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Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
Email addresses: alexandrukristaly@yahoo.com; alexandru.kristaly@econ.ubbcluj.ro

Shin-ichi Ohta
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

Email address: sohta@math.kyoto-u.ac.jp
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Abstract

We prove that if a metric measure space satisfies the volume doubling condition and
the Caffarelli-Kohn-Nirenberg inequality with the same exponent n ≥ 3, then it has
exactly the n-dimensional volume growth. As an application, if an n-dimensional
Finsler manifold of non-negative n-Ricci curvature satisfies the Caffarelli-Kohn-
Nirenberg inequality with the sharp constant, then its flag curvature is identically
zero. In the particular case of Berwald spaces, such a space is necessarily isometric
to a Minkowski space.
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1 Introduction and statement of main results

Let a ∈ [0, 1) be a parameter, n ≥ 3 be an integer, and put p = 2n/(n − 2 + 2a). In
the theory of Sobolev inequalities, a central role is played by the famous Caffarelli-Kohn-
Nirenberg inequality (see [4]) which states that(∫

Rn

|u|p

|x|ap
dx

) 1
p

≤ Ka

(∫
Rn

|Du|2 dx

) 1
2

for all u ∈ C∞
0 (Rn),

where

Ka :=

(
1

(n − 2)(n − ap)

) 1
2
(

(2 − ap)Γ((2n − 2ap)/(2 − ap))

nωnΓ2((n − ap)/(2 − ap))

) 2−ap
2n−2ap

(1.1)

is the optimal constant (see Lieb [9]), ωn := πn/2/Γ(n/2+1) being the volume of the unit
ball in Rn. Moreover, a family of extremals is given by

uλ(x) =
(
λ + |x|2−ap

) 2−n
2−ap , λ > 0. (1.2)
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The optimal constant and extremals for a = 0 have been established by Aubin [2] and
Talenti [17] in which case the above inequality reduces to the standard Sobolev inequality;
see Chou and Chu [5] for the most general case. Furthermore, various versions of the
Caffarelli-Kohn-Nirenberg inequality have been treated also on Riemannian manifolds
and Orlicz-Sobolev spaces (see, e.g., do Carmo and Xia [6]).

The main objective of the present paper is to investigate the Caffarelli-Kohn-Nirenberg
inequality in the context of metric measure spaces. As applications, we provide novel
rigidity results for Finsler manifolds by means of the sharp Caffarelli-Kohn-Nirenberg
inequality.

In order to state the main result of the paper, we fix the numbers a, n and p as above.
Let (X, d) be a metric space and µ be a Borel measure on X such that 0 < µ(U) < ∞ for
any nonempty bounded open set U ⊂ X. For some element x0 ∈ X and constant C > 0,
we consider the Caffarelli-Kohn-Nirenberg inequality on (X, d, µ) of the form(∫

X

|u(x)|p

d(x0, x)ap
dµ(x)

) 1
p

≤ C

(∫
X

|Du|(x)2 dµ(x)

) 1
2

for all u ∈ Lip0(X). (CKN)x0
C

Hereafter, Lip0(X) is the space of Lipschitz functions with compact support on X, while

|Du|(x) := lim sup
y→x

|u(y) − u(x)|
d(x, y)

is the local Lipschitz constant of u at x ∈ X. The function x 7−→ |Du|(x) is Borel
measurable for u ∈ Lip0(X). For instance, any bi-Lipschitz deformation of the Euclidean
space Rn satisfies (CKN)x0

C with some C ≥ Ka.
For some fixed elements C0 ≥ 1 and x0 ∈ X, we introduce the following hypotheses

on the behavior of µ:

(VD)n
C0

µ(B(x,R))

µ(B(x, r))
≤ C0

(
R

r

)n

for all x ∈ X and 0 < r < R;

(AR)n
x0

lim inf
r→0

µ(B(x0, r))

µE(Bn(r))
= 1.

As usual, B(x, r) := {y ∈ X : d(x, y) < r}, Bn(r) := {x ∈ Rn : |x| < r}, and µE is the
n-dimensional Lebesgue measure.

The main result of the paper can be stated as follows.

Theorem 1.1 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), x0 ∈ X, C ≥ Ka, and C0 ≥ 1.
Assume that the Caffarelli-Kohn-Nirenberg inequality (CKN)x0

C holds on a proper metric
measure space (X, d, µ), and the hypotheses (VD)n

C0
and (AR)n

x0
are verified. Then, for

every x ∈ X and ρ > 0, we have

µ(B(x, ρ)) ≥ C−1
0 (C−1Ka)

n
1−a µE(Bn(ρ)). (1.3)

In particular, (X, d, µ) has the n-dimensional volume growth

C−1
0 (C−1Ka)

n
1−a ωnρ

n ≤ µ(B(x0, ρ)) ≤ C0ωnρn for all ρ > 0.
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This theorem extends do Carmo and Xia’s result [6, Theorem 1.1] on Riemannian
manifolds of non-negative Ricci curvature in two respects. Theorem 1.1 is concerned with
general metric measure spaces, and assumes only the volume growth condition (VD)n

C0

instead of the curvature bound. Before discussing applications, let us give several remarks
on the hypotheses and the conclusions of the theorem.

