1	Ontogenetic habitat shifts of green turtles (<i>Chelonia mydas</i>) suggested by the size modality
2	in foraging aggregations along the coasts of the western Japanese main islands
3	
4	Tomoko Hamabata ^a , Tsutomu Hikida ^a , Kei Okamoto ^b , Saya Watanabe ^c and Naoki
5	Kamezaki ^{d, e}
6	
7	^a Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto
8	606-8502, Japan
9	
10	Orido, Shimizu, Shizuoka, Shizuoka 424-0902, Japan
11	^c Sea Turtle Association of Japan, 5-17-18 Nagaomotomachi Hirakata, Osaka 573-0163,
13	Japan
14 15 16	^d Suma Aqualife Park Kobe, 1-3-5 Wakamiyacho Suma, Kobe, Hyogo 654-0049, Japan
17	^e Faculty of Biosphere-Geosphere Science, Okayama University of Science, 1-1 Ridai-mae
18	Kita, Okayama, Okayama 700-0005, Japan
19	
20	
21	Corresponding author: T. Hamabata
22	E mail: <u>hamabata@zoo.zool.kyoto-u.ac.jp</u>
23	Phone: +81-75-753-4091; Fax: +81-75-753-4114

To understand the life histories and ontogenetic habitat utilization of green turtles along the 26coasts of the western Japanese main islands, we collected size frequency and genetic data of 27green turtles captured by pound nets in three foraging grounds (FG): Nomaike (n = 38), 2829Muroto (n = 93), and Kumano-nada (n = 31), and compared their natal origins among 30 different size classes. Population genetic analyses based on an 820-bp fragment of mitochondrial DNA showed that the three FG were part of a single multiple-coast FG. 31 32Although turtles from all size classes originated mainly from rookeries in the Ogasawara 33 Group, the size distributions clearly exhibited bimodality, with low occurrences of turtles in the 50–70-cm straight carapace length (SCL) range. The bimodal size distributions could 34 not be attributed to demographic shifts in rookeries, because the number of female green 35turtles in Ogasawara has exhibited an increasing trend since 1979. We also examined 36 37 whether factors such as seasonality and predation risk could have caused the size bimodality. 38 There were, however, no strong relationships between sea-surface temperatures when turtles were captured and the sizes of the turtles ($r^2 < 0.2$), and it appeared that predation risk 39 could not result in the size modality observed in the FG. Our results strongly suggest that 40 after switching from a pelagic to a neritic lifestyle, the green turtles in the neritic FG along 41 the western Japanese main islands undergo another ontogenetic habitat shift upon reaching 42~50-cm SCL. Here, we explore the possibility that developmental growth might stimulate a 43

45	green turtle.
46	
47	Keywords
48	Size distribution, Foraging ground, Ontogenetic habitat shift, Green turtle, Development
49	change
50	
51	Abbreviations
52	FG: Foraging ground
53	MSA: Mixed Stock Analysis
54	mtDNA: Mitochondrial DNA
55	SCL: Straight carapace length
56	SST: Sea surface temperature
57	RMU : Regional Management Unit
58	
59	1. Introduction
60	The green turtle (Chelonia mydas) has a circumglobal distribution and is highly migrate
61	and long-lived. It is believed that in its typical life cycle, after hatching on beaches the gre

habitat shift, resulting in habitat differentiations by size and growth phase in the long-lived

- Ζ

- tal

turtle spends several years in the oceanic environment in its pelagic stage before moving

- back into the neritic zone (neritic stage), where its major food sources, seagrass and sea
- algal beds, are distributed (Bolten, 2003). Although this typical life cycle suits some
- populations, several studies have revealed that green turtles have non-homogenous

66	lifestyles, and may exhibit diversity or plasticity in behavior, food resources, and timing of
67	ontogenetic dietary and habitat shifts among populations, regions, and individuals (e.g.,
68	Burkholder et al., 2011; Cardona et al., 2009; González Carman et al., 2012; Hatase et al.,
69	2006; Hays et al., 2002; Parker et al., 2011). This lifestyle diversity suggests that the
70	ecologies and life histories of green turtles may vary depending on their local environments,
71	the availability of resources, and their biological requirements.
72	Foraging grounds (FG), where green turtles aggregate and spend the vast majority
73	of their life spans, are some of the most important areas for understanding their ecology,
74	migration, and life history. Previous studies have constructed hypothetical scenarios of the
75	foraging aggregation processes of marine turtles by using mixed-stock analysis (MSA),
76	estimating the contributions of various source rookeries to FG based on the haplotype
77	compositions of mitochondrial DNA (mtDNA) in rookeries and FG (reviewed by Jensen et
78	al., 2013). Many studies have focused on the early passive recruitment to neritic FG after the
79	pelagic stage and proposed factors that might influence foraging aggregation, such as
80	distance from rookeries (Bass and Witzell, 2000), relative sizes of rookeries (Lahanas et al.,
81	1998), and oceanic currents (Bass et al., 2006). Yet in some FG, immature turtles were
82	thought to have migrated from their initial FG to suitable FG closer to their natal rookeries
83	(Luke et al., 2004).

As suggested by several mechanisms proposed above, green turtle size distribution

85	data in FG have also demonstrated that the timing of habitat shifts and patterns of habitat use
86	are varied and complex across regions, even after the shift from a pelagic to a neritic
87	lifestyle. For example, in Atlantic sites many green turtle FG are dominated by immature
88	turtles, and some FG are shared seasonally with migratory adults (Meylan et al., 2011). Also,
89	evidence from the direct tracking of the developmental migrations of large immature green
90	turtles in the Atlantic has shown that they can actively swim among different FG (Godley et
91	al., 2003). In contrast, the FG in Pacific sites have well mixed compositions of adult and
92	immature turtles year-round (Balazs, 1980; Limpus et al., 2005; Sterling et al., 2013). These
93	mixed-size compositions were believed to be a result of their long-term strong fidelity to
94	their foraging areas based on mark and recapture studies that showed limited movement
95	between FG (Limpus et al., 1992). One study conducted MSA in the green turtle FG of the
96	Torres Strait, in the southwestern Pacific, however, demonstrated that the contributions of
97	source rookeries varied between the juveniles and the adults, suggesting either
98	developmental migration by juveniles, or demographic shifts due to reduced hatching
99	success at source rookeries (Jensen, 2010). Moreover, at Palmyra Atoll, in the central
100	Pacific, discrepancies between the directions of oceanic currents and the distributions of
101	haplotype data suggested that biological processes may be important factors driving green
102	turtle foraging aggregation (Naro-Maciel et al., 2014). These results indicate that foraging
103	aggregations were not always governed by the passive early recruitments. Thus, detailed

investigations of the composition and dynamics of each foraging aggregation, as well as
information on the source rookeries, are critical for revealing the main influences on the
lifestyle, ecology, and migration of this species.

