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Destruction of long-range order by quenching of the hopping range in one dimension
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We study the dynamics in a one-dimensional hard-core Bose gas with power-law hopping after an abrupt
reduction of the hopping range using the time-dependent density-matrix renormalization-group and bosonization
techniques. In particular, we focus on the destruction of the Bose-Einstein condensate (BEC), which is present in
the initial state in the thermodynamic limit. We argue that this type of quench is akin to a sudden reduction in the
effective dimensionality d of the system (from d > 1 to d = 1). We identify two regimes in the evolution of the
BEC fraction. For short times the decay of the BEC fraction is Gaussian while for intermediate to long times it
is well described by a stretched exponential with an exponent that depends on the initial effective dimensionality
of the system. These results are potentially relevant for cold trapped-ion experiments which can simulate an
equivalent of hard-core bosons, i.e., spins, with tunable long-range interactions.
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I. INTRODUCTION

Many physical phenomena occur under nonequilibrium
conditions. Small deviations from equilibrium are well un-
derstood in the framework of linear response theory. However
the time evolution of nonequilibrium states has resisted so
far a comprehensive understanding despite its potential to
open new avenues of research in several fields including solid
condensed-matter and cold atom physics as well as cosmology.

A number of recent advances are changing this situation
rapidly. In condensed matter, experiments [1—4] that combine
femtosecond extreme ultraviolet pulses with very sensitive
time and angle resolved photoemission spectroscopy are able
to probe the far from equilibrium dynamics of many-electron
systems. Relevant examples include the time evolution of
the order parameter [2] characterizing superconductivity or
charge-density wave (CDW) order [3.,4] or the discovery
of transient superconductivity in cuprates [1].

In the context of ultracold atom physics, it has been
observed experimentally [5] that the momentum distribution
of a quasi-one-dimensional (1D) Bose gas that is initially
prepared in a far from equilibrium state does not exhibit
thermalization. More recently, the loss of phase coherence
for sufficiently long times after a sudden decoupling of
two phase coherent 1D Bose condensates was investigated
experimentally in [6] and theoretically in [7,8]. On the theory
side, it has been shown that integrable models in general fail
to thermalize to the standard Gibbs ensemble but relax instead
to a generalized Gibbs ensemble [9,10]. This was shown
by Rigol and coworkers in [9] using numerical simulations
for the XX model and subsequently analytically shown for
a quantum quench in the Luttinger model by one of the
present authors [11]. Furthermore, quantum quenches from
a noncritical to a critical state were studied by Calabrese and
Cardy [12] using a clever mapping to a boundary conformal
field theory. They found that the order parameter would decay
exponentially after the quench.
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Indeed, a quench is a convenient procedure to study
nonequilibrium dynamics by making a sudden change of
either a coupling constant in the Hamiltonian or an external
parameter such as temperature or magnetic field. In some
cases, the sudden removal of an external field or a change in
a coupling constant can lead to destruction of long-range order
in the initial state. In this article, we report an example of
this, in which the parameter being quenched is the range of
the hopping amplitude (from long to short range) in a one-
dimensional interacting Bose system. As we argue below,
this type of quench has some similarities with a sudden
change in the effective dimensionality of the system from
d > 1tod = 1. We show using both numerical, i.e., density-
matrix renormalization group (DMRG), and analytical, i.e.,
bosonization, techniques that this type of quench leads to an
interesting nonequilibrium regime in the time evolution of a
Bose gas at zero temperature.

In order to mimic a higher spatial (i.e., d > 1) dimen-
sionality while retaining both the numerical and analytical
convenience of one dimension, we assume that the system
is a 1D Bose gas with long-range power-law hopping in the
initial state. By now there is solid evidence from studies in
different physical contexts [13—16] that long-range hopping is
an effective way of mimicking higher-dimensional effects in
one-dimensional systems. It is therefore reasonable to expect
that power-law hopping in our model will also resemble
an effective, not necessarily integer, dimensionality d > 1,
which yields a true Bose-Einstein condensate (BEC) [17]
in the ground state for sufficiently slow decay (effective
dimensionality). As we explain below, such a dimensionality
quench can be realized in an optical lattice of coupled 1D gas
tubes [18]. An additional motivation for this type of quenches
stems from the recent realization of spin chains in trapped ion
systems with highly controllable long-range interactions [19].
In this regard, we recall that spins and bosons are related by
an exact mapping [20].