Remark 1.2 (a) We remark that (CKN)x0
C ensures that (X, d) is unbounded (equiva-

lently, non-compact). Indeed, if (X, d) is bounded, then u + c with c → ∞ violates the
validity of (CKN)x0

C .
(b) If (X, d, µ) satisfies the volume doubling condition:

µ(B(x, 2r)) ≤ Λµ(B(x, r)) for some Λ ≥ 1 and all x ∈ X, r > 0,

then we easily see that (VD)n
C0

is satisfied (with, e.g., n ≥ log2 Λ and C0 = Λ). Thus
(VD)n

C0
can be interpreted as the volume doubling condition with the explicit exponent

n. One can also regard (VD)n
C0

as a generalization of the Bishop-Gromov volume growth
estimate (of non-negative Ricci curvature).

(c) Note that, on the one hand, (VD)n
C0

implies that the Hausdorff dimension dimH X
of (X, d) is at most n. On the other hand, since lim supr→0 µ(B(x0, r))/µE(Bn(r)) ≤ C0

by (VD)n
C0

and (AR)n
x0

, we have the Ahlfors n-regularity at x0 in the sense that Ω−1rn ≤
µ(B(x0, r)) ≤ Ωrn for some Ω ≥ 1 and small r > 0, thus we have dimH X = n. (See [7] for
the importance of the volume doubling condition and the Ahlfors regularity in analysis
on metric measure spaces.) We also remark that the constant 1 was chosen as the RHS
of (AR)n

x0
merely for simplicity. Since Ωx0 := lim infr→0 µ(B(x0, r))/r

n is positive by
(VD)n

C0
, one can normalize µ so as to satisfy (AR)n

x0
whenever Ωx0 is bounded.

(d) The volume growth estimate (1.3) shows that, for instance, the cylinder Sn−1 ×R
can not support (CKN)x

C for any x and C.
(e) The use of the measure µE as a comparing one to µ in the hypotheses (VD)n

C0
and

(AR)n
x0

comes from the fact that the number Ka is optimal and the functions from (1.2)
are minimizers in the Euclidean Caffarelli-Kohn-Nirenberg inequality. Therefore, if a sharp
Caffarelli-Kohn-Nirenberg inequality holds in a generic metric measure space (X0, d0, µ0),
knowing the optimal constant K0 > 0 and assuming that the class of extremals is formally
the same as (1.2) with d0(x0, x) instead of |x|, then one can prove a similar statement to
Theorem 1.1 by replacing µE and Ka with µ0 and K0, respectively.

We point out that, on (absolutely homogeneous for simplicity) Finsler manifolds with
non-negative n-Ricci curvature, (VD)n

C0
holds with C0 = 1 (see Shen [14], Ohta [10] and

Theorem 3.3 below). In particular, from Theorem 1.1, important rigidity results can be
deduced in the context of Finsler manifolds when the sharp Caffarelli-Kohn-Nirenberg
inequality holds (for precise notions, see Section 3). We state two such results.

Theorem 1.3 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), and (M,F ) be a complete n-
dimensional Finsler manifold. Fix a positive smooth measure µ on M and assume that the
n-Ricci curvature Ricn of (M,F, µ) is non-negative, the sharp Caffarelli-Kohn-Nirenberg
inequality (CKN)x0

Ka
holds for some x0 ∈ M , and in addition limr→0 µ(B(x0, r))/ωnr

n =
1. Then the flag curvature of (M,F ) is identically zero.
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Theorem 1.4 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), and (M,F ) be a complete
n-dimensional Berwald space with non-negative Ricci curvature. If for some x0 ∈ M
and the n-dimensional Hausdorff measure of (M,F ) the sharp Caffarelli-Kohn-Nirenberg
inequality (CKN)x0

Ka
holds, then (M,F ) is isometric to a Minkowski space.

Remark 1.5 (a) By using anisotropic symmetrization arguments, we prove in Section 3
that the sharp Caffarelli-Kohn-Nirenberg inequality (CKN)x0

Ka
holds on every Minkowski

space (Rn, F ) (Proposition 3.4). In this manner, Theorem 1.4 delimits Minkowski spaces
as the optimal geometric framework where (CKN)x0

Ka
holds within the class of Berwald

spaces with non-negative Ricci curvature.
(b) Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces. There-

fore Theorem 1.4 extends do Carmo and Xia’s result [6, Corollary 1.2] in the Riemannian
context. In fact, some constructions in the proof of Theorem 1.1 are inspired from [6].