Distributions of foraging green turtles on the coasts of the Japanese main islands in 107 108 the northwestern Pacific, were determined based on incidental catch by coastal net fisheries, 109direct observation, and coastal stranding data (Kameda and Ishihara, 2009; Kamezaki et al., 2007; Okamoto et al., 2011; Shimada, 2009). Previous studies using MSA have revealed 110 that green turtles in foraging aggregations along the Japanese main islands originate 111 primarily from rookeries in the Ogasawara Group, the largest nesting site in Japan 112(Nishizawa et al., 2014, 2013). Foraging aggregations, however, have been described 113114 without regard to population dynamics, because available data on the size compositions of foraging green turtles around the Japanese main islands were limited (e.g., Okamoto et al., 1151162011). Here we describe the size compositions of green turtle foraging aggregations around the western Japanese main islands, discuss how these foraging aggregations were formed, 117and provide new insights into foraging aggregation dynamics and the factors affecting the 118ontogenetic habitat shifts of green turtles. 119

120

121 **2. Materials and methods**

122 2.1. Descriptions of the study sites and sample collection

123	The Japanese main islands are all situated beyond the northern limit of the female green
124	turtles' nesting sites in the North Pacific, and green turtles distributed along these coasts are
125	therefore considered to be aggregated for the purpose of foraging. Our data set consists of
126	the aggregations from three FG located in the coastal areas of the western Japanese main
127	islands: Nomaike FG (31°25'N, 130°08'E), Muroto FG (33°15'N, 134°11'E), and
128	Kumano-nada FG (34°07'N, 136°27'E) (Fig. 1A). The Nomaike FG was located on the
129	southwestern coast of Kyushu Island. The pound net used at Nomaike was set at a depth of
130	27 m in the inner bay. The Muroto FG was located on the southeastern coast of Shikoku
131	Island. Our samples from the Muroto FG were taken from individuals captured in three
132	pound nets located within an 8-km area near the tip of the Cape. These pound nets were set
133	at depths ranging from 35-78 m, near the edge of the narrow continental shelf. The
134	Kumano-nada FG was located at the west side of the Kii Peninsula, in the central part of the
135	Pacific coast of the Japanese main island. These pound nets were set at depths of ~60 m in
136	the ria coasts.

137 Tissue samples were collected from green turtles captured from the three FG from 138 2004 to 2012 (Table 1, n = 162): 38 turtles from the Nomaike FG, 93 turtles from the Muroto 139 FG, and 31 turtles from the Kumano-nada FG. All turtles from the Nomaike FG and 59 140 turtles from the Muroto FG were previously examined by Hamabata et al. (2009). Twelve 141 turtles previously examined by Hamabata et al. (2009) that were listed as samples from

142	Owase were regarded as samples from the Kumano-nada FG in this study, as Owase is a part
143	of Kumano-nada. Two turtles from the Muroto FG and two from the Kumano-nada FG were
144	the same individuals as used in a morphological study by Okamoto and Kamezaki (2014);
145	these four turtles correspond to ID nos. 8–11 in Okamoto and Kamezaki (2014; Appendix 1).
146	Living turtles were released after the attachment of plastic tags, Inconel tags, or both, and
147	multiple samples from the same individual were avoided. Size frequency structures were
148	constructed based on the straight carapace length (SCL). The relationship between water
149	temperature and the sizes of turtles aggregating in FG were examined by regression analysis.
150	Sea surface temperature (SST) data were used for water temperature. We obtained the SST
151	data from the Japan Oceanographic Data Center website
152	(http://www.jodc.go.jp/index_j.html), the Kochi Prefectural Fisheries Experiment Station
153	(http://www.suisan.tosa.pref.kochi.lg.jp/kaikyo_inf/show), and the Mie Prefectural
154	Fisheries Research Institute (http://www.mpstpc.pref.mie.lg.jp/SUI/kaikyo/index.htm). For
155	size analyses, the turtles from each FG were grouped into three size classes: i) SCL < 50 cm;
156	ii) 50 cm \leq SCL $<$ 70 cm; and iii) SCL \geq 70 cm. These size groupings were arbitrarily
157	defined, with consideration of the shapes of the size distributions.

159 2.2. Molecular techniques and haplotype determination

160 Skin or muscle samples were preserved in 99% ethanol until laboratory analysis. We

161	isolated DNA from skin or muscle samples by phenol/chloroform extraction or DNeasy
162	Blood and Tissue Kits (QIAGEN). Polymerase chain reaction (PCR) was performed using
163	the primers LCM15382 and H950 (Abreu-Grobois et al., 2006), designed to target an
164	820-bp fragment containing partial sequence of the tRNA ^{Pro} gene and the 5' end of the
165	control region of the mtDNA genome. For each PCR, $1-2 \mu l$ of template DNA was used in a
166	12.5- or 15.0- μ l reaction volume under the following conditions: hot start at 94°C for 3 min;
167	35–40 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 60 s; a final extension at 72°C for
168	3 min; and then storage at 4°C. Sequences were obtained using an ABI model 3130xl
169	(Applied Biosystems Inc.) sequencer, with all variable positions confirmed by comparing
170	sequences from the forward and reverse strands. Sequences were assembled using DNA
171	BASER (Heracle Biosoft S.R.L), and aligned with Muscle in MEGA 6 (Tamura et al., 2013).
172	We sequenced all 162 samples, because short fragments of haplotypes (500-bp) were used
173	in the previous study by Hamabata et al. (2009). Sequences were compared to previously
174	described haplotypes based on 380-bp, 500-bp, and >700-bp fragments of the mtDNA
175	control region reported by Chassin-Noria et al. (2004), Cheng et al. (2008), Dethmers et al.
176	(2006, 2010), Dutton et al. (2008), Hamabata et al. (2009, 2014), Nishizawa et al. (2010,
177	2011, 2013, 2014), and Norman et al. (1994). The standardized haplotype names for the
178	Indo-Pacific region were assigned to new sequences.

181	Haplotype diversity (<i>h</i>) and nucleotide diversity (π) were estimated for each FG and each
182	size class of the FG using ALREQUIN V.3.5. (Excoffier and Lischer, 2010) based on
183	380-bp sequences, to compare our results with FG from previous studies. Annual variations
184	were examined in the Muroto and Kumano-nada FG (Muroto FG: $n = 37$ in 2005, $n = 9$ in
185	2006, n = 25 in 2007, and n = 17 in 2008; Kumano-nada FG, n = 14 in 2004, n = 3 in 2005,
186	n = 6 in 2008, and $n = 8$ in 2009). Five turtles in the Muroto FG ($n = 1$ in 2004, $n = 2$ in 2009,
187	and $n = 2$ in 2011) were excluded from this analysis due to the small sample sizes for annual
188	comparisons. Annual variations were not examined in the Nomaike FG because all samples
189	were collected in 2004. To examine seasonal variations within the FG, turtles were grouped
190	based on two different SST as follows: i) $SST < 20^{\circ}C$ (n = 15 in the Muroto FG, n = 9 in the
191	Kumano-nada FG) and SST $\ge 20^{\circ}$ C (n = 78 in the Muroto FG, n = 22 in the Kumano-nada
192	FG), and ii) SST $<25^\circ C$ (n = 6 in Nomaike FG, n = 56 in Muroto FG, n = 16 in
193	Kumano-nada FG) and SST \geq 25°C (n = 32 in Nomaike FG, n = 37 in Muroto FG, n = 15 in
194	Kumano-nada FG). In the Nomaike FG, only one turtle was captured at a SST $< 20^{\circ}$ C.
195	Therefore, the Nomaike FG was excluded from the former analysis. Annual and seasonal
196	variations were examined by exact tests of population differentiation (Raymond and
197	Rousset, 1995) using a Markov chain length of 500,000 steps with 10,000 dememorization
198	steps, implemented in ARLEQUIN.

