836	T. durum	Greece	No	AI	-
CItr 1471	T. durum	Algeria	Yes*	AI	-
CItr 1515	T. durum	Russian Federation	No	AI	-
CItr 2468	T. durum	Germany	No	AI	-
CItr 6870	T. durum	Tunisia	Yes*	AI	-
CItr 6879	T. durum	Morocco	Yes*	AI	-
CItr 6888	T. durum	Italy	Yes*	AI	-
CItr 14802	T. durum	Eritrea	Yes*	AI	-
CItr 14810	T. durum	Eritrea	No	AI	-
CItr 15065	T. durum	Afghanistan	No	AI	-
CItr 15450	T. durum	Tunisia	Yes*	AI	-
PI 4789	T. durum	Spain	Yes*	AI	-
PI 5380	T. durum	Algeria	No	AII non-del	-
PI 5639	T. durum	Kazakhstan	No	AI	-
PI 6020	T. durum	Ukraine	No	AI	-
PI 8898	T. durum	India	Yes*	AI	-
PI 24491	T. durum	Uzbekistan	No	AI	
PI 40938	T. durum	Pakistan	No	AI	-
PI 40939	T. durum	Pakistan	No	AI	-
PI 40940	T. durum	Pakistan	Yes*	AI	-
PI 41012	T. durum	India	No	AI	-
PI 47889	T. durum	Spain	Yes*	AI	-
PI 52503	T. durum	Israel	Yes*	AI	
PI 54432	T. durum	Libya	Yes*	AI	-
PI 57189	T. durum	Azerbaijan	Yes*	AI	-
PI 60727	T. durum	Egypt	Yes*	AI	-
PI 60734	T. durum	Egypt	No	AI	-
PI 60741	T. durum	Egypt	Yes*	AI	-
PI 61103	T. durum	Russian Federation	No	AI	-
PI 61111	T. durum	Georgia	No	AI	-
PI 61114	T. durum	Iran	No	AI	-
PI 61123	T. durum	Kazakhstan	No	AI	-
PI 61127	T. durum	Kyrgyzstan	No	AI	-
PI 61185	T. durum	Moldova	Yes*	AI	-
PI 73366	T. durum	Azerbaijan	No	AI	-
PI 78810	T. durum	Georgia	No	AI	-
PI 94684	T. durum	Armenia	Yes*	AI	-
PI 94701	T. durum	Ancient Palestine	No	AI	-
PI 113953	T. durum	Jordan	No	AI	-
PI 115515	T. durum	India	Yes*	AI	-
PI 134442	T. durum	India	No	AI	-
PI 134958	T. durum	Portugal	Yes*	AI	-
PI 136573	T. durum	Spain	Yes*	AI	-
PI 172544	T. durum	Turkey	Yes*	AI	-
PI 174628	T. durum	Italy	Yes*	AI	-
PI 174662	T. durum	France	No	AI	

PI 182667	T. durum	Lebanon	Yes*	AI	-
PI 182669	T. durum	Lebanon	Yes*	AI	
PI 183909	T. durum	Saudi Arabia	Yes*	AI	
PI 184170	T. durum	Bosnia and Herzegovina	No	AII non-del	-
PI 185233	T. durum	United Kingdom	Yes*	AI	
PI 191103	T. durum	Spain	Yes*	AI	
PI 191194	T. durum	Spain	No	AI	-
PI 191411	T. durum	Morocco	No	AI	-
PI 192655	T. durum	Morocco	No	AI	-
PI 192843	T. durum	Portugal	Yes*	AI	-
PI 204050	T. durum	Portugal	No	AII non-del	-
PI 210954	T. durum	Cyprus	Yes*	AI	-
PI 210960	T. durum	Cyprus	No	AI	-
PI 221409	T. durum	Serbia	Yes*	AII non-del	-
PI 234382	T. durum	Jordan	No	AI	-
PI 237630	T. durum	Cyprus	Yes*	AI	
PI 244061	T. durum	Yemen	Yes*	GS-105	-
PI 261823	T. durum	Saudi Arabia	No	AI	
PI 264959	T. durum	Croatia	No	AI	-
PI 265010	T. durum	Bosnia and Herzegovina	No	AI	
PI 274668	T. durum	Poland	Yes*	AI	-
PI 277126	T. durum	Bulgaria	Yes*	AI	
PI 278376	T. durum	Malta	Yes*	AI	-
PI 290495	T. durum	Hungary	Yes*	AI	
PI 290503	T. durum	Hungary	No	AI	-
PI 292031	T. durum	Israel	Yes*	AI	
PI 295010	T. durum	Bulgaria	No	AI	-
PI 345442	T. durum	Croatia	No	AII non-del	-
PI 347142	T. durum	Afghanistan	No	AI	-
PI 352385	T. durum	Switzerland	Yes*	AI	-
PI 352459	T. durum	France	Yes*	AI	-