(c) The assumption n ≥ 3 in Theorem 1.4 is essential not only in the definition of
p = 2n/(n − 2 + 2a) but also for the structure of the Berwald space. Indeed, Szabó’s
rigidity result states that any Berwald surface is either a locally Minkowski space or a
Riemannian surface, see Szabó [16] and Bao, Chern and Shen [3, Theorem 10.6.2].

The paper is constructed as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we first recall some basic notions and results from Finsler geometry, and then complete
the proof of Theorems 1.3 and 1.4.

2 Proof of Theorem 1.1

We divide the proof into five steps.

Step 1 We first derive an important ODE from the extremals (1.2) in the Euclidean case.

Since uλ(x) = (λ + |x|2−ap)
2−n
2−ap is a minimizer in the Euclidean Caffarelli-Kohn-Nirenberg

inequality (CKN)x0
Ka

, the following integral identity holds for every λ > 0:∫
Rn

(λ + |x|2−ap)
(2−n)p
2−ap

|x|ap
dµE(x)

 2
p

= K2
a(n − 2)2

∫
Rn

(λ + |x|2−ap)
2(ap−n)

2−ap

|x|2ap−2
dµE(x). (2.1)

Observe that (2−n)p
2−ap

= 2(ap−n)
2−ap

= n
a−1

< 0, in particular, ap < 2. We introduce the auxiliary

function QE : (0,∞) −→ R defined by

QE(λ) :=
1 − a

n − 1 + a

∫
Rn

(λ + |x|2−ap)
n−1+a

a−1

|x|ap
dµE(x).

Then the identity (2.1) reduces to, provided that QE is well-defined,

(−Q′
E(λ))

2
p = K2

a(n − 2)2

(
n − 1 + a

1 − a
QE(λ) + λQ′

E(λ)

)
, λ > 0. (2.2)

4



To see that QE is well-defined, we obtain from the layer cake representation of functions

and a change of variables as t = (λ + ρ2−ap)
n−1+a

a−1 ρ−ap that

QE(λ) =
1 − a

n − 1 + a

∫ ∞

0

µE

{
x ∈ Rn :

(λ + |x|2−ap)
n−1+a

a−1

|x|ap
> t

}
dt

=
1 − a

n − 1 + a

∫ ∞

0

µE {x ∈ Rn : |x| < ρ} f(λ, ρ) dρ,

where f : (0,∞)2 −→ R is given by

f(λ, ρ) =
n − 1 + a

1 − a

(λ + ρ2−ap)
n

a−1

ρap
(2 − ap)ρ1−ap + ap

(λ + ρ2−ap)
n−1+a

a−1

ρap+1

=
(λ + ρ2−ap)

n
a−1

ρap+1

{
ρ2−ap

(
n − 1 + a

1 − a
(2 − ap) + ap

)
+ apλ

}
. (2.3)

Hence we have

QE(λ) =
1 − a

n − 1 + a

∫ ∞

0

µE(Bn(ρ))f(λ, ρ) dρ. (2.4)

An elementary calculus shows that the improper integral in (2.4) converges, thus QE is
well-defined.

Step 2 Switching to the metric measure setting as in Theorem 1.1, we first observe that
the hypotheses (VD)n

C0
and (AR)n

x0
yield

µ(B(x0, ρ)) ≤ C0µE(Bn(ρ)) for every ρ > 0. (2.5)

Let us consider for each λ > 0 the sequence of functions uλ,k : X −→ R, k ∈ N, defined
by

uλ,k(x) := max{0, min{0, k − d(x0, x)} + 1}
(
λ + max

{
d(x0, x), k−1

}2−ap
) 2−n

2−ap
.

Since (X, d) is proper, supp(uλ,k) = {x ∈ X : d(x0, x) ≤ k + 1} is compact. Therefore we
have uλ,k ∈ Lip0(X) for every λ > 0 and k ∈ N. We set

ũλ(x) := lim
k→∞

uλ,k(x) =
(
λ + d(x0, x)2−ap

) 2−n
2−ap .

Since the functions uλ,k verify the Caffarelli-Kohn-Nirenberg inequality (CKN)x0
C , a sim-

ple approximation procedure based on (2.5) shows that ũλ verifies (CKN)x0
C as well.

Consequently, we can apply (CKN)x0
C to ũλ. In particular, by exploiting a chain rule

for the local Lipschitz constant and the fact that x 7−→ d(x0, x) is 1-Lipschitz (thus
|Dd(x0, ·)|(x) ≤ 1 for all x), we obtain∫

X

(λ + d(x0, x)2−ap)
(2−n)p
2−ap

d(x0, x)ap
dµ(x)

 2
p

≤ C2(n − 2)2

∫
X

(λ + d(x0, x)2−ap)
2(ap−n)

2−ap

d(x0, x)2ap−2
dµ(x).