199	Genetic data from the three FG examined in this study were also compared by
200	exact tests with data from four other FG around Japan: Yaeyama and Ginoza in the Ryukyus,
201	and Kanto and Sanriku in the eastern Japanese main islands (Nishizawa et al., 2013, 2014).
202	The comparisons were conducted using shorter sequences, truncated to ~380 bp. The
203	p-values of the multiple comparisons were corrected using the B-Y method (Benjamini and
204	Yekutieli, 2001).
205	
206	2.4. Mixed-stock analyses
207	We performed MSA on pooled size group data from the Nomaike, Muroto, and
208	Kumano-nada FG, because no significant differences were observed between the same size
209	classes among the three FG. Following Naro-Maciel et al. (2014), potential source rookeries
210	outside of the northwestern Pacific were classified under the following regional
211	management units (RMU) developed by Wallace et al. (2010): Hawaii, Eastern Pacific,
212	Western and South Central Pacific, Southwestern Pacific, Eastern Indian, and Southeast
213	Asia. The Northwestern Pacific RMU was divided into the following four regions for a
214	more detailed investigation: the Taiwan and Hong Kong, Yaeyama, Central Ryukyu, and
215	Ogasawara regional groups of rookeries (Fig. 1B). Haplotype data for the above rookeries
216	were derived from Dethmers et al. (2006), Dutton et al. (2008), Chassin-Noria et al. (2004),

217 Cheng et al. (2008), Hamabata et al. (2014), Nishizawa et al. (2011, 2013), Ng et al. (2014),

218	and Naro-Maciel et al. (2014). Additional data from four female turtles nested on the
219	northwestern Amami Oshima Island, Central Ryukyus, in 2013, were also included for
220	analysis (all four females possessed haplotype CmP39.1). The rookery size data for the
221	MSA were obtained from Amorocho et al. (2012), Cheng et al. (2008), Dethmers et al.
222	(2006), Maison et al. (2010), and Hamabata et al. (2014). Following Nishizawa et al. (2013,
223	2014), MSA estimations were conducted in two ways using Bayesian methods:
224	many-to-one (M2O) analysis using the program BAYES, which examines each size class of
225	the combined FG independently (Pella and Masuda, 2001), and many-to-many (M2M)
226	analysis using the software package R which enables the estimation of multiple FG
227	simultaneously (Bolker et al., 2007). In the M2M analyses we included the data from four
228	other FG around Japan: the Yaeyama, Ginoza, Kanto, and Sanriku FG (Nishizawa et al.,
229	2013, 2014). Both methods were carried out under two priors: (1) uninformative priors
230	assumed that each rookery had the same likelihood of contributing individuals to the
231	foraging aggregations (M2O ₁ and M2M ₁), and (2) informative priors incorporated the
232	relative size of each rookery (M2O $_2$ and M2M $_2$). For the M2O analyses, six chains,
233	corresponding to potentially contributing sources, were run with 20,000 Markov chain
234	Monte Carlo (MCMC) steps and a burn-in of 10,000 runs to calculate the posterior
235	distribution. For the M2M analyses, six chains were run with 50,000 MCMC steps and a
236	burn-in of 25,000 runs. The Gelman and Rubin shrink factor diagnostic was calculated to

237	test that the posterior probability distribution of all chains had converged (shrink factor <
238	1.2). Orphan haplotypes, defined as haplotypes observed only in the foraging grounds and
239	not in any of the nesting rookeries, were removed from the analyses.
240	
241	3. Results
242	3.1. Size compositions
243	The sizes of turtles in the Nomaike, Muroto, and Kumano-nada FG ranged from 40.6 to 96.7,
244	37.2 to 105.2, and 37.3 to 95.4 cm SCL, respectively. All size distributions (three individual
245	distributions and one pooled distribution), plotted in 5-cm increments, did not exhibit
246	bell-shaped curves, but bimodal size distributions, with peaks in the 45–49.9-cm range, and
247	either the 70–74.9- or 75–79.9-cm range (Fig. 2). There was no strong relationship between
248	SST and SCL ($r^2 < 0.2$, Fig. 3).
249	
250	3.2. Haplotype composition, genetic diversity, and differentiation
251	Twenty-seven 820-bp haplotypes were identified from a total of 162 samples from green
252	turtle FG around the Japanese main islands (Table 1). Twenty-three haplotypes matched
253	previously reported shorter haplotypes (380- or 500-bp), and 16 matched previously

- 254 identified longer haplotypes (>700-bp). Two haplotypes did not match any previously
- 255 identified sequences, and were assigned standardized haplotype designations. One new

256	haplotype, found in the Kumano-nada FG, differed from CmP50.1 by one base pair, and was
257	assigned the name CmP210.1 (GenBank accession no. AB896707). The other new
258	haplotype, found in the Muroto FG, was characterized by a 10-bp insertion difference from
259	CmP39.1, and has been assigned the name CmP208.1 (GenBank accession no. AB896708).
260	The Hawaiian and Eastern Pacific haplotypes (CmP4.1, CmP6.1, and CmP15.1) were
261	observed in the Muroto and Kumano-nada FG (Table 1). Orphan haplotypes (CmP51.1,
262	CmP79.1, CmP93.1, CmP122.1, CmP131.1, CmP208.1.1, CmP210.1.1, CmP213.1) made
263	up 6.8% ($n = 11$) of the total sample population. Both the haplotype and nucleotide diversity
264	in the Muroto FG and the haplotype diversity in the Kumano-nada FG were highest in the
265	50–70-cm SCL class despite the smaller sample sizes than the other size classes; however,
266	the nucleotide diversities of the 50-70 cm SCL classes in the Nomaike and Kumano-nada
267	FG were lower than those of the other size classes, showing no consistent pattern in
268	diversity indices (Table 2). The diversity of the total sample population was similar to that
269	of the Sanriku FG, and lower than the other FG in the Ryukyus and Kanto (Table 2).
270	Neither annual nor seasonal variations were observed in any of the FG (annual: p >
271	0.055, and seasonal $p > 0.482$). Exact tests revealed that significant population
272	differentiation occurred between the FG in the Ryukyus (Yaeyama and Ginoza) and the
273	Muroto and Kumano-nada FG, but no significant differences were observed among the
274	Nomaike, Muroto, and Kumano-nada FG (Table 3). In addition, significant population