PI 361746	T. durum	Denmark	Yes*	AI	-
PI 367195	T. durum	Afghanistan	No	AI	-
PI 374658	T. durum	Macedonia	Yes*	AII non-del	-
PI 376495	T. durum	Romania	Yes*	AI	-
PI 382046	T. durum	Iran	No	AII non-del	-
PI 405906	T. durum	Macedonia	Yes*	AII non-del	-
PI 429320	T. durum	Yemen	No	AI	-
PI 435025	T. durum	Montenegro	Yes*	AII non-del	-
PI 470763	T. durum	Italy	Yes*	AI	-
PI 532281	T. durum	Oman	Yes*	AI	-
PI 532291	T. durum	Oman	Yes*	AI	-
PI 654182	T. durum	Tajikistan	No	AI	-
KU-9202	T. turgidum	Ethiopia	Yes*	AI	-
KU-9283	T. turgidum	Ethiopia	Yes*	AI	-
KU-9302	T. turgidum	Ethiopia	Yes*	AI	-
KU-9416	T. turgidum	Ethiopia	Yes*	AI	-
KU-9607	T. turgidum	Ethiopia	Yes*	AI	-
KU-9889	T. turgidum	Ethiopia	Yes*	AI	-
PI 57661	T. turgidum	Egypt	No	AI	-
PI 94689	T. turgidum	Armenia	No	AI	-
PI 134946	T. turgidum	Portugal	No	AI	-
PI 134951	T. turgidum	Portugal	No	AI	-
PI 166496	T. turgidum	Turkey	No	AII non-del	-
PI 167867	T. turgidum	Turkey	No	AI	-
PI 191104	T. turgidum	Spain	No	AII non-del	-
PI 208912	T. turgidum	Iraq	No	AI	-
PI 347134	T. turgidum	Afghanistan	No	AI	-
PI 347137	T. turgidum	Afghanistan	No	AI	-
PI 349060	T. turgidum	Azerbaijan	No	AI	-
PI 372447	T. turgidum	Cyprus	No	AI	-
PI 372450	T. turgidum	Cyprus	No	AI	-
PI 374618	T. turgidum	Macedonia	No	AII non-del	-

PI 374655	T. turgidum	Macedonia	No	AI	
PI 542679	T. turgidum	Algeria	No	AII non-del	
PI 623927	T. turgidum	Iran	No	AII non-del	
KU-7345	T. polonicum	Ethiopia	Yes*	AI	-
KU-7346	T. polonicum	Afghanistan	No	AI	
KU-9895	T. polonicum	Ethiopia	Yes*	AI	-
PI 56261	T. polonicum	Portugal	No	AI	
PI 167622	T. polonicum	Turkey	No	AI	-
PI 208911	T. polonicum	Iraq	No	AI	
PI 223171	T. polonicum	Jordan	No	AI	-
PI 225334	T. polonicum	Iran	No	AI	
PI 254214	T. polonicum	India	No	AI	-
PI 290512	T. polonicum	Portugal	No	AI	
PI 352488	T. polonicum	Italy	No	AI	-
KU-3724	T. carthlicum	Turkey	No	AI	-
PI 61102	T. carthlicum	Georgia	Yes*	AI	-
PI 70738	T. carthlicum	Iraq	Yes*	AI	-
PI 94748	T. carthlicum	Georgia	Yes*	AI	-
PI 182471	T. carthlicum	Turkey	No	AI	-
PI 283887	T. carthlicum	Iran	Yes*	AI	-
PI 470730	T. carthlicum	Turkey	Yes*	AI	-
PI 585017	T. carthlicum	Georgia	No	AI	-
KU-3368	T. turanicum	Iran	No	AI	-
PI 10391	T. turanicum	Egypt	Yes*	AI	-
PI 113392	T. turanicum	Iran	Yes*	AI	-
PI 113393	T. turanicum	Iraq	Yes*	AI	-
PI 124494	T. turanicum	India	Yes*	AI	-
PI 127106	T. turanicum	Afghanistan	Yes*	AI	-
PI 166308	T. turanicum	Turkey	Yes*	AI	-
PI 166450	T. turanicum	Turkey	No	AI	-
PI 337643	T. turanicum	Afghanistan	No	AI	-
PI 352514	T. turanicum	Azerbaijan	Yes*	AI	-
PI 537992	T. turanicum	Turkey	No	AI	-
PI 624893	T. turanicum	Iran	No	AI	-
PI 625187	T. turanicum	Iran	No	AI	-
KU-9049	T. aethiopicum	Ethiopia	Yes*	AI	-
KU-9083	T. aethiopicum	Ethiopia	No	AI	-
KU-9097	T. aethiopicum	Ethipoia	No	AI	-
KU-9133	T. aethiopicum	Ethiopia	No	AI	-
KU-9141	T. aethiopicum	Ethiopia	No	AI	-