(2.6)
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We shall rewrite (2.6) by means of the function Q̃ : (0,∞) −→ R defined by

Q̃(λ) :=
1 − a

n − 1 + a

∫
X

(λ + d(x0, x)2−ap)
n−1+a

a−1

d(x0, x)ap
dµ(x).

Before to do that, we claim that Q̃ is well-defined. Again, by the layer cake representation
of functions, one has

Q̃(λ) =
1 − a

n − 1 + a

∫ ∞

0

µ

{
x ∈ X :

(λ + d(x0, x)2−ap)
n−1+a

a−1

d(x0, x)ap
> t

}
dt.

By taking into account that diam X = ∞, similarly to the previous step, we have

Q̃(λ) =
1 − a

n − 1 + a

∫ ∞

0

µ(B(x0, ρ))f(λ, ρ) dρ. (2.7)

In particular, from (2.5) and (2.4), for every λ > 0 we obtain

0 < Q̃(λ) ≤ C0(1 − a)

n − 1 + a

∫ ∞

0

µE(Bn(ρ))f(λ, ρ) dρ = C0QE(λ),

which concludes the claim. Now, similarly to (2.2), we can transform the relation (2.6)
via Q̃ into the inequality

(−Q̃′(λ))
2
p ≤ C2(n − 2)2

(
n − 1 + a

1 − a
Q̃(λ) + λQ̃′(λ)

)
, λ > 0. (2.8)

Inspired from (2.2) and (2.8), we consider the ODE

(−q′(λ))
2
p = C2(n − 2)2

(
n − 1 + a

1 − a
q(λ) + λq′(λ)

)
, λ > 0. (2.9)

On account of (2.2), one can observe that (2.9) has the particular solution of the form

q(λ) = (C−1Ka)
n

1−a QE(λ).

Step 3 We shall show that, for every λ > 0,

Q̃(λ) ≥ q(λ). (2.10)

Suppose C > Ka without loss of generality. The proof of (2.10) requires a local (near
zero) and a global treatment of the quotient Q̃/q. First, due to the hypothesis (AR)n

x0
, for

every ε > 0 there exists ρε > 0 such that µ(B(x0, ρ)) ≥ (1−ε)µE(Bn(ρ)) for all ρ ∈ [0, ρε].

Therefore, by (2.7) and changing the variables as ρ = λ
1

2−ap t, it turns out that

Q̃(λ) ≥ 1 − a

n − 1 + a
(1 − ε)

∫ ρε

0

µE(Bn(ρ))f(λ, ρ) dρ

=
1 − a

n − 1 + a
(1 − ε)λ

n−2+2a
2(a−1)

∫ ρελ
1

ap−2

0

µE(Bn(t))f(1, t) dt.
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A similar argument gives from (2.4) that

QE(λ) =
1 − a

n − 1 + a
λ

n−2+2a
2(a−1)

∫ ∞

0

µE(Bn(t))f(1, t) dt. (2.11)

The above relations and the fact ap − 2 < 0 lead to

lim inf
λ→0

Q̃(λ)

q(λ)
= (CK−1

a )
n

1−a lim inf
λ→0

Q̃(λ)

QE(λ)
≥ (CK−1

a )
n

1−a (1 − ε).

Since ε > 0 is arbitrarily small, we obtain

lim inf
λ→0

Q̃(λ)

q(λ)
≥ (CK−1

a )
n

1−a > 1,

concluding the study of the quotient Q̃/q near the origin.
Now, arguing by contradiction, we assume that there exists λ̃ > 0 such that Q̃(λ̃) <

q(λ̃). By the continuity of the functions Q̃ and q, one can fix λ# < λ̃ to be the largest
number with the property Q̃(λ#) = q(λ#). Thus, q − Q̃ is non-negative on [λ#, λ̃]. We

define for λ > 0 the function zλ : (0,∞) −→ R by zλ(ρ) := C−2(n − 2)−2ρ
2
p + λρ. By

relations (2.8) and (2.9), for every λ > 0, we have

zλ(−Q̃′(λ)) ≤ n − 1 + a

1 − a
Q̃(λ), zλ(−q′(λ)) =

n − 1 + a

1 − a
q(λ).

Since zλ is increasing, one has in particular that

Q̃′(λ) − q′(λ) ≥ z−1
λ

(
n − 1 + a

1 − a
q(λ)

)
− z−1

λ

(
n − 1 + a

1 − a
Q̃(λ)

)
, λ ∈ [λ#, λ̃].