275	differentiations were supported between the Kumano-nada and Kanto FG by the exact tests,
276	even after the correction for multiple comparisons (Table 3), but no significance was
277	observed among the three FG of the present study and the Sanriku FG, which was more
278	distant than the Kanto FG. Although a significant difference was observed between the
279	50–70-cm SCL class of the Muroto FG and the $>$ 70-cm SCL class of the Kumano-nada FG,
280	the difference was absent after correction for multiple comparisons (Table 4).
281	
282	3.3. Mixed-stock analyses
283	All estimations by MSA indicated that in the FG of the western Japanese main islands, many
284	turtles in all size classes originated from rookeries in the Ogasawara Group, although the
285	proportion decreased in M2M analyses, especially in M2M of the 50-70-cm SCL classes
286	(Fig. 4). While the contributions from the Northwestern Pacific rookeries (the Taiwan,
287	Hong Kong, Yaeyama, and central Ryukyu rookeries) were very small in the M2O analyses
288	(the lower limits of 95% probability intervals included zero), in M2M the 95% probability
289	intervals of these rookeries were larger (Fig. 4). The probability intervals were broader in
290	the M2M of the 50–70-cm SCL classes (Fig. 4).
291	

292 **4. Discussion**

293 4.1. Genetic structure of the foraging aggregations along the Japanese coasts

294	The non-differentiation of genetic compositions among the three FG examined in the
295	present study suggests that turtles migrate among the coasts of the western Japanese main
296	islands as if they constitute a single foraging site. This is supported by a report that one
297	turtle tagged at the Kumano-nada FG on 3 November 2005 was recaptured at the Muroto
298	FG eleven days later (Okamoto and Kamezaki, 2014). Our additional population genetic
299	analyses highlighted significant differences between the Yaeyama FG and all FG along the
300	Japanese main islands. Yet, the extent of the multiple-coast foraging site was unclear,
301	because the significant differences did not show a clear pattern. For example, the
302	Kumano-nada FG was not significantly differentiated from the Sanriku FG, but was
303	significantly differentiated from the closer Kanto FG. These results suggested that the
304	boundaries among the FG were complex or that more samples are needed to reveal the
305	boundaries conclusively.

307 4.2. Size compositions in the FG and population trends in the natal region

The range of SCL in the present study indicated that green turtles in various growing stages aggregate around the Japanese main islands. The mixed-size compositions of all three FG in the present study were consistent with size ranges from other FG in the Pacific. The smallest turtles in the three FG were ~40 cm SCL. This size is similar to that at which pelagic juveniles in the Pacific appear to switch to a neritic lifestyle (e.g., Balazs, 1980; Limpus et

313	al., 2005). The size distributions of the three FG, however, clearly demonstrated a
314	characteristic bimodality with a low frequency of turtles of 50-70 cm SCL, similar to
315	reports from FG in Shoalwater Bay in eastern Australia (Limpus et al., 2005), and in eastern
316	Taiwan (Cheng and Chen, 1997). Bresette et al. (2010) also reported a bimodal size
317	distribution of pooled green turtles from Mooney Harbor and the eastern Quicksands, west
318	of Key West, Florida, USA, although the bimodality was not noted in their study.
319	Interestingly, the peak sizes of the present size distributions were consistent among all three
320	FG. Some FG in the Atlantic are seasonally shared by immature and adult green turtles, and
321	their size compositions could change temporarily to be similar to a bimodal distribution
322	(Meylan et al., 2011). The bimodality of the present study, however, was not a result of
323	seasonal sharing among turtles in different life stages, as both smaller and larger turtles were
324	captured in various sea surface temperatures.
325	One of the most important factors affecting the population demographics was the
326	number of births in the rookeries. The estimations by MSA indicated that in the three FG of
327	the present study, the main natal origin of turtles of all size groups was the Ogasawara
328	Group, although some turtles from the central Ryukyu and Yaeyama rookeries were also
329	observed in the FG. Therefore, variations in the numbers of births in Japan, especially

Ogasawara, the largest nesting site in Japan and the predominant source for the present FG,

331 would substantially affect the demographics of these foraging aggregations. The number of

332	nests in the Ogasawara Group has been monitored since 1979 and demonstrated an
333	increasing trend up to 2005 (Chaloupka et al., 2008; Yamaguchi et al., 2005). The precise
334	age to reach ~50 cm SCL has not been estimated for wild green turtles born in the
335	Ogasawara Group; however, based on estimates from other Pacific regions that females
336	reach sexual maturity at around 20-40 years (Zug et al., 2002), an increasing number of
337	nests over the past 25 years would not result in such SCL bimodality. In addition, although
338	mortality during the pelagic life stage or in the FG could influence the size compositions of
339	foraging aggregations, in the past decades no specific factors that could have increased the
340	mortality of green turtles in the pelagic stage or in the FG are known. Therefore, there is no
341	reason to believe that the bimodal size compositions of the three FG reflects skewed
342	population demographics in which green turtles of 50–70 cm SCL were less abundant in the
343	wild. Presumably, the size modality is attributable to location shifts by turtles of ~50-cm
344	SCL into habitats that were not sampled, as indicated by data from the Shoalwater Bay,
345	where over 18 years of sampling adults were captured at a higher frequency than late-stage
346	juveniles (Limpus et al., 2005).

348 4.3. Possible factors contributing to the bimodal size distributions

349 What factors could cause green turtles to choose their habitat locations according to their

350 sizes? In several FG, green turtles were known to demonstrate size-partitioning of habitats

351	as a result juveniles inhabiting shallower waters, and larger turtles inhabiting deeper water
352	(Balazs, 1980; Bresette et al., 2010; Koch et al., 2007; Limpus et al., 2005;
353	López-Mendilaharsu et al., 2005). Such size-partitioning of habitats has been explained by
354	the minimization of predation risk. Yet, all pound nets in our study sites were set at depths
355	deep enough (> 27 m) for large predators such as sharks to approach turtles of all sizes. Thus,
356	the differences in predation risk among sizes probably did not cause the bimodality.
357	We speculate that a developmental change, which commonly occurs in green
358	turtles, could have stimulated habitat shifts in some FG based on the evidence that low
359	occurrences of turtles in the 50–70-cm SCL range were common in all of the FG exhibiting
360	bimodal size distributions. The size range of 50–70 cm SCL corresponds to an accelerated
361	somatic growth phase that occurs before the sub-adult stage (Chaloupka et al., 2004). The
362	requirement for food resources at this stage is probably increased compared to younger
363	stages, resulting in increased competition within the habitat. Meylan et al. (2011) surmised
364	that in the Atlantic, FG dominated by immature turtles formed because immature green
365	turtles were avoiding intraspecific competition with adults, as green turtles showed
366	density-dependent growth, indicating that intraspecific competition can limit the growth
367	rate (Bjorndal et al., 2000). Similarly, in some FG, the developmental change that is
368	characteristically observed in green turtles upon reaching ~50-cm SCL may drive them to
369	depart to other FG, where they can maintain their growth rate by avoiding intraspecific