KU-9228	T. aethiopicum	Ethiopia	Yes*	AI	-
KU-9269	T. aethiopicum	Ethiopia	No	AI	-
KU-9371	T. aethiopicum	Ethiopia	Yes*	AI	-
KU-9393	T. aethiopicum	Ethiopia	No	AI	-
KU-9414	T. aethiopicum	Ethiopia	No	AI	-
KU-9427	T. aethiopicum	Ethiopia	Yes*	AI	-
KU-9525	T. aethiopicum	Ethiopia	No	AI	-
KU-9533	T. aethiopicum	Ethiopia	No	AI	-
KU-9541	T. aethiopicum	Ethiopia	No	AI	-
KU-9545	T. aethiopicum	Ethiopia	No	AI	-
KU-9553	T. aethiopicum	Ethiopia	No	AI	-
KU-9565	T. aethiopicum	Ethiopia	No	AI	-
KU-9573	T. aethiopicum	Ethiopia	Yes*	AI	-
KU-9577	T. aethiopicum	Ethiopia	No	AI	-
KU-9585	T. aethiopicum	Ethiopia	No	AI	-
KU-9601	T. aethiopicum	Ethiopia	No	AI	-
KU-146	T. pyramidare	-	Yes	GS-105	-
KU-9882	T. pyramidare	Ethiopia	Yes	AI	-
KU-1903	T. araraticum	USSR (Armenia)	No	AII ara-del	-
KU-1909A	T. araraticum	USSR (Armenia)	No	AII ara-del	-
KU-1913	T. araraticum	USSR	No	AII ara-del	-
KU-1914	T. araraticum	Armenia	No	AII ara-del	-
KU-1925	T. araraticum	Turkey	No	AII ara-del	

KU-1929	T. araraticum	Turkey	No	AII ara-del	-
KU-1933	T. araraticum	Turkey	No	AII ara-del	-
KU-1943	T. araraticum	Turkey	Yes	AII non-del	-
KU-1958	T. araraticum	Turkey	No	AII ara-del	-
KU-1964	T. araraticum	Turkey	No	AII ara-del	-
KU-1969	T. araraticum	Turkey	No	AII ara-del	-
KU-1978A	T. araraticum	Turkey	No	AII ara-del	-
KU-1982	T. araraticum	Turkey	No	AII ara-del	-
KU-1990	T. araraticum	Turkey	No	AII non-del	-
KU-8454	T. araraticum	Iraq	No	AII ara-del	-
KU-8468	T. araraticum	Iraq	No	AII ara-del	-
KU-8475	T. araraticum	Iraq	No	AII ara-del	-
KU-8479	T. araraticum	Iraq	No	AII ara-del	-
KU-8488	T. araraticum	Iraq	No	AII ara-del	-
KU-8492	T. araraticum	Iraq	No	AII ara-del	-
KU-8498	T. araraticum	Iraq	No	AII ara-del	-
KU-8506	T. araraticum	Iraq	No	AII ara-del	-
KU-8514	T. araraticum	Iraq	No	AII ara-del	-
KU-8528A	T. araraticum	Iraq	No	AII ara-del	-
KU-8545	T. araraticum	Iraq	No	AII ara-del	-
KU-8549	T. araraticum	Iraq	No	AII ara-del	-
KU-8561	T. araraticum	Iraq	No	AII ara-del	-
KU-8567	T. araraticum	Iraq	No	AII ara-del	-
KU-8593	T. araraticum	Iraq	No	AII ara-del	-
KU-8598	T. araraticum	Iraq	Yes	AII ara-del	-
KU-8602	T. araraticum	Iraq	No	AII ara-del	-
KU-8610	T. araraticum	Iraq	No	AII ara-del	-
KU-8619	T. araraticum	Iraq	No	AII ara-del	-
KU-8625	T. araraticum	Iraq	No	AII ara-del	-
KU-8633	T. araraticum	Iraq	No	AII ara-del	-
KU-8642	T. araraticum	Iraq	No	AII ara-del	-
KU-8656	T. araraticum	Iraq	No	AII ara-del	-
KU-8662	T. araraticum	Iraq	No	AII ara-del	-
KU-8671	T. araraticum	Iraq	No	AII ara-del	-
KU-8675	T. araraticum	Iraq	No	AII ara-del	-
KU-8683	T. araraticum	Iraq	No	AII ara-del	-
KU-8690	T. araraticum	Iraq	No	AII ara-del	-
KU-8697	T. araraticum	Iraq	No	AII ara-del	-
KU-8701	T. araraticum	Iraq	No	AII ara-del	-
KU-8707	T. araraticum	Iraq	No	AII ara-del	-
KU-8711	T. araraticum	Iraq	No	AII ara-del	-
KU-8714B	T. araraticum	Iraq	No	AII ara-del	-
KU-8718B	T. araraticum	Iraq	No	AII ara-del	-