Taking into account that z−1
λ is increasing and q ≥ Q̃ on [λ#, λ̃], the above inequality

implies that (Q̃−q)′(λ) ≥ 0 for every λ ∈ [λ#, λ̃]. In particular, we obtain 0 > (Q̃−q)(λ̃) ≥
(Q̃ − q)(λ#) = 0, a contradiction. This completes the proof of (2.10).

Step 4 We continue to assume C > Ka. Observe from (2.4), (2.7) and (2.10) that∫ ∞

0

{
µ(B(x0, ρ)) − (C−1Ka)

n
1−a µE(Bn(ρ))

}
f(λ, ρ) dρ ≥ 0, λ > 0. (2.12)

By the hypothesis (VD)n
C0

, for every ρ > 0, we have

C0
µ(B(x0, ρ))

µE(Bn(ρ))
≥ lim sup

r→∞

µ(B(x0, r))

µE(Bn(r))
=: s0.

We claim that
s0 ≥ (C−1Ka)

n
1−a . (2.13)
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Assuming the contrary, there exists δ0 > 0 such that, for some r0 > 0,

µ(B(x0, ρ))

µE(Bn(ρ))
≤ (C−1Ka)

n
1−a − δ0 for all ρ ≥ r0.

Hence, from (2.12), (2.5) and (2.4), we first have

0 ≤
∫ ∞

0

{
µ(B(x0, ρ)) − (C−1Ka)

n
1−a µE(Bn(ρ))

}
f(λ, ρ) dρ

≤
∫ r0

0

µ(B(x0, ρ))f(λ, ρ) dρ +
{

(C−1Ka)
n

1−a − δ0

}∫ ∞

r0

µE(Bn(ρ))f(λ, ρ) dρ

− (C−1Ka)
n

1−a

∫ ∞

0

µE(Bn(ρ))f(λ, ρ) dρ

≤ C0

∫ r0

0

µE(Bn(ρ))f(λ, ρ) dρ − (C−1Ka)
n

1−a

∫ r0

0

µE(Bn(ρ))f(λ, ρ) dρ

− δ0

∫ ∞

r0

µE(Bn(ρ))f(λ, ρ) dρ

=
{

C0 − (C−1Ka)
n

1−a + δ0

}∫ r0

0

µE(Bn(ρ))f(λ, ρ) dρ − δ0

∫ ∞

0

µE(Bn(ρ))f(λ, ρ) dρ

=
{

C0 − (C−1Ka)
n

1−a + δ0

}∫ r0

0

µE(Bn(ρ))f(λ, ρ) dρ − δ0
n − 1 + a

1 − a
λ

n−2+2a
2(a−1) QE(1),

where we used QE(λ) = λ
n−2+2a
2(a−1) QE(1) following from (2.11). Next, by using the explicit

form (2.3) of f(λ, ρ) and a − 1 < 0, the following estimate holds:∫ r0

0

ρnf(λ, ρ) dρ ≤ λ
n

a−1

∫ r0

0

ρn−1−ap

{
ρ2−ap

(
n − 1 + a

1 − a
(2 − ap) + ap

)
+ apλ

}
dρ

=

(
n − 1 + a

1 − a
(2 − ap) + ap

)
rn−2ap+2
0

n − 2ap + 2
λ

n
a−1 + ap

rn−ap
0

n − ap
λ

n
a−1

+1.

Reorganizing the above two estimates, we obtain the inequality of type

M1λ
n−2+2a
2(a−1) ≤ M2λ

n
a−1 + M3λ

n
a−1

+1 for all λ > 0, (2.14)

where M1, M2,M3 > 0 are constants independent of λ > 0. Since

n

a − 1
+ 1 − n − 2 + 2a

2(a − 1)
=

n

2(a − 1)
< 0,

(2.14) fails for large values of λ > 0. This contradiction shows the validity of (2.13).

Step 5 Fix any x ∈ X. Since B(x0, r−d(x0, x)) ⊂ B(x, r) ⊂ B(x0, r+d(x0, x)) for every
r > d(x0, x), on account of the hypothesis (VD)n

C0
and (2.13), one has

C0
µ(B(x, ρ))

µE(Bn(ρ))
≥ lim sup

r→∞

µ(B(x, r))

µE(Bn(r))
= lim sup

r→∞

µ(B(x0, r))

µE(Bn(r))
= s0 ≥ (C−1Ka)

n
1−a

for all ρ > 0. This concludes the proof. ¤
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3 Applications: Caffarelli-Kohn-Nirenberg inequal-

ity on Finsler manifolds

Before proving Theorems 1.3 and 1.4, we concisely recall some notions from the theory of
Finsler manifolds (see Bao, Chern and Shen [3], Shen [15] and Ohta [10] for details), and
prove the validity of the Caffarelli-Kohn-Nirenberg inequality on Minkowski spaces.