370 competition with turtles of other size classes. The possibility of habitat shifts corresponding to developmental growth has been reported in Kemp's ridley turtles, Lepidochelys kempii 371 (Schmid et al. 2003). At present, there is no evidence to support this hypothesis or data 372 showing conditional differences, such as higher intraspecific competition in the three FG 373 374from the present study than in other FG with unimodal size distributions. Future studies 375examining to which location the 50-70-cm SCL turtles move and evaluating differences in 376 the growth rates between unimodal and bimodal FG are needed to verify size-specific habitat preferences and ontogenetic habitat shifts. Nevertheless, our results strongly suggest 377 378 that developmental growth in green turtles can cause shifts in habitat selection. It is likely that the green turtle foraging aggregations along the coasts of the western Japanese main 379 islands are not maintained by long-term residents, but by periodic and continually dynamic 380 populations resulting from ontogenetic habitat shifts. 381

382

383 Acknowledgments

We thank Takaoka, Shiina, Mitsu, Shirose, and Haida pound net fishery associations, Shimakatsu pound net association Co., Ltd., S. Yamashita, N. Yamashita, and K. Miyauchi for their cooperation in collecting green turtles. We thank Dr. Nishizawa for his help in the MSA of this study. We also thank Dr. Jensen to help us to confirm new haplotypes and assign the standardized names of longer haplotypes. We wish to acknowledge use of the

389	Maptool program of SEATURTLE.ORG for maps in this paper. This research was
390	financially supported in part by grants for Excellent Graduate Schools, MEXT, Japan, from
391	the Kuroshio Biological Research Foundation, and the Sasagawa Scientific Research Grant
392	from The Japan Science Society.
393	
394	References
395	Abreu-Grobois, F.A., Horrocks, J.A., Krueger, B., Formia, A., Beggs, J., 2006. New
396	mtDNA dloop primers which work for a variety of marine turtle species may increase
397	the resolution of mixed stock analyses, in: Book of Abstracts from the 26th Annual
398	Symposium on Sea Turtle Biology and Conservation. International Sea Turtle Society.
399	p. 179. ISBN: 9608792614.
400	Amorocho, D.F., Abreu-Grobois, F.A., Dutton, P.H., Reina, R.D., 2012. Multiple distant
401	origins for green sea turtles aggregating off Gorgona Island in the Colombian eastern
402	Pacific. PLoS One 7, e31486. doi:10.1371/journal.pone.0031486
403	Balazs, G.H., 1980. Synopsis of biological data on the green turtle in the Hawaiian Island.
404	National Oceanic and Atmospheric Administration, Southwest Fisheries Center
405	Administrative Report H-79-24-C.
406	Bass, A.L., Epperly, S.P., Braun-McNeill, J., 2006. Green turtle (Chelonia mydas) foraging
407	and nesting aggregations in the Caribbean and Atlantic: impact of currents and
408	behavior on dispersal. J. Hered. 97, 346-54. doi:10.1093/jhered/esl004
409	Bass, A.L., Witzell, W.N., 2000. Demographic composition of immature green turtles
410	(Chelonia mydas) from the east central Florida coast: evidence from mtDNA makers.
411	Herpetologica 56, 357–367.
412	Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple
413	testing under dependency. Ann. Stat. 29, 1165–1188.
414	Bjorndal, K.A., Bolten, A.B., Chaloupka, M.Y., 2000. Green turtle somatic growth model:
415	evidence for density dependence. Ecol. Appl. 10, 269–282.

416 417 418	Bolker, B.M., Okuyama, T., Bjorndal, K.A., Bolten, A.B., 2007. Incorporating multiple mixed stocks in mixed stock analysis: "many-to-many" analyses. Mol. Ecol. 16, 685–695. doi:10.1111/j.1365-294X.2006.03161.x
419 420 421	Bolten, A.B., 2003. Chapter 9: Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages, in: Lutz, P.L., Musick, J.A., Wyneken, J. (Eds.), The Biology of Sea Turtles Volume II. CRC Press, pp. 243–257.
422 423 424	Bresette, M., Witherington, B., Herren, R., Bagley, D., Gorham, J., Traxler, S., Crady, C., Hardy, R., 2010. Size-class partitioning and herding in a foraging group of green turtles <i>Chelonia mydas</i> . Endanger. Species Res. 9, 105–116. doi:10.3354/esr00245
425 426 427	Burkholder, D., Heithaus, M., Thomson, J., Fourqurean, J., 2011. Diversity in trophic interactions of green sea turtles <i>Chelonia mydas</i> on a relatively pristine coastal foraging ground. Mar. Ecol. Prog. Ser. 439, 277–293. doi:10.3354/meps09313
428 429 430	 Cardona, L., Aguilar, A., Pazos, L., 2009. Delayed ontogenic dietary shift and high levels of omnivory in green turtles (<i>Chelonia mydas</i>) from the NW coast of Africa. Mar. Biol. 156, 1487–1495. doi:10.1007/s00227-009-1188-z
431 432 433 434	Chaloupka, M., Bjorndal, K.A., Balazs, G.H., Bolten, A.B., Ehrhart, L.M., Limpus, C.J., Suganuma, H., Troëng, S., Yamaguchi, M., 2008. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304. doi:10.1111/j.1466-8238.2007.00367.x
435 436 437	Chaloupka, M., Limpus, C.J., Miller, J., 2004. Green turtle somatic growth dynamics in a spatially disjunct Great Barrier Reef metapopulation. Coral Reefs 23, 325–335. doi:10.1007/s00338-004-0387-9
438 439 440	Chassin-Noria, O., Abreu-Grobois, F.A., Dutton, P.H., Oyama, K., 2004. Conservation genetics of the east Pacific green turtle (<i>Chelonia mydas</i>) in Michoacan, Mexico. Genetica 121, 195–206.
441 442	Cheng, IJ., Chen, TH., 1997. Incidental Capture of five species of sea turtles by coastal setnet fisheries in the eastern waters of Taiwan. Biol. Conserv. 82, 235–239.
443 444 445	Cheng, IJ., Dutton, P.H., Chen, CL., Chen, HC., Chen, YH., Shea, JW., 2008. Comparison of the genetics and nesting ecology of two green turtle rookeries. J. Zool. 276, 375–384. doi:10.1111/j.1469-7998.2008.00501.x
446 447	Dethmers, K.E.M., Broderick, D., Moritz, C., Fitzsimmons, N.N., Limpus, C.J., Lavery, S., Whiting, S., Guinea, M., Prince, R.I.T., Kennett, R., 2006. The genetic structure of

