Percutaneous balloon valvuloplasty for bioprosthetic mitral valve stenosis.

Hamatani, Yasuhiro; Saito, Naritatsu; Tazaki, Junichi; Natsuaki, Masahiro; Nakai, Kentaro; Makiyama, Takeru; Sasaki, Yasuhiro; Imai, Masao; Watanabe, Shin; Shioi, Tetsuo; Kimura, Takeshi; Inoue, Kanji

Heart and vessels (2013), 28(5): 667-671

http://hdl.handle.net/2433/193055

This is not the published version. Please cite only the published version.
Percutaneous balloon valvuloplasty for bioprosthetic mitral valve stenosis: A case report and review of the literature.

Yasuhiro Hamatani, M.D.¹, Naritatsu Saito, M.D.¹, Junichi Tazaki, M.D.¹, Masahiro Natsuaki, M.D.¹, Kentaro Nakai, M.D.¹, Takeru Makiyama, M.D.¹, Yasuhiro Sasaki, M.D.¹, Masao Imai, M.D.¹, Shin Watanabe, M.D.¹, Tetsuo Shioi, M.D.¹, Takeshi Kimura, M.D.¹, Kanji Inoue, M.D.²

1. Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan

2. PTMC Institute, Kyoto, Japan

Address for Correspondence:

Naritatsu Saito

Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University

54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

E-mail: naritatu@kuhp.kyoto-u.ac.jp

Tel: +81-75-751-3198
Abstract

197 words

Percutaneous transcatheter mitral valvuloplasty is the indicated treatment of choice for symptomatic native mitral valve stenosis, but there have been limited reports of successful procedures of balloon valvuloplasty for bioprosthetic mitral valve stenosis. We present a case of 62-year-old woman suffering from progressive dyspnea due to bioprosthetic mitral valve stenosis. The measured mean pressure gradient across the mitral valve was 30 mmHg, and mitral valve area was 0.73 cm². Redoing mitral replacement was considered high risk and refused by the patient. Percutaneous balloon valvuloplasty was performed with an Inoue balloon catheter inflated to 20 mm. The patient's symptoms immediately improved after the procedure without any procedure related complications. The mean pressure gradient across the valve decreased to 19 mmHg, and the mitral valve area became 1.21 cm² in post procedural echocardiography. We conducted a literature search and identified 26 cases of balloon valvuloplasty for degenerated bioprosthetic valves. Of these, 14 cases were bioprosthetic mitral valves and the results were favorable. However, more case reports are required to establish a base for future expert recommendation of balloon valvuloplasty of prosthetic mitral valve. Balloon valvuloplasty will serve a very niche
role in highly selected patients with prosthetic mitral valve stenosis.

Keywords: balloon valvuloplasty, prosthetic mitral valve stenosis

Main Documents

1883 words

Introduction

Percutaneous transcatheter balloon valvuloplasty is a technique which was introduced in 1982 by Kanji Inoue[1] and eventually became the procedure of choice for most cases of native mitral valve stenosis[2]. However, balloon valvuloplasty for degenerated bioprosthetic mitral valve is rarely performed. We report a successful case of balloon valvuloplasty in a patient with a prosthetic mitral valve stenosis and review the related literatures.

Case Report

A 62-year-old woman with progressive dyspnea in a New York Heart Association functional class III was referred to our hospital for a treatment of bioprosthetic mitral valve stenosis. Transthoracic and transesophageal echocardiography revealed severe bioprosthetic mitral stenosis with elevated pulmonary artery systolic pressure of 85 mmHg. The measured mean
pressure gradient across the mitral valve was 30 mmHg, and mitral valve area calculated by pressure half-time was 0.73 cm² (Figure 1A). There was no thrombus and trivial mitral regurgitation on the echocardiography.

The patient had a history of coronary artery bypass graft surgery with a left internal mammary artery graft to the left anterior descending artery and 2 saphenous vein grafts to the distal right coronary and second marginal coronary arterial segments 9 years ago. Subsequently, the patient had undergone mitral valve replacement with a 23 mm Carpentier-Edwards bioprosthesis for mitral regurgitation, and aortic valve replacement with a 19 mm Carpentier-Edwards bioprosthesis for aortic stenosis 4 years ago. The patient suffered a gangrenous right foot and required amputation 1 month ago, and the wound healing was delayed. Just after the amputation, the patient developed congestive heart failure due to severe bioprosthetic mitral valve stenosis that was resistant to medical treatments. Redo mitral valve replacement was required, but the Society of Thoracic surgeons (STS) score predicted a 32.0% risk of death for redo surgery. The patient rejected open surgery and consented to percutaneous balloon valvuloplasty.