3.1 Preliminary notions from Finsler geometry

3.1.1 Finsler manifolds

Let M be a connected n-dimensional C∞-manifold and TM =
∪

x∈M TxM be its tangent
bundle.

Definition 3.1 (Finsler manifolds) The pair (M,F ) is called a Finsler manifold if a
continuous function F : TM −→ [0,∞) satisfies the conditions:

(1) F ∈ C∞(TM \ {0});

(2) F (x, tv) = |t|F (x, v) for all t ∈ R and (x, v) ∈ TM ;

(3) the n × n matrix

gij(x, v) :=
1

2

∂2(F 2)

∂vi∂vj
(x, v), where v =

n∑
i=1

vi ∂

∂xi
, (3.1)

is positive definite for all (x, v) ∈ TM \ {0}. We will denote by gv the inner product
on TxM induced from (3.1).

If (and only if) gij(x, v) is independent of v in each TxM \ {0}, then (M,F ) gives a
Riemannian manifold. A Minkowski space consists of a finite dimensional vector space V
and a Minkowski norm which induces a Finsler metric on V by translation (i.e., F (x, v)
is independent of x). A Finsler manifold (M,F ) is called a locally Minkowski space if any
point in M admits a local coordinate system (xi) on its neighborhood such that F (x, v)
depends only on v and not on x.

For a C∞-curve σ : [0, l] −→ M , its integral length is given by LF (σ) :=
∫ l

0
F (σ, σ̇) dt.

Define the distance function dF : M × M −→ [0,∞) by dF (x1, x2) := infσ LF (σ), where
σ runs over all C∞-curves from x1 to x2. When (M,F ) = (Rn, F ) is a Minkowski space,
one has dF (x1, x2) = F (x2 − x1). A C∞-curve σ : [0, l] −→ M is called a geodesic if it is
locally dF -minimizing and has a constant speed (i.e., F (σ, σ̇) is constant). We can write
down the geodesic (Euler-Lagrange) equation in terms of the covariant derivative along
σ (see [3] for details). We say that (M,F ) is complete if any geodesic σ : [0, l] −→ M can
be extended to a geodesic σ : R −→ M .
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The polar transform (or the dual norm) of F is defined for every (x, α) ∈ T ∗M by

F ∗(x, α) := sup
v∈TxM\{0}

α(v)

F (x, v)
.

Note that, for every x ∈ M , the function F ∗(x, ·) is a Minkowski norm on T ∗
xM . In

particular, if (Rn, F ) is a Minkowski space, then so is (Rn, F ∗) as well. For u(x) =
dF (x0, x) with some fixed x0 ∈ M , one can easily see that F ∗(x,Du(x)) = 1 for a.e.
x ∈ M .

3.1.2 Jacobi fields, Ricci curvature and volume comparison

Let σ : (−ε, ε)× [0, l] −→ M be a C∞-geodesic variation (i.e., t 7−→ σ(s, t) is geodesic for
each s), and put η(t) = σ(0, t). Then the variational vector field J(t) := ∂σ

∂s
(0, t) satisfies

the Jacobi equation
Dη̇

η̇D
η̇
η̇J + Rη̇(J, η̇)η̇ ≡ 0, (3.2)

where Dη̇ is the covariant derivative with reference vector η̇, and Rη̇ is the curvature tensor
(see [3] for details). For two linearly independent vectors v, w ∈ TxM and S = span{v, w},
the flag curvature of the flag (S; v) is defined by

K(S; v) :=
gv(R

v(w, v)v, w)

F (v)2gv(w,w) − gv(v, w)2
.

If (M,F ) is Riemannian, then the flag curvature reduces to the sectional curvature which
depends only on S (not on the choice of v ∈ S). Take v ∈ TxM with F (x, v) = 1
and let {ei}n

i=1 with en = v be an orthonormal basis of (TxM, gv) for gv from (3.1).
Put Si = span{ei, v} for i = 1, ..., n − 1. Then the Ricci curvature of v is defined by
Ric(v) :=

∑n−1
i=1 K(Si; v). For c ≥ 0, we also set Ric(cv) := c2Ric(v).

Shen gave a useful interpretation of these Finsler curvatures from the Riemannian
viewpoint (see [15, §6.2]). Fix v ∈ TxM \ {0} and extend it to a C∞-vector field V
around x such that all integral curves of V are geodesic. Then the flag curvature K(S; v)
coincides with the sectional curvature of S with respect to the Riemannian structure gV ,
and Ric(v) coincides with the Ricci curvature of v with respect to gV . This observation
leads the following definition of the weighted Ricci curvature associated with an arbitrary
measure on M . We refer to [10], [12], [13], and [11] for details and applications.