In our calculations, to be described below, we have observed
two different regimes in the evolution of the condensate
fraction. For short times, the depletion of BEC is consistent
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with a Gaussian decay, whereas at intermediate to long
times it appears to cross over to a stretched exponential
behavior. These two limiting behaviors are also obtained from
a bosonization [20] approach. Consistent with this description,
which treats phonons (i.e., the low-energy excitations of
the postquench Hamiltonian) as propagating ballistically, we
believe this regime corresponds to a prethermalized regime.

The rest of the article is organized as follows: In Sec. II
we describe the model that we have studied. Details about the
quench protocol and the way the BEC fraction is measured
using DMRG are given in Sec. III. The details of the analytical
approach are presented in Sec. IV. The conclusions of this
work is given in Sec. VI. In the Appendix we give further
detail on the numerical convergence of the time-dependent
DMRG (t-DMRG) calculation.

II. MODEL AND QUENCH

The initial state before the quench is described by the
ground state of the following Hamiltonian of N hard-core
bosons hopping on a 1D lattice:

L
Bi=— 3" LBy b+ Hel+ VY il (1)

m,r>1

in which V is the strength of the nearest-neighbor density-
density interaction, 71, = BL Em, and

s=1 [8,,1 v La- am] @)

is the hopping amplitude. In [17], two of the present authors
studied a 1D fermionic model with attractive interactions and
power-law hopping characterized by an exponent o = k/2,
which in the limit of strong attractive interactions exhibits
similar physics to the Hamiltonian Eq. (1) in the low-energy
sector. In [17], long-range phase coherence was found for
k ~ 2o < 3. A detailed comparison of the boundaries between
the phase exhibiting off-diagonal long-range order and the
disordered phase in this model and the model in [17] will be
presented elsewhere. However, for the purpose of studying
quantum quenches from the ordered ground state, it is
sufficient to choose « sufficiently small and V negative.
Indeed, it can be seen in Fig. 1 that the off-diagonal long-range
order, which reflects into the condensate fraction, is enhanced
for small «. The (initial) condensate fraction is also made
larger by choosing a negative value of the nearest-neighbor
interaction, V. Physically, this is because a negative V weakens
the phase disordering effect of the hard-core repulsion, as it
is also well known for models with short-range hopping [20].
In addition, empirically we also found that a larger starting
condensate fraction also improves the numerical convergence
in DMRG.

We note that long-range interactions are of interest
in a broad variety of problems: spin chains with long-
range interactions [19], noninteracting weakly disordered
systems [13], quantum chaos [14], systems controlled by
dipolar interactions [15], and certain types of Mott metal-
insulator transitions [16]. In particular, it is also believed that
long-range interactions provide an effective way of accounting
for higher-dimensional effects in one-dimensional systems.
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FIG. 1. (Color online) Single-particle  correlation  function
(b(j +r)th(j)); for the Hamiltonian Eq. (1) for L = 80, N = 40,
V =-12, f=0.1, and different values of « computed using
DMRG. In agreement with the theoretical expectation, phase
coherence is observed up to ¥ ~ 2. For larger k the crossover length
to observe it is larger than the maximum size accessible. In order
to avoid these unwanted size effects the initial state, previous to the
quench, will be always characterized by « < 2.

This is because long-range interactions provide a way around
the Mermin-Wagner theorem, which forbids the existence of
spontaneous breaking of continuum symmetries long range in
1D quantum systems. Thus, as mentioned above, the model (1)
exhibits long-range phase coherence [17] in its ground state.

Below, we consider a quantum quench at t = 0, in which
the long-range tail [i.e., the term proportional to f in Eq. (2)]
is suddenly turned off. In other words, we shall assume that
the system is prepared in the ground state of Eq. (1) with a
k < 2 such that a bona fide Bose-Einstein condensate exists.
Following the quench, the time evolution of the Hamiltonian
is described by the hard-core Bose-Hubbard model:

ﬁ(t >0) = ﬁf =—J Z[g;lngm-f-l +5,Tn+15m]
+ VY il . 3)

Thus, we expect that, since the ground state of I:If lacks
long-range phase coherence (i.e., is not a BEC), but the latter
is present in the initial state, the BEC will be destroyed by the
time evolution under H;. The question that we address here is
how this destruction takes place.