Right heart catheterization showed that the pulmonary capillary wedge pressure was 39 mmHg, and the mean pulmonary artery pressure was 55 mmHg. Balloon valvuloplasty was performed as previously described with sequential inflations from 17 mm to 20 mm with a
20-mm Inoue balloon (Figure 2). After the balloon valvuloplasty, the pulmonary capillary wedge pressure decreased to 29 mmHg, and the mean pulmonary artery pressure decreased to 41 mmHg. Cardiac index increased from 1.5 l/min/m² to 2.0 l/min/m². The hemodynamic findings immediately before and after valvuloplasty are shown in Table 1. Transthoracic echocardiography which was performed two days later showed that the mean pressure gradient across the mitral valve reduced to 19 mmHg, and mitral valve area increased to 1.21 cm² with trivial mitral regurgitation (Figure 1B). The patient’s symptoms improved and exercise capacity increased immediately. There was no complication associated with the procedure. The patient was discharged from the hospital 5 days after the procedure.

Discussion

Percutaneous transcatheter balloon valvuloplasty was first performed in 1982 by Kanji Inoue who is the main operator of the present case and also the author of the present report[1]. After proving its clinical efficacy in several data, percutaneous mitral valvuloplasty has now become the indicated treatment in criterion-suitable cases of native mitral valve stenosis[2]. Balloon valvuloplasty for other valves including aortic, tricuspid, pulmonary valve have also been performed in well selected patients with favorable outcomes[3]. In
particular, balloon aortic valvuloplasty is currently being applied more frequently compared to the past with the advent of transcatheter aortic valve replacement[4, 5]. However, the reports regarding balloon valvuloplasty for bioprosthetic valve failure in adult patients are extremely limited. A literature search identified 26 cases of balloon valvuloplasty for degenerated bioprosthetic valve; 14 cases in mitral position[6–16], 6 cases in aortic position[17, 18, 16, 19, 20], 4 cases in tricuspid position[21–24], and 2 case in pulmonary position(Table 2)[25][16]. The valvuloplasty for degenerative bioprosthesis in aortic position showed poorer outcomes; 2 patients died after the procedure and 2 patient required surgical valve replacement[17, 19, 16]. Valvuloplasty for bioprosthetic valve stenosis in other positions showed more favorable outcome. After balloon valvuloplasty, symptoms of almost all patients improved. One patient after balloon valvuloplasty for prosthetic mitral valve developed a moderate mitral regurgitation at 6 month follow-up and a cusp rupture at 12 month[16]. Although no major procedure related complications were reported except for this patient, several authors have warned against performing valvuloplasty of bioprosthetic mitral valve[26]. The dysfunction or obstruction of prosthetic valve usually results from pannus ingrowth, leaflet calcification, thrombosis or vegetation. In vitro studies suggest that the increased mitral valve area attained from balloon valvuloplasty results from balloon induced leaflet tearing, calcium fractures, and cusp perforation[27]. We cannot draw any concrete
conclusions from these limited experiences, more case reports are needed to establish a
base for future expert recommendation of balloon valvuloplasty of prosthetic mitral valve.

Recently, the transcatheter valve-in-valve technique is emerging as a therapeutic option for
patients with failure of previously implanted bioprosthetic valve[28, 29]. After receiving the
favorable results for bioprosthetic aortic valve, the valve-in-valve technique for bioprosthetic
mitral valve has been applied using the transapical approach and expected to become a
complementary approach to redo mitral valve replacement. Although the valve-in-valve
 technique seems hopeful, the Ministry of Health, Labor and Welfare has not approved the
valve-in-valve procedure for mitral valve in Japan. When compared to the valve-in-valve
technique, the main advantage of balloon valvuloplasty is the less invasive percutaneous
approach, omitting the need for apical incision and general anesthesia.

In conclusion, the present report demonstrates the successful use of percutaneous
transcatheter balloon valvuloplasty for bioprosthetic mitral valve stenosis. Balloon
valvuloplasty for prosthetic mitral valve shows favorable outcomes in limited case reports.
However, there are other opinions that warned against performing valvuloplasty for
prosthetic mitral valve since the balloon valvuloplasty inevitable induce leaflet tearing,
calcium fractures, and cusp perforation. More evidences are required to establish a concrete
recommendation for balloon valvuloplasty for bioprosthetic mitral valve. Balloon
valvuloplasty will serve a very niche role in highly selected patients with prosthetic mitral valve stenosis who is at high risk for redo mitral valve replacement and valve-in-valve procedure.

Disclosures

Kanji Inoue holds all patents of the Inoue balloon. The Inoue balloon was developed and made by Kanji Inoue. All the other authors report no financial relationships or conflicts of interest regarding the content herein.

References

Figures Captions

Figure 1. A, Parasternal long axis view showing degenerated bioprosthesis mitral valve with trivial mitral regurgitation. B, Before the balloon valvuloplasty, mitral valve area was 0.73 cm², and mean pressure gradient was 30 mmHg. C, After the balloon valvuloplasty, parasternal long axis view shows no worsening of mitral regurgitation. D, The mitral valve area increased to 1.21 cm², and mean pressure gradient decreased to 19 mmHg.