448 449	Australasian green turtles (<i>Chelonia mydas</i>): exploring the geographical scale of genetic exchange. Mol. Ecol. 15, 3931–3946. doi:10.1111/j.1365-294X.2006.03070.x
450	Dethmers, K.E.M., Jensen, M.P., FitzSimmons, N.N., Broderick, D., Limpus, C.J., Moritz,
451	C., 2010. Migration of green turtles (<i>Chelonia mydas</i>) from Australasian feeding
452	grounds inferred from genetic analyses. Mar. Freshw. Res. 61, 1376.
453	doi:10.1071/MF10084
454	Dutton, P.H., Balazs, G.H., LeRoux, R.A., Murakawa, Sh.K.K., Zarate, P., Martines, L.S.,
455	2008. Composition of Hawaiian green turtle foraging aggregations: mtDNA evidence
456	for a distinct regional population. Endanger. Species Res. 5, 37–44.
457	doi:10.3354/esr00101
458	Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5: a new series of programs to
459	perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour.
460	10, 564–567. doi:10.1111/j.1755-0998.2010.02847.x
461	Godley, B., Lima, E., Åkesson, S., Broderick, A.C., Glen, F., Godfrey, M.H., Luschi, P.,
462	Hays, G., 2003. Movement patterns of green turtles in Brazilian coastal waters
463	described by satellite tracking and flipper tagging. Mar. Ecol. Prog. Ser. 253, 279–288.
464	doi:10.3354/meps253279
465	González Carman, V., Falabella, V., Maxwell, S., Albareda, D., Campagna, C., Mianzan, H.,
466	2012. Revisiting the ontogenetic shift paradigm: The case of juvenile green turtles in
467	the SW Atlantic. J. Exp. Mar. Bio. Ecol. 429, 64–72. doi:10.1016/j.jembe.2012.06.007
468	Hamabata, T., Kamezaki, N., Hikida, T., 2014. Genetic structure of green turtle (Chelonia
469	mydas) peripheral populations nesting in the northwestern Pacific rookeries: evidence
470	for northern refugia and postglacial colonization. Mar. Biol. 161, 495–507.
471	doi:10.1007/s00227-013-2352-z
472	Hamabata, T., Nishida, S., Kamezaki, N., Koike, H., 2009. Genetic structure of populations
473	of the green turtle (Chelonia mydas) in Japan using mtDNA control region sequences.
474	Bull. Grad. Sch. Soc. Cult. Stud. Kyushu Univ. 15, 35-50.
475	Hatase, H., Sato, K., Yamaguchi, M., Takahashi, K., Tsukamoto, K., 2006. Individual
476	variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are
477	they obligately neritic herbivores? Oecologia 149, 52–64.
478	doi:10.1007/s00442-006-0431-2
479	Hays, G.C., Glen, F., Broderick, A.C., Godley, B.J., Metcalfe, J.D., 2002. Behavioural
480	plasticity in a large marine herbivore: contrasting patterns of depth utilisation between

481 482	two green turtle (<i>Chelonia mydas</i>) populations. Mar. Biol. 141, 985–990. doi:10.1007/s00227-002-0885-7
483 484	Jensen, M.P., 2010. Assessing the composition of green turtle (<i>Chelonia mydas</i>) foraging grounds in Australasia using mixed Stock Analyses. PhD dissertation, University of
485	Canberra, Australia.
486	Jensen, M.P., FitzSimmons, N.N., Dutton, P.H., 2013. Chapter 6: Molecular genetics of sea
487 488	turtles, in: Wyneken, J., Lohmann, K.J., Musick, J.A. (Eds.), The Biology of Sea Turtles, Volume III. CRC Press, pp. 135–161.
489 490	Kameda, K., Ishihara, T., 2009. Gut contents analysis of green turtles (<i>Chelonia mydas</i>) in Japan. Umigame News Lett. 17–23 (in Japanese with English summary).
491	Kamezaki, N., Matsuzawa, Y., Mizuno, K., Shima, T., 2007. Abstract of the 45th annual
492	meeting of Herpetological Society of Japan, Distribution of marin turtles in coastal
493	waters of Japan based on their washed-up carcasses. Bull. Herpetol. Soc. Japan 1, 78
494	(in Japanese).
495	Koch, V., Brooks, L.B., Nichols, W.J., 2007. Population ecology of the green/black turtle
496 497	(<i>Chelonia mydas</i>) in Bahía Magdalena, Mexico. Mar. Biol. 153, 35–46. doi:10.1007/s00227-007-0782-1
498	Lahanas, P.N., Bjorndal, K.A., Bolten, A.B., Encalada, S.E., Miyamoto, M.M., Valverde,
499	R.A., Bowen, B.W., 1998. Genetic composition of a green turtle (Chelonia mydas)
500	feeding ground population: evidence for multiple origins. Mar. Biol. 130, 345–352.
501	doi:10.1007/s002270050254
502	Limpus, C.J., Limpus, D.J., Arther, K.E., Parmenter, C.J., 2005. Monitoring green turtle
503	population dynamics in Shoalwater Bay : 2000 - 2004. Queensland Environmental
504	Protection Agency and the Great Barrier Reef Marine Park Authority.
505	Limpus, C.J., Miller, J.D., Paramenter, C., Reimer, D., McLachlan, N., Webb, R., 1992.
506	Migration of green (<i>Chelonia mydas</i>) and loggerhead (<i>Caretta caretta</i>) turtles to and
507	from eastern Australian rookeries. Wildl. Res. 19, 347. doi:10.1071/WR9920347
508	López-Mendilaharsu, M., Gardner, S.C., Seminoff, J.A., Riosmena-Rodriguez, R., 2005.
509	Identifying critical foraging habitats of the green turtle (<i>Chelonia mydas</i>) along the
510	Pacific coast of the Baja California peninsula, Mexico. Aquat. Conserv. Mar. Freshw.
511	Ecosyst. 15, 259–269. doi:10.1002/aqc.676