Definition 3.2 (Weighted Ricci curvature) Let µ be a positive C∞-measure on M .
Given v ∈ TxM \{0}, let σ : (−ε, ε) −→ M be the geodesic with σ̇(0) = v and decompose
µ along σ as µ = e−ψvolσ̇, where volσ̇ denotes the volume form of the Riemannian structure
gσ̇. Then, for N ∈ [n,∞], the N -Ricci curvature RicN is defined by

RicN(v) := Ric(v) + (ψ ◦ σ)′′(0) − (ψ ◦ σ)′(0)2

N − n
,

where the third term is understood as 0 if N = ∞ or if N = n with (ψ ◦ σ)′(0) = 0, and
as −∞ if N = n with (ψ ◦ σ)′(0) 6= 0.
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In particular, Ricn is bounded below only if (ψ ◦ σ)′ ≡ 0 along any σ. In terms
of RicN , one can show the following Bishop-Gromov-type volume comparison theorem.
(Indeed, we can reduce it to the Riemannian setting by using the gradient vector field of
the distance function from the center x.) We state only the non-negatively curved case.

Theorem 3.3 ([10, Theorem 7.3]) Let (M,F, µ) be a complete n-dimensional Finsler
manifold with non-negative N-Ricci curvature. Then we have

µ(B(x, R))

µ(B(x, r))
≤

(
R

r

)N

for every x ∈ M, 0 < r < R.

Moreover, if equality holds with N = n for all x ∈ M and 0 < r < R, then any Jacobi
field J along a geodesic σ has the form J(t) = tP (t), where P is a parallel vector field
along σ (i.e., Dσ̇

σ̇P ≡ 0).

We will actually need only the most restrictive case of N = n.

3.2 Caffarelli-Kohn-Nirenberg inequality on Minkowski spaces

Let (M,F ) be a Finsler manifold and u ∈ Lip0(M). Note that the local Lipschitz constant
of u is given by |Du|(x) = F ∗(x,Du(x)) for a.e. x ∈ M . Therefore, due to density reasons,
the Caffarelli-Kohn-Nirenberg inequality (CKN)x0

C in the Finsler context takes the more
familiar form(∫

M

|u(x)|p

dF (x0, x)ap
dµ(x)

) 1
p

≤ C

(∫
M

F ∗(x,Du(x))2 dµ(x)

) 1
2

for all u ∈ C∞
0 (M).

We first prove that the sharp Caffarelli-Kohn-Nirenberg inequality (with C = Ka from
(1.1)) holds on an arbitrary Minkowski space (Rn, F ) endowed with the Lebesgue measure
µF normalized so that µF (B(0, 1)) = ωn.

Let us first recall two inequalities on (Rn, F, µF ). Given a measurable set Ω ⊂ Rn, let us
denote by Ω? the anisotropic symmetrization of Ω, i.e., it is the open ball with center 0 such
that µF (Ω?) = µF (Ω). For a function u : Rn −→ R, u?(x) := sup{c ∈ R : x ∈ {u > c}?} is
the anisotropic (decreasing) symmetrization of u, where {u > c} = {x ∈ Rn : u(x) > c}.
Due to Alvino, Ferone, Lions and Trombetti [1] and Van Schaftingen [18], one has

• anisotropic Pólya-Szegő inequality:∫
Rn

F ∗(Du?(x))2 dµF (x) ≤
∫

Rn

F ∗(Du(x))2 dµF (x) for all u ∈ C∞
0 (Rn)+;

• anisotropic Hardy-Littlewood inequality: if p > 1 and a ∈ [0, 1], then we have∫
Rn

u(x)p

F (x)ap
dµF (x) ≤

∫
Rn

u?(x)p

F (x)ap
dµF (x) for all u ∈ C∞

0 (Rn)+,

where C∞
0 (Rn)+ := {u ∈ C∞

0 (Rn) : u ≥ 0}.
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Proposition 3.4 Let (Rn, F ) be a Minkowski space with n ≥ 3, x0 ∈ Rn, a ∈ [0, 1), and
p = 2n/(n − 2 + 2a). Then the sharp Caffarelli-Kohn-Nirenberg inequality (CKN)x0

Ka

holds on (Rn, F, µF ). Moreover, the constant Ka is optimal and a family of extremals is
given by

uλ(x) =
(
λ + F (x − x0)

2−ap
) 2−n

2−ap , λ > 0.

Proof. Recall that dF (x0, x) = F (x−x0). Without loss of generality, we may assume that
x0 = 0. Let us consider the constant

Ca = inf
u∈C∞

0 (Rn)\{0}

(∫
Rn F ∗(Du(x))2 dµF (x)

)1/2(∫
Rn |u(x)|pF (x)−ap dµF (x)

)1/p
.

We shall claim that Ca = K−1
a . Due to the reversibility of F , it is enough to consider non-

negative functions in the above expression. By the anisotropic Pólya-Szegő and Hardy-
Littlewood inequalities we have

Ca = inf
u∈C∞

0 (Rn)+\{0}

(∫
Rn F ∗(Du?(x))2 dµF (x)

)1/2(∫
Rn u?(x)pF (x)−ap dµF (x)

)1/p
.