However, before describing the results of the DMRG
simulation, it is worth dwelling on the role played by the
parameter « as an effective dimensionality. To this end, we
can draw an analogy with a quantum quench in an array of 1D
bosons. Let us assume that each 1D system is described by a
copy (labeled by a new index i) of H; and is initially coupled
to z nearest neighbors by means of the following Josephson
tunneling term:

Hy=—J1 ) Y [b],()ba(j)+Hel, )
(i,j) m

where ), ) indicates the sum over nearest neighbors and
J1 < Ji. Let z approach infinity while zJ, remains con-
stant. In this limit, which effectively amounts to infinite
dimensions, the mean-field approximation becomes exact and
the Josephson coupling term becomes (up to a constant)
HMF = Y (i), in which Hy(i) = —zJ1bo Y., [bh + byl
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with by = (b,,). Using bosonization [20], it is possible to
map the mean-field Hamiltonian in the continuum limit to
a sine-Gordon model [18,20]. In this setup, a quench where
the Josephson coupling J, is suddenly turned off corresponds
to suddenly turning off the sine-Gordon term in the continuum
model, a problem that has attracted much interest in recent
times [12,21,22]. Since the quench in the sine-Gordon model
is from a gapped to a critical state, we can rely on the boundary
conformal field theory results of Calabrese and Cardy [12],
which predict that the order parameter will decay as

(bn(1)) ~ e7!/" 4)
at asymptotically long times after the quench. In the above
expression, 7 is related to the size of the gap in the initial
noncritical state (which corresponds to the healing length
of the initial condensate [20]). This behavior bears some
resemblance to the result derived below using bosonization
for the model with long-range hopping in Eq. (1), which is a
stretched exponential for a generic value of « [cf. Eq. (14)].
Indeed, tentatively we may assume that the limit z — 400
corresponding to infinite dimensions is akin to setting k = 1.
Thus, in general, we can regard the role of the parameter
k as controlling the effective dimensionality of the system.
This allows for a study of how long-range phase coherence
is suppressed by fluctuations after an abrupt change in the
dimension of the system.

However, the theory of [12] presumes that (boundary)
conformal field theory is an exact description of the critical
state. This ignores the existence of an infinite set of irrelevant
operators that are responsible for the breaking of the infinite
set of conservation laws that characterize the conformal field
theory. Therefore, Eq. (5) is expected to hold at intermediate
times, only. For longer times, the system will eventually
transition to a different state. However, since ﬁf is anintegrable
model [20], the nature of such a state is not clear at the moment.

III. NUMERICAL RESULTS

We simulate the quench dynamics using the time-dependent
DMRG [23]. Although the prequench Hamiltonian contains
terms involving power-law hopping between distant lattice
sites, which make DMRG calculations less efficient, the
postquench Hamiltonian contains only hopping to nearest
neighbors. Therefore, the efficient time evolution algorithm
based on the Suzuki-Trotter breakup [23] can be employed.
First of all, we prepare the initial state and check that, to
a good approximation, phase coherence holds. In Fig. 1,
we have plotted the spatial average of the single-particle
correlation function ( (13( Jj+ r)m( J))); against the distance
r for different values of « obtained by t-DMRG. As expected,
long-range phase coherence, which manifests itself in a small
variation of the single-particle correlation function, is present
for sufficiently small «. As described above, the initial state is
therefore akin to a Bose gas with short-range hopping and an
effective higher dimensionality.

The condensate fraction g(f) is given by the largest
eigenvalue of the two-particle correlation M; ;(t) =
(W()|bb;|W(1)) divided by the number of bosons N (N = 40
and L = 80 in all the simulations reported below). We take J
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as the unit of energy and set f = 0.1 and V = —1.2 where
J, = fr=™J for r > 2 in Eq. (1). We have observed that
the numerical error accumulates faster for smaller values of
k. For k =1, up to time ¢t ~ 4/J, the results with DMRG
block dimensions M = 600 and 700 are almost identical,
indicating a good convergence for all the values of «. The
unit of time is 1/J (we take A = 1). We have also checked
that conservation of energy holds in this time interval though
small violations <5% are already observed for small ¥ ~ 1 and
t ~4/J.Thetime stepis At = 0.025/J in all simulations. We
have also confirmed that the results using Ar = 0.04/J and
M = 500 also coincide with the data shownuptot ~4.5/J.
Generally speaking, t-DMRG is reliable only for times for
which ¢(z) > 1/N, which also limits the time interval that
can be explored numerically.