512	Luke, K., Horrocks, J.A., LeRoux, R.A., Dutton, P.H., 2004. Origins of green turtle
513	(Chelonia mydas) feeding aggregations around Barbados, West Indies. Mar. Biol. 144,
514	799-805. doi:10.1007/s00227-003-1241-2
515	Maison, K.A., Kelly, I.K., Frutchey, K.P., 2010. Green turtle nesting sites and sea turtle
516	legislation throughout Oceania: NOAA Tech. Memo. NMFS-F/SPO-110.
517	Meylan, P.A., Meylan, A.B., Grey, J.A., 2011. The ecology and migrations of sea turtles 8.
518	Tests of the developmental habitat hypothesis, in: Bulletin of the American Museum of
519	Natural History.
520	Naro-Maciel, E., Gaughran, S.J., Putman, N.F., Amato, G., Arengo, F., Dutton, P.H.,
521	McFadden, K.W., Vintinner, E.C., Sterling, E.J., 2014. Predicting connectivity of
522	green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal
523	modelling. J. R. Soc. Interface 11, 20130888. doi:10.1098/rsif.2013.0888
524	Ng, C.K., Dutton, P.H., Chan, S.K., Cheung, K., Qiu, J., Sun, Y., 2014. Characterization
525	and Conservation Concerns of Green Turtles (Chelonia mydas) Nesting in Hong Kong,
526	China. Pacific Sci. 68, 231–243. doi:10.2984/68.2.5
527	Nishizawa, H., Abe, O., Okuyama, J., Kobayashi, M., Arai, N., 2011. Population genetic
528	structure and implications for natal philopatry of nesting green turtles Chelonia mydas
529	in the Yaeyama Islands, Japan. Endanger. Species Res. 14, 141–148.
530	doi:10.3354/esr00355
531	Nishizawa, H., Naito, Y., Suganuma, H., Abe, O., Okuyama, J., Hirate, K., Tanaka, S.,
532	Inoguchi, E., Narushima, K., Kobayashi, K., Ishii, H., Tanizaki, S., Kobayashi, M.,
533	Goto, A., Arai, N., 2013. Composition of green turtle feeding aggregations along the
534	Japanese archipelago: implications for changes in composition with current flow. Mar.
535	Biol. 160, 2671–2685. doi:10.1007/s00227-013-2261-1
536	Nishizawa, H., Narazaki, T., Fukuoka, T., Sato, K., Hamabata, T., Kinoshita, M., Arai, N.,
537	2014. Juvenile green turtles on the northern edge of their range: mtDNA evidence of
538	long-distance westward dispersals in the northern Pacific Ocean. Endanger. Species
539	Res. 24, 171–179. doi:10.3354/esr00592
540	Nishizawa, H., Okuyama, J., Kobayashi, M., Abe, O., Arai, N., 2010. Comparative
541	phylogeny and historical perspectives on population genetics of the Pacific hawksbill
542	(Eretmochelys imbricata) and green turtles (Chelonia mydas), inferred from feeding
543	populations in the Yaeyama Islands, Japan. Zoolog. Sci. 27, 14–18.
544	doi:10.2108/zsj.27.14

545 546 547	Norman, J.A., Moritz, C., Limpus, C.J., 1994. Mitochondrial DNA control region polymorphisms: genetic markers for ecological studies of marine turtles. Mol. Ecol. 3, 363–373.
548 549 550	Okamoto, K., Ishihara, T., Taniguchi, M., Yamashita, N., Kamezaki, N., 2011. Occurrence of the sea turtles at the coastal water of Kumanonada. Umigame News Lett. 88, 13–17 (in Japanese).
551 552 553 554	Okamoto, K., Kamezaki, N., 2014. Morphological variation in <i>Chelonia mydas</i> (Linnaeus, 1758) from the coastal waters of Japan, with special reference to the turtles allied to <i>Chelonia mydas agassizii</i> Bocourt, 1868. Curr. Herpetol. 33, 46–56. doi:10.5358/hsj.33.46
555 556 557	Parker, D.M., Dutton, P.H., Balazs, G.H., 2011. Oceanic diet and distribution of haplotypes for the green turtle, <i>Chelonia mydas</i> , in the Central North Pacific. Pacific Sci. 65, 419–431. doi:10.2984/65.4.419
558 559	Pella, J., Masuda, M., 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. Natl. Mar. Fish. Serv. Seattle 99, 151–167.
$\frac{560}{561}$	Raymond, M., Rousset, F., 1995. An exact test for population. Evolution (N. Y). 49, 1280–1283.
562 563 564	Schmid, J.R., Alan, B.B., Kalen, A.B., Lindberg, W.J., Percival, H.F., Zwick, P.D., 2003. Home range and habitat use by Kemp's ridley turtles in west-central Florida. J. Wildl. Manage. 67, 196–206.
$\frac{565}{566}$	Shimada, T., 2009. Report of preliminary research of sea turtles in Hachijo Island. Umigame News Lett. 7–8 (in Japanese with English summary).
567 568 569	Sterling, E.J., Mcfadden, K.W., Holmes, K.E., Vintinner, E.C., Arengo, F., Naro-Maciel, E., 2013. Ecology and conservation of marine turtles in a central Pacific foraging ground. Chelonian Conserv. Biol. 12, 2–16.
$570 \\ 571$	Tachikawa, H., 1991. Carapace length and body weight of adult green turtle in Ogasawara. Umigame News Lett. 8, 7–10 (in Japanese).
572 573 574	Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–9. doi:10.1093/molbev/mst197

575	Wallace, B.P., DiMatteo, A.D., Hurley, B.J., Finkbeiner, E.M., Bolten, A.B., Chaloupka,
576	M.Y., Hutchinson, B.J., Abreu-Grobois, F.A., Amorocho, D., Bjorndal, K.A., Bourjea,
577	J., Bowen, B.W., Dueñas, R.B., Casale, P., Choudhury, B.C., Costa, A., Dutton, P.H.,
578	Fallabrino, A., Girard, A., Girondot, M., Godfrey, M.H., Hamann, M.,
579	López-Mendilaharsu, M., Marcovaldi, M.A., Mortimer, J.A., Musick, J.A., Nel, R.,
580	Pilcher, N.J., Seminoff, J.A., Troëng, S., Witherington, B., Mast, R.B., 2010. Regional
581	management units for marine turtles: a novel framework for prioritizing conservation
582	and research across multiple scales. PLoS One 5, e15465.
583	doi:10.1371/journal.pone.0015465
584	Yamaguchi, M., Suganuma, H., Narushima, K., 2005. Nesting status of green turtles
585	(Chelonia mydas) in Chichijima Islands, Ogasawara in 2005 and a nesting trend over
586	the last 27 years. Umigame News Lett. 2–6 (in Japanese with English summary).
587	Zug, G.R., Balazs, G.H., Wetherall, J.A., Parker, D.M., Murakawa, S.K.K., 2002. Age and
588	growth of Hawaiian green seaturtles (Chelonia mydas): an analysis based on
589	skeletochronology. Fish. Bull. 100, 117–127.
590	

Table 1. Frequencies of 820-bp mtDNA haplotypes for each size class in the FG. The size

593 classes are denoted as follows: i, SCL < 50 cm; ii, 50 cm \leq SCL < 70 cm; and iii, SCL \geq 70

594 cm.