KU-8723	T. araraticum	Iraq	No	AII ara-del	-
KU-8727	T. araraticum	Iraq	No	AII ara-del	-
KU-8733	T. araraticum	Iraq	No	AII ara-del	-
KU-8739	T. araraticum	Iraq	No	AII ara-del	-
KU-8760	T. araraticum	Iraq	No	AII ara-del	-
KU-8774	T. araraticum	Iraq	No	AII ara-del	-
KU-8779	T. araraticum	Iraq	No	AII ara-del	-
KU-8783	T. araraticum	Iraq	No	AII ara-del	-
KU-8789	T. araraticum	Iraq	No	AII ara-del	-
KU-8795	T. araraticum	Iraq	No	AII ara-del	-
KU-8799B	T. araraticum	Iraq	No	AII ara-del	-
KU-8819	T. araraticum	Iraq	No	AII ara-del	-
KU-8824A	T. araraticum	Iraq	No	AII ara-del	-
KU-8827	T. araraticum	Iraq	No	AII ara-del	-
KU-8831	T. araraticum	Iraq	No	AII ara-del	-
KU-8858	T. araraticum	Iraq	No	AII ara-del	-
KU-8863	T. araraticum	Iraq	No	AII ara-del	-
KU-8868	T. araraticum	Iraq	No	AII ara-del	-
KU-8872	T. araraticum	Iraq	No	AII ara-del	-
KU-8876	T. araraticum	Iraq	No	AII ara-del	-

KU-8880	T. araraticum	Iraq	No	AII ara-del	-
KU-8885	T. araraticum	Iraq	No	AII ara-del	-
KU-1937	T. araraticum	Turkey	Yes	AII ara-del	-
KU-1983	T. araraticum	Turkey	Yes	AII ara-del	-
KU-8459	T. araraticum	Iraq	Yes	AII ara-del	-
KU-8620	T. araraticum	Iraq	Yes	AII ara-del	-
KU-8754	T. araraticum	Iraq	Yes	AII ara-del	-
KU-8913	T. araraticum	Turkey	Yes	AII ara-del	-
KU-8944	T. araraticum	Iran	Yes	AII ara-del	-
KU-8948	T. araraticum	Iran	Yes	AII ara-del	-
KU-8889	T. araraticum	Iraq	No	AII ara-del	-
KU-8893	T. araraticum	Iraq	No	AII ara-del	-
KU-8909	T. araraticum	Turkey	No	AII ara-del	-
KU-8914	T. araraticum	Turkey	No	AII ara-del	-
KU-8920	T. araraticum	Turkey	No	AII ara-del	-
KU-8926	T. araraticum	Turkey	No	AII ara-del	-
KU-8934	T. araraticum	Turkey	No	AII ara-del	-
KU-8478	T. araraticum	Iraq	No	AII ara-del	-
KU-8731	T. araraticum	Iraq	No	AII ara-del	-
KU-8802	T. araraticum	Iraq	No	AII ara-del	-
KU-8890	T. araraticum	Iraq	No	AII ara-del	-
KU-8940	T. araraticum	Turkey	No	AII ara-del	-
KU-8947	T. araraticum	Iran	No	AII ara-del	-
IG 46247	T. araraticum	Turkey	No	AII ara-del	-
IG 113296	T. araraticum	Iran	No	AII ara-del	-
IG 116164	T. araraticum	Turkey	No	AII ara-del	-
IG 116165	T. araraticum	Turkey	No	AII ara-del	-
IG 116166	T. araraticum	Turkey	No	AII ara-del	-
IG 116168	T. araraticum	Turkey	No	AII ara-del	-
IG 116169	T. araraticum	Turkey	No	AII ara-del	-
IG 116170	T. araraticum	Turkey	No	AII ara-del	-
IG 116177	T. araraticum	Turkey	Yes	AII non-del	-
IG 117891	T. araraticum	Syria	No	AII ara-del	-
IG 117895	T. araraticum	Syria	No	AII ara-del	-
IG 119456	T. araraticum	Syria	No	AII ara-del	-
KU-107-2	T. timopheevii	-	Yes	AII ara-del	-
KU-107-3	T. timopheevii	-	Yes	AII ara-del	-
KU-107-4	T. timopheevii	USSR	Yes	AII ara-del	-
KU-107-5	T. timopheevii	Turkey	Yes	AII ara-del	-
KU-1819	T. timopheevii	-	Yes	AII ara-del	-

* the sequences date were our prebious study (Takenaka and Kawahara 2012)
** typed by Özkan et al. (2011)