With these technical limitations in mind, we plot in Fig. 2
the time evolution of the condensate fraction ¢(¢) for V =
—1.2 and 1 < « < 1.8. The decay is faster as « increases.
Qualitatively this is understood as follows: A larger x means
that the system is closer to the postquench Hamiltonian and
therefore the amount of energy injected into the system by the
quench is smaller.

- - -
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FIG. 2. (Color online) (a) The condensate fraction ¢(¢) for dif-
ferent values of « after a quench of the Hamiltonian Eq. (1) with
L =80 and N = 40. The nearest-neighbor interaction between the
hard-core bosonsis V = —1.2, and the prequench power-law hopping
coefficient is f = 0.1. After the quench the hopping is restricted to
nearest neighbors, which corresponds to the k. — oo limit. (b) Results
of the nonlinear fitting of the t-DMRG results against the function
qiu(t) = qoexp (—yt¢). The fitting was carried out in small time
intervals of length 0.2/J centered at times 0.1/J,0.3/J,...,4.9/J.
The fitted value of the time-dependent exponent c(¢) depicted in the
figure is plotted against the center of each segment. For short («1/J)
times c(¢) is almost 2, as expected in Eq. (15). For intermediate times
~3/J we find qualitative agreement with the analytical prediction
Eq. (14), while for longer times especially for small x an expected
deviation of c(¢) is observed. See text for more details.
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IV. ANALYTICAL RESULTS

In this section, we study the bosonized form of Eq. (1).
To this end, we write b,, = /o + dn, e ~ _/pel?™) and
Am = p+ L0:(xn) + -+, inwhichx,, = m,0(x) (the phase
field) and 9, ¢(x) (the density field) are canonically conjugate
to each other [20]; the mean lattice occupation is p = % (=%
in the numerical simulation of Sec. III). In this section, we
consider a translationally invariant system with L — +o0 and
o = const. In terms of ¢(x) and 6(x), the low-energy effective
Hamiltonian reads

A = %/arxu{[a,ce(x)]2 + K[ ()]}

— ,of dxdx"t(x — x")cos[8(x) — 0(x")], (6)
|x—x'|>a

where v is the sound velocity, K is the Luttinger parameter, and
t(x — x') >~ f/|x — x'|¥ (@ = 1is ashort distance cutoff). The
last term is a nonlinear function of the phase field, 8(x), which
makes the task of computing the ground state by elementary
methods impossible. However, a reasonable approximation to
the ground state of Eq. (6) when the long-range boson hopping
is a relevant (in the renormalization-group sense) perturbation
can be obtained using the self-consistent harmonic approxima-
tion (SCHA) [17], which amounts to replacing the last term in
the right hand-side of Eq. (6) by

1

3 / dxdx'T(x — x)[O(x) — O, (7)
|x—x'|>a

where the function T(x —x’) ~ 1/|x — x’|¥ must be de-
termined variationally [17]. In order to diagonalize the
quadratic Hamiltonian resulting from the SCHA we expand
the phase field as 0(x) = 6y + % + 0O(x) + 6Of(x) with n

the wiAndiAng number, ©(x) = 1 Z#O(ﬁ)l/zsgn(éﬁ 1 by,
and [Eq,l;;] = 8,.4- The resulting Hamiltonian can be diago-

nalized by anew set of boson eigenmodes described by (4, ,&Z ),
and for L — 400 it reads

AT~ Eg+ > w(q)a)a,, (8)
q7#0

where the constant Ej is the ground-state energy and w(q) =
Vg2 +unpT(9)/K. For g <a™', wlg)~T"(g)~
|q|KTfl since T(q) ~ |q|*~! for k < 3.