Haplotype name	Nomaike FG		Mu	Muroto FG		Kum	ano-na	GenBank		
820-bp	i	ii	iii	i	ii	iii	i	ii	iii	Accession no.
CmP4.1									1	KC306666
CmP6.1					1					KC306657
CmP15.1						1				<u>KC306649</u>
CmP18.1				1						<u>AB896713</u>
CmP20.1			1							AB819806
CmP20.3						1				<u>KF311745</u>
CmP32.1			2							<u>KF311749</u>
CmP39.1	3	6	12	19	3	27	7	3	7	AB819807
CmP39.2						1				AB896709
CmP49.1		1	1	1						AB819808
CmP50.1	1		2	5	4	9	3			<u>AB819809</u>
CmP51.1				1						<u>AB896706</u>
CmP53.1			1				1		1	AB819810
CmP54.1			2	1	1	3				<u>AB819811</u>
CmP79.1		1				2				AB896712
CmP93.1								1		<u>FJ917194</u>
CmP95.1						2		1		<u>FJ917196</u>
CmP121.1						2	1		1	<u>AB819813</u>
CmP122.1						1	1		1	<u>AB896710</u>
CmP126.1				1						<u>AB819815</u>
CmP127.1	1		1			1		1		AB856321
CmP128.1		1		1						AB896711
CmP130.1	1			1						<u>AB973567</u>
CmP131.1				1						AB973568
CmP208.1						2				AB896708
CmP210.1									1	AB896707
CmP213.1			1							AB973569
Total	6	9	23	32	9	52	13	6	12	

597	Table 2. Haplotype (<i>h</i>) and nucleotide (π) diversities of green turtles in FG along the
598	Japanese coasts. Values were calculated for both the total samples from each FG and the
599	three size groups from each FG and regional FG based on 380-bp haplotypes. Data for the
600	Yaeyama, Ginoza, and Kanto FG were from Nishizawa et al. (2013), and data for the

601 Sanriku FG were from Nishizawa et al. (2014).

Foreging ground		N	k	
Foraging ground	1	1N	<i>n</i>	π
Nomaike	total	38	0.6913 ± 0.0823	0.02363 ± 0.01236
	< 50 cm	6	0.8000 ± 0.1721	0.02721 ± 0.01672
	50–70 cm	9	0.5833 ± 0.1833	0.01073 ± 0.00668
	> 70 cm	23	0.7273 ± 0.0971	0.02717 ± 0.01434
Muroto	total	93	0.6746 ± 0.0477	0.02320 ± 0.01193
	< 50 cm	32	0.6351 ± 0.0915	0.02106 ± 0.01116
	50–70 cm	9	0.7500 ± 0.1121	0.03248 ± 0.01838
	> 70 cm	52	0.6825 ± 0.0642	0.02189 ± 0.01140
Kumano-nada	total	31	0.6946 ± 0.0888	0.02450 ± 0.01284
	< 50 cm	13	0.6923 ± 0.1187	0.02747 ± 0.01505
	50–70 cm	6	0.8000 ± 0.1721	0.01839 ± 0.01160
	> 70 cm	12	0.6818 ± 0.1482	0.02722 ± 0.01504
Combined	total	162	0.6785 ± 0.0385	0.02324 ± 0.01189
00111011100	< 50 cm	51	0.6525 ± 0.0691	0.02257 ± 0.01175
	50–70 cm	24	0.0323 ± 0.0091 0.7391 ± 0.0891	0.02297 ± 0.01179 0.02391 ± 0.01268
	> 70 cm	87	0.7371 ± 0.0071	0.02351 ± 0.01200 0.02352 ± 0.01200
	> 70 cm	07	0.0055 ± 0.0520	0.02332 ± 0.01207
Vaevama		1/12	0.8355 ± 0.0215	$0.033/3 \pm 0.01675$
Cinozo	-	20	0.0333 ± 0.0213	0.03343 ± 0.01073
Gilioza	-	20	0.0709 ± 0.0432	0.03473 ± 0.01819
Kanto	-	4/	0.7438 ± 0.0448	0.03054 ± 0.01563
Sanriku	-	39	0.6478 ± 0.0745	0.02313 ± 0.01210

Table 3. P-values from exact tests based on the 380-bp haplotypes identified in FGs around

Japan. Data for the Yaeyama, Ginoza, and Kanto FGs were from Nishizawa et al. (2013),

- and data for the Sanriku FG were from Nishizawa et al. (2014).

	Yaeyama	Ginoza	Nomaike	Muroto	Kumano-nada	Kanto
Ginoza	0.3725					
Nomaike	< 0.001**	0.0469*				
Muroto	< 0.001**	0.0110**	0.2683			
Kumano-nada	< 0.001**	0.0063**	0.3074	0.1422		
Kanto	< 0.001**	0.1433	0.0166*	0.1981	0.0090**	
Sanriku	< 0.001**	0.0059**	0.0869	0.3910	0.1623	0.0547
*P < 0.05, **P < 0.0137 in B-Y method for 21 simultaneous tests						

611 **Table 4.** P-values from exact tests of comparisons of FG size classes based on the 380-bp

612 haplotypes.

613

	Nomaike FG			Ν	/luroto F	Kumano-nada FG		
Size class	< 50	50-70	> 70	< 50	50-70	>70	< 50	50-70
	cm	cm	cm	cm	cm	cm	cm	cm
Nomaike								
50–70 cm	0.474							
> 70 cm	0.716	0.702						
Muroto								
< 50 cm	0.532	0.537	0.485					
50–70 cm	0.472	0.053	0.373	0.368				
> 70 cm	0.461	0.320	0.216	0.340	0.497			
Kumano-na	ada							
< 50 cm	0.633	0.278	0.672	0.611	0.405	0.771		
50–70 cm	1.000	0.474	0.468	0.225	0.118	0.267	0.177	
> 70 cm	0.566	1.000	0.426	0.201	0.032*	0.157	0.647	0.568

614 Significant differences were absent after correction for multiple comparisons (P < 0.01198

615 in B-Y method for 36 simultaneous tests).

616 *P<0.05

618 Figure Legends

619	Fig. 1. Locations of the FG (A), and rookeries (black dots) and regional groups of rookeries
620	(dashed circles) used in this study (B). Stars indicate the FG analyzed in this study. Circles
621	indicate the referenced Sanriku, Kanto, Ginoza, and Yaeyama FG. Rookery location data
622	were from Chassin-Noria et al. (2004), Dethmers et al. (2006), Cheng et al. (2008), Dutton
623	et al. (2008), Naro-Maciel et al. (2014), Nishizawa et al. (2011 and 2013), and Hamabata et
624	al. (2014).
625	
626	Fig. 2. Size frequency distributions of straight carapace lengths (SCL) in the FG: Nomaike
627	(A, $n = 38$), Muroto (B, $n = 93$), Kumano-nada (C, $n = 31$), and the combined data of the
628	three FG (D, $n = 162$). The minimum sizes considered to be adults in male and female of the
629	Ogasawara Group are 79.4 and 82.1 cm SCL, respectively (Tachikawa, 1991).
630	
631	Fig. 3. Sea surface temperatures (SST) and sizes (SCL) of green turtles captured at each FG:
632	Nomaike (A), Muroto (B), and Kumano-nada (C). Each point represents an individual.
633	
634	Fig. 4. Estimated mixed-stock analysis (MSA) of green turtle foraging aggregations along
635	the coasts of the western Japanese main islands. Circles and triangles represent M2O and
636	M2M analyses, respectively. Bars indicate 95% probability intervals. Uninformative prior

- 639 Hong Kong, SW Pacific = Southwestern Pacific, W & SC Pacific = Western and South
- 640 Central Pacific, and SE Asia = Southeast Asia. Size classes are as follows: A, SCL < 50 cm;
- 641 B, 50 cm \leq SCL < 70; C, SCL \geq 70 cm.

Fig. 1.

Fig. 2

Fig. 3

Fig. 4