Figure 2. A, Fluoroscopic image demonstrating the Inoue balloon passing through the stenotic bioprosthetic valve. B, Balloon valvuloplasty was performed with the Inoue balloon with a maximum diameter of 20mm.
Figure 1.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Age/Sex</th>
<th>Valve Position</th>
<th>Valve age</th>
<th>PG pre procedure (mmHg)</th>
<th>PG post procedure (mmHg)</th>
<th>Balloon type/size (mm)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arie et al (1989) [7]</td>
<td>62 F</td>
<td>Mitral</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>Mansfield 20mm</td>
<td>None</td>
</tr>
<tr>
<td>Fernandez et al (1990) [9]</td>
<td>62 F</td>
<td>Mitral</td>
<td>10</td>
<td>22</td>
<td>6</td>
<td>Mansfield 20mm</td>
<td>None</td>
</tr>
<tr>
<td>Spellburg et al (1991) [10]</td>
<td>64 F</td>
<td>Mitral</td>
<td>8</td>
<td>30</td>
<td>10</td>
<td>Mansfield 18mm</td>
<td>Atrial shunt</td>
</tr>
<tr>
<td>Orbe et al (1991) [16]</td>
<td>N/A</td>
<td>Mitral</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>Trefoil 25mm</td>
<td>Severe MR</td>
</tr>
<tr>
<td>Orbe et al (1991) [16]</td>
<td>N/A</td>
<td>Mitral</td>
<td>3</td>
<td>13</td>
<td>3</td>
<td>Trefoil 25mm</td>
<td>None</td>
</tr>
<tr>
<td>Orbe et al (1991) [16]</td>
<td>N/A</td>
<td>Mitral</td>
<td>7</td>
<td>16</td>
<td>5</td>
<td>Monoballoon 25mm</td>
<td>None</td>
</tr>
<tr>
<td>Ludman et al (1999) [13]</td>
<td>54 F</td>
<td>Mitral</td>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>Inoue N/A</td>
<td>None</td>
</tr>
<tr>
<td>Hurst et al (2004) [14]</td>
<td>78 M</td>
<td>Mitral</td>
<td>1.5</td>
<td>14</td>
<td>11</td>
<td>Inoue 26mm</td>
<td>None</td>
</tr>
<tr>
<td>Bekeredjian et al (2010) [15]</td>
<td>86 F</td>
<td>Mitral</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>Inoue 26mm</td>
<td>None</td>
</tr>
<tr>
<td>Mckay et al (1988) [17]</td>
<td>28 M</td>
<td>Aortic</td>
<td>6</td>
<td>57</td>
<td>41</td>
<td>Mansfield 20mm</td>
<td>Surgical Replacement</td>
</tr>
<tr>
<td>Ramondo et al (1989) [18]</td>
<td>60 M</td>
<td>Aortic</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>Inoue 18mm</td>
<td>None</td>
</tr>
<tr>
<td>Orbe et al (1991) [16]</td>
<td>N/A</td>
<td>Aortic</td>
<td>8</td>
<td>60</td>
<td>40</td>
<td>N/A</td>
<td>Surgical Replacement</td>
</tr>
<tr>
<td>Kirwan et al (2004) [19]</td>
<td>79 M</td>
<td>Aortic</td>
<td>18</td>
<td>80</td>
<td>45</td>
<td>N/A 15mm</td>
<td>Death due to Acute AR</td>
</tr>
<tr>
<td>Dejam et al (2011) [20]</td>
<td>90 F</td>
<td>Aortic</td>
<td>15</td>
<td>55</td>
<td>36</td>
<td>Diamond 14mm</td>
<td>Restenosis in 8 months</td>
</tr>
<tr>
<td>Wren et al (1989) [22]</td>
<td>19 F</td>
<td>Tricuspid</td>
<td>13</td>
<td>8~10</td>
<td>4~6</td>
<td>Mansfield 20mm</td>
<td>Restenosis in 3 months</td>
</tr>
<tr>
<td>Chow et al (1990) [23]</td>
<td>67 F</td>
<td>Tricuspid</td>
<td>7</td>
<td>6</td>
<td>2.5</td>
<td>Cook 23mm</td>
<td>None</td>
</tr>
<tr>
<td>Yunoki et al (2006) [24]</td>
<td>59 F</td>
<td>Tricuspid</td>
<td>22</td>
<td>14</td>
<td>6</td>
<td>N/A 25mm</td>
<td>None</td>
</tr>
<tr>
<td>Orbe et al (1991) [16]</td>
<td>N/A</td>
<td>Pulmonary</td>
<td>12</td>
<td>70</td>
<td>50</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>Oomman et al (2004) [25]</td>
<td>20 M</td>
<td>Pulmonary</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>Inoue 20mm</td>
<td>None</td>
</tr>
</tbody>
</table>

PG, pressure gradient, MR, mitral regurgitation, AR, aortic regurgitation, N/A, not available
Table 1. Hemodynamic data before and after the balloon valvuloplasty

<table>
<thead>
<tr>
<th>Hemodynamic Findings</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Pressure (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Pulmonary Capillary Wedge</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>Pulmonary Artery (mean)</td>
<td>88/39 (55)</td>
<td>70/27 (41)</td>
</tr>
<tr>
<td>Right Ventricle</td>
<td>82/11</td>
<td>51/9</td>
</tr>
<tr>
<td>Mean Right Atrium</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Cardiac Index (l/m/m²)</td>
<td>1.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>