We may assume that u? ∈ C1
0 (Rn)+ (otherwise, a density argument applies). Then there

exists a non-increasing function h : [0,∞) −→ [0,∞) of class C1 such that u?(x) =
h(F (x)), and we have

F ∗(Du?(x)) = F ∗(h′(F (x))DF (x)) = −h′(F (x))F ∗(DF (x)) = −h′(F (x)).

Therefore a simple calculation yields(∫
Rn F ∗2(Du?(x)) dµF (x)

)1/2(∫
Rn u?(x)pF (x)−ap dµF (x)

)1/p
= α

1
2
− 1

p
n

(∫ ∞
0

h′(ρ)2ρn−1 dρ
)1/2(∫ ∞

0
h(ρ)pρn−1−ap dρ

)1/p
, (3.3)

where αn = nωn denotes the area of the unit sphere in Rn. On the other hand, following
the approaches of Lieb [9] and Talenti [17] in the Euclidean case where the standard
Schwarz symmetrization is used, one can see that the minimizing expression is precisely
the RHS of (3.3). Therefore, we have Ca = K−1

a which proves our claim. Moreover, a

class of minimizers hλ for (3.3) is hλ(ρ) = (λ + ρ2−ap)
2−n
2−ap , λ > 0, which can be obtained

by the standard Euler-Lagrange method. ¤

Remark 3.5 After a slight modification, Proposition 3.4 remains valid also for only pos-
itively homogeneous Minkowski norms (i.e., F (tv) = tF (v) only for t > 0). In such
a case, the anisotropic symmetrization is considered with respect to the backward ball
B−(0, 1) = {x ∈ Rn : F (−x) < 1}, and the level sets of the extremals have backward
Wulff-shapes, homothetic to B−(0, 1) (see Kristály [8] and Van Shaftingen [18]).
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3.3 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Since (M,F ) is complete, by the Hopf-Rinow theorem it yields
that (M,dF , µ) is a proper metric measure space. On account of Theorem 3.3, (VD)n

C0

holds with C0 = 1, while µ is normalized so as to satisfy (AR)n
x0

. On the one hand, these
properties imply that

µ(B(x, ρ)) ≤ µE(Bn(ρ)) for all ρ > 0, x ∈ M.

On the other hand, by (CKN)x0
Ka

, Theorem 1.1 gives the reverse inequality, thus equality
holds. By Theorem 3.3, it results that every Jacobi field J along any geodesic σ has the
form J(t) = tP (t), where P is a parallel vector field along σ. Then it follows from the
Jacobi equation (3.2) that Rσ̇(J, σ̇)σ̇ ≡ 0, so that K(S; σ̇) ≡ 0 with S = span{σ̇, P}. Due
to the arbitrariness of σ and J , it turns out that the flag curvature of (M,F ) is identically
zero. ¤

Proof of Theorem 1.4. On the one hand, since on every Berwald space Ricn = Ric
holds for the Hausdorff measure µF (see Shen [14, Propositions 2.6 & 2.7]), we can apply
Theorem 1.3 to see that the flag curvature of (M,F ) is identically zero. On the other hand,
every Berwald space with zero flag curvature is necessarily a locally Minkowski space (see
Bao, Chern and Shen [3, Section 10.5]). Thanks to the volume identity µF (B(x, ρ)) =
µE(Bn(ρ)), (M,F ) must be isometric to a Minkowski space. ¤

We conclude the paper by presenting an example of a non-Riemannian Berwald space.

Example 3.6 We endow the space Rn−1 (n ≥ 3) with a Riemannian metric g such that
(Rn−1, g) is complete with non-negative Ricci curvature. For every ε > 0, consider on
Rn = Rn−1 × R the metric Fε : TRn −→ [0,∞) given by

Fε((x, t), (v, w)) =

√
gx(v, v) + w2 + ε

√
gx(v, v)2 + w4

for (x, t) ∈ Rn, (v, w) ∈ TxRn−1 × TtR. We observe that (Rn, Fε) is a non-compact,
complete, non-Riemannian Berwald space with non-negative Ricci curvature. According
to Theorem 1.4 and Proposition 3.4, the following four statements are equivalent:

• (CKN)x̃0
Ka

holds on (Rn, Fε, µFε) for some element x̃0 = (x0, t0) ∈ Rn;

• (CKN)x̃0
Ka

holds on (Rn, Fε, µFε) for every element x̃0 = (x0, t0) ∈ Rn;

• gx is independent of x ∈ Rn−1 (i.e., (Rn−1, g) is flat);

• (Rn, Fε) is a Minkowski space.
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