In the following, we focus on the time evolution at times
t > 0 of the phase field 6(x) under the Hamiltonian A" =
Zq £0 v|q|l§:§l§q corresponding to a 1D Bose gas with short-
range hopping [20]:

0(x.1) = e (x)e~ A 9)
1 < 2 )1/2 P
=) sgn(q)e' ™[~V b,
22 \KlqlL
—etriaipl g, (10)

We emphasize that, within SCHA, (4, ,&I,) and (l;q,f);) are the
eigenmodes of two quadratic Hamiltonians and therefore they
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can be related by a canonical transformation [10]:

Eq =uqdy + vq&T_q, Al

L, = v, +ugal,, (A1)

in which u, = cosh6, and v, = sinh6,, with §, satisfying

2 T K
tanh 20, = —420 = 7P (Q)/TELZL) )
uy +vg vlgl + Tk

In order to compute the evolution of the BEC order
parameter (b (1)) ~ p (€MD) = p e=2* 0.0 we need to
obtain (62(0,1)), where {(...) stands for the average over the
ground state of the SCHA to the initial Hamiltonian, Eq. (1).
Asymptotically, at long times we find

A T1/2
(02(0,0)) — (6%(0,0)) ~ / ag T
1/(ve) q
A 3«
k=5 (vt/ap) 2
~/ aodg lang) S ~ LW
1/(vt) 7

13)

where ap ~ A~' is a short distance cutoff, of the order of
the lattice parameter. Hence, the condensate fraction decays
according to a stretched exponential law:

3—k
2

(b (1)) = Age ™" * | (14)

where y and Ay are positive constants that depend on the
microscopic details of the initial and final Hamiltonians.

In the opposite limit of short times after the quench, the
decay is a Gaussian:

(@5Dy ~ goe P 2 go(1 — Br2), 15)

where the dependence on « appears only through A; > 0 and
B> 0.

V. DISCUSSION

In Fig. 2(b) we compare t-DMRG results and the analytical
predictions described above. We recall that, for short times, we
expect g(t) = qroe_ﬁ’2 with ¢¢ the initial condensate fraction.
The parameter B controls the typical time scale for which

a mean-field approach holds. For intermediate times the
3—«k

theoretical prediction is g(¢) ~ e~"" * . Since the analytical
techniques do not allow an accurate estimation of these
parameters we have fitted the numerical g¢(¢) in small time
intervals of length 0.2/J at times 0.1/J,0.3/J, ...,4.9/J. We
have carried out a nonlinear least-squares fit with a fitting
function gg(f) = goexp (—yt°) where the time-dependent
exponent c(¢) is obtained from the fitted value at the center
of each segment.

We note that the fitting interval is limited by the loss
of accuracy of the t-DMRG method at long times, which
manifests itself in the energy being no longer conserved and the
convergence with m of g(¢) deteriorating rapidly. With these
limitations in mind, the results depicted in Fig. 2(b) show a
reasonably good agreement with the analytical expectations for
the range of « considered. For short times, the local exponent
c(t) = 2, as expected from the analytical approach described
above, while for longer times it decreases below this value.
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For t = 3/J, c(t) shows a clear dependence with x, which
is consistent with the theoretical prediction that c(r) ox 35*
at long times. For longer times, although the calculated
condensate fraction ¢(t) is almost converged with respect to
m, c(t) is not presumably due to the high sensitivity of c(¢) to
the local change of ¢(¢) via the nonlinear fitting process, and
therefore it is not meaningful to compare the values of c(¢)
beyond r ~ 3/J.

However, we note that deviations from the stretched expo-
nential behavior of Eq. (14), obtained from the bosonization
approach of Sec. IV, are also to be expected theoretically. In
fact, in a infinite system, the stretched exponential behavior
shows up during the prethermalized regime [22,24,25]. In

such a regime, the phonons described by {l;q,l;ji}, which
are the low-energy elementary excitations of the postquench
Hamiltonian, H, propagate ballistically. However, at longer
times, the phonons will scatter each other, which should lead
to a different decay of the BEC fraction [22]. The calculation
of this behavior is beyond the scope of this work, as it requires
taking into account an infinite number of irrelevant operators
that are neglected in the bosonization approach. Furthermore,
we have not been able to determine whether the observed
deviations from the subexponential behavior are due to the
approximate treatment of the initial state and to the neglect
of the open boundaries and finite-size effects, which are
inevitably present in the DMRG simulations.

For even longer times, we also expect that the destruction
of the initial BEC will be driven not only by the phonons
but also by topological excitations known as phase slips. The
latter are instantons, i.e., topological defects in imaginary time.
Qualitatively, we expect the inverse Kibble-Zurek (KZ) [26,27]
mechanism, similar to the phenomenon studied recently in [28]
in the context of a classical quench in a two-dimensional
Bose gas. According to the KZ scenario, after a quench, from
a disordered phase, topological fluctuations are expected to
survive for a long time in the final ordered phase. In the inverse
KZ scenario the quench is from the ordered to disordered
phase. The resulting dynamics is characterized [28] by a
supercooled phase for short times and a slow proliferation of
vortices for longer times that leads to an unexpected resilience
of the superfluid state.

VI. CONCLUSION

Using a combination of time-dependent DMRG and bosoniza-
tion, we have studied the destruction of the Bose-Einstein
condensate (BEC) in a one-dimensional Bose gas following
a quench in the range of the hopping amplitude. We have
argued that this is akin to a dimensionality quench, as
the exponent characterizing the range of the hopping in
the prequench Hamiltonian plays the role of an effective
(noninteger) dimensionality d > 1.

Our main result is the identification of two distinct regimes
for the destruction of the Bose-Einstein condensate (BEC) after
the quench in the effective dimensionality quench described
above. At short times, we find a decrease of the BEC fraction
of the form ¢(t) = qoe”s’2 ~ go(1 — Bt?), where gg is the
initial BEC fraction and B8 > 0 is a constant. At longer
times, this behavior crosses over to a different kind of time
dependence. From a bosonization approach (see Sec. IV), we

PHYSICAL REVIEW A 90, 053618 (2014)

find a subexponential behavior g(r) ~ e " with § = 3%'{,

with ¥ > 0 and « the power-law hopping exponent which
is directly related to the initial effective dimensionality of the
condensate. This behavior appears to be consistent with the
behavior of g(¢) obtained from the time-dependent DMRG
calculations described in Sec. III. We note, however, that our
theoretical approach is expected to break down for sufficiently
long times due to the phonon scattering and the proliferations
of phase slips.
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APPENDIX: CONVERGENCE CHECK OF THE
t-DMRG SIMULATION

We discuss here our observations on the numerical simula-
tion of the real-time evolution of a state under the postquench
Hamiltonian. In this work, we apply the time-dependent
DMRG method to study the evolution of the single-particle
correlation governed by ﬁf, defined by Eq. (3), after the
power-law hopping terms are dropped from H, defined by
Eq. (1), at t = 0. The accuracy of the t-DMRG simulation for
a given system is governed by the number of retained states per
block M and the simulation step in real time At. The accuracy
also depends on the parameter values, even if the system size
is fixed, because the magnitude of the effect of the quench
on the ground state of H; depends on the exponent « and the
prefactor f of the power-law hopping terms, and the typical
time scale of the excitations in this prequench state to travel
on the lattice depends on the nearest-neighbor interaction V,
which is still present in the postquench Hamiltonian H.

The typical time scale of the dynamics should be governed
by the inverse of the speed of sound v, which in turn is
determined, along with the Luttinger parameter K , by the value
of V.For V < 0, as |V]isincreased, v is decreased. Therefore,
in asystem with alarger | V|, the condensate should decay more
slowly. The ground state of the postquench Hamiltonian, H,
at half filling has a density wave order for V < —2 [29]. In the
following we discuss the dependence of the dynamics on the
choice of V within (—2,0).
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FIG. 3. (Color online) Top: The calculated condensate fraction
q(t = 0) (left axis) as a function of the nearest-neighbor interaction
V, for I-Z with f =0.1 and ¥ = 1,1.2,1.5,1.8 and the postquench
Hamiltonian H; (short-range model), with L =80 and N = 40.
Bottom: The energy of the prequench Hamiltonian ground-state wave
function |W(r = 0)) evaluated by the postquench Hamiltonian H,
(W(r = 0)|H;|W(r = 0)), as a function of V. Atleast M = 500 states
have been preserved in the final finite-size system loops of the DMRG
calculation.

The calculated condensate fraction g(¢ = 0) for the ground
state |W(r = 0)) of H; and the energy of this state for
the postquench Hamiltonian H;, (¥(t = 0)|He|W(r = 0)), is
plotted for various values of ¥ and f = 0.1 and for the
short-range case (H; = H;, which can be understood as the
kK — 00 or f — O limit of H;) in Fig. 3. We observe that
the condensate fraction is larger for larger |V| and smaller
k as expected, while for the short-range case the calculated
condensate fraction is peaked around V = —1.96 before it
quickly plunges as V = —2 is approached. We note that
the condensate fraction is finite in the short-range case only
because the system size is finite, and we expect it to remain
finite in the L — oo limit for ¥ < 2 as has been discussed in
the main text, though the actual value would be smaller for
larger systems due to the reduction of the finite-size effect.

1. Convergence of the initial state

In Fig. 4 we plot the calculated initial condensate fraction
g(t =0) and the energy H;, (¥(r = 0)|H;|W( =0)) as
functions of the number of states preserved in each step
of the initial finite-system DMRG calculation, for f = 0.1,
k=1, and V =—1.9,—-0.2. We expect greater numerical
difficulty for smaller «, because distant pairs of sites are more
strongly entangled due to the power-law hopping term in H;,
which hinders convergence in DMRG. The results indicate
that the results are well converged for M 2 300. The slower
convergence for smaller |V| = 0.2, we believe, is due to the
larger entanglement between distant locations on the system
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FIG. 4. (Color online) Top: The energy of the initial state evalu-
ated by the postquench Hamiltonian, (W (r = O)|I:If|lI/(t =0)) (left
axis), and the calculated condensate fraction as functions of the
number of states M kept in the initial DMRG calculation for
L =80, N=40, f =0.1, « =1, V= —1.9. Bottom: The same
for V. = —0.2. Note that the calculated energy is not necessarily a
decreasing function of M even while DMRG is a variational method,
because the accuracy depends both on the accuracy of |V (¢ = 0)) and
the representation of Hy obtained in the DMRG calculation.

due to the larger speed of sound v, and we expect better
convergence for |V| > 0.2.

2. Energy conservation for V = —1.2

The energy E(t) = (\IJ(t)|FIf|\IJ(t)) should be a constant of
the time ¢ because the wave function undergoes a unitary time
evolution after the quench, |W(r)) = exp(i I:Ift)llll(t =0));
however, in the numerical simulation, as the error accumulates,
the energy is not fully conserved. Note that for any normalized
state vector |W(¢)) the energy E(¢) should satisfy E(t) > Eo,
in which Ej is the ground-state energy for H;. In our system,
we observe that E(f) starts to rapidly increase after some
time, earlier for smaller x and smaller M. We have observed
that this time roughly corresponds to the time at which the
calculated time-dependent exponent c(¢) starts to deviate from

T T y T T T 4 T
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FIG. 5. (Color online) The calculated energy E(¢) as a function
of time for L =80, N =40, f =0.1, and V = —1.2, for various
values of (k, M) and the short-range limit.
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FIG. 6. (Color online) Top: The calculated condensate fraction as
functions of time, for x = 1.2,1.5,1.8 and M = 500,600,800 states
retained, for L =80, N =40, f =0.1, V = —1.9. Bottom: The
energy, calculated as (WA > 0)|W(r)), as functions of time for
same sets of values of x and M.

that obtained with a larger M (see Fig. 2), and for V = —1.2
and 300 < M < 800, as observed in Fig. 3, it also almost
coincides with the time at which g(¢) reaches the condensate
fraction of the short-range model.

3. The case with a larger value of |V|: V = —1.9

For V = —1.9, whichis close to the density wave transition,
v is small and the condensate takes a long time to decay. The
results are converged only up to t ~ 5/J for k = 1.2, beyond
which time the conservation of the energy E(t) is significantly
violated. Between M = 500 and 800, the separation between
the plotted values of ¢(¢) in Fig. 6 is significant for r > 6/J,
and larger for smaller «. Correspondingly, E(¢) starts to
increase around ¢ = 5/J. The onset of this increase is not much
delayed by increasing M, which suggests that it is numerically
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FIG. 7. (Color online) (a) and (b) Same as the corresponding
parts in Fig. 2 except that V = —0.8 is used here. (c) The energy
E(t) = (W()|H;|W(r)), as functions of time for same sets of values
of k and m.

challenging to extend the time range of converged simulation
for V.~ —1.09.

4. The case with a smaller value of |[V|: V = —0.8

As observed in Fig. 7 with V = —0.8, for a smaller value
of | V| compared to the one in the main text of this manuscript,
V = —1.2, the dynamics is faster in time. However, the error
accumulates faster for a faster dynamics. Significant increase
in E(t) and deviation between the values of g(¢) calculated
with M = 600 and 700 are already visible around t = 3/J.

In summary, while the convergence of our t-DMRG
simulations is limited in the time range for larger |V|, all
results obtained consistently indicate the crossover from the
initial Gaussian-like decay of the condensate to a subsequent
stretched exponential decay which is faster for smaller values
of k.
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