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Abstract

A theoretical formula has been derived to reconstruct the ratio of spectral densities in the
252Cf source driven noise analysis (CSDNA) method from the higher harmonic eigenvalues and
eigenfunctions of the a—mode neutron transport equations. The formula closely reproduces
each power spectral density and the ratio of spectral densities calculated by Monte Carlo
simulations, thereby verifying the theoretical formula. The reactivity or ket of a subcritical
system is related to the ratio of spectral densities by the fundamental mode approximation in
which the higher harmonic modes are neglected. However, the ratio of spectral densities
measured in the CSDNA method yields an ambiguous reactivity or ket that depends on the
locations of detectors due to the effect of the higher harmonics. A more elaborate method
developed by Mihalczo and Valentine et al. infers an “experimental” ket using a measurement
and accurate Monte Carlo simulation of CSDNA. This paper discusses the uniqueness of the

inferred “experimental” Keft.
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1. Introduction

The %2Cf source driven noise analysis (CSDNA) method (Paré and Mihalczo, 1975) has
long been developed and investigated as a distinctive technique for the measurement of
subcriticality. The CSDNA method uses an ionization chamber containing a 2>2Cf source and
provides the ratio of spectral densities, R(®), that can be used for estimating the absolute value
of the subcriticality. Unlike other familiar subcriticality measurement techniques, the CSDNA
method is free from the requirements of measuring the detector efficiency, neutron source
intensity, and reference subcriticality near criticality. A large number of papers have thus far
been published dealing with subcriticality measurements of fissile materials or reactors
utilizing the CSDNA method (e.g., Mihalczo et al., 1978, Mihalczo et al., 1990, Mihalczo et al.,
1991, Mihalczo and Valentine, 1995, Hutchinson and Valentine, 2009, and Hutchinson and
Bess, 2009). A Monte Carlo calculation method for simulating the CSDNA method was
developed by Ficaro and Wehe (1994) and Valentine and Mihalczo (1996). The ratio of

spectral densities in the CSDNA method is defined by

R(a)) — GIZ (a))GlfS(a)) ’ (1)
Gy1(@0)Gyp3(w)

where Gjj(w) denotes an auto- or cross-power spectral density and the asterisk denotes
complex conjugation, and @ is frequency. The subscript 1 refers to an ionization chamber
containing a 22Cf source, which triggers fission chain reactions within the subcritical
multiplying system. The subscripts 2 and 3 refer to a pair of neutron detectors that detect the
fission chain reactions initiated by spontaneous fission source neutrons from detector 1.
Actually spontaneous fission neutrons are emitted from fuel material, affecting the fission chain
reactions in the subcritical system (Spriggs et al, 1999). However, this effect is neglected
throughout this paper. There have been controversies among researchers over the interpretation
of the ratio of spectral densities and how the ratio is related to the reactivity of a subcritical

system (Yamane and Nishina, 1986, Difilippo, 1990, Sutton and Doub, 1991, Akcasu and
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Stolle, 1993). The measured quantities in subcritical measurements include the higher harmonic
modes as well as the fundamental mode. Under the point-kinetics approximation (i.e., the
fundamental mode approximation), the ratio R is a real number and is independent of frequency
and detectors’ locations. In fact, the CSDNA method is affected by the higher harmonic modes.
The ratio R is a complex number and depends on frequency. The ratio R definitely depends on
the spatial arrangement of the three detectors. Under special circumstances where the
subcritical system is nearly critical, the fundamental mode is predominant over the higher
harmonic modes, and the relationship between the ratio R and the reactivity is undoubtedly
clear. Previous work by Yamane et al. (1987), Difilippo (1990), Sutton and Doub (1991), and
Akcasu and Stolle (1993) considered the effects of the higher harmonic modes for the CSDNA
method and derived theoretical formulae. However, the formulations have not yet been verified
either experimentally or numerically.

In the present paper, a theoretical formula is derived for each spectral density in the ratio R
that considers the spatial and energy dependence. While a similar derivation has been carried
out by Sutton and Doub (1991), the present paper poses slightly different expressions based on
previous work on the higher harmonic effects on reactor noise theory (Endo et al., 2006;
Yamamoto, 2011a; Yamamoto, 2014a; Yamamoto, 2014b). The expressions for the power
spectral densities in these papers were derived mainly for the noise measurements in
accelerator driven systems (ADS) in which spallation neutrons are emitted with a constant time
interval. The expressions of the spectral densities were verified through comparison with
Monte Carlo simulations for noise measurements in ADSs. Following the procedure in these
papers on the reactor noise in ADSs, a rigorous formulation for the ratio R can be made.
Throughout this paper, delayed neutrons are neglected, and only prompt neutrons are
considered. The ratio R is to be theoretically reconstructed using the eigenfunctions and
eigenvalues for the higher harmonics of the kinetics mode (i.e., @—mode) transport equation.

The reconstructed ratio R is to be compared with the results of Monte Carlo simulations for the
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CSDNA method in very simplified numerical experiments. The relationship between the ratio
R and the reactivity (or ker) is derived by introducing the fundamental mode approximation to
the CSDNA method. We discuss how the kefr obtained from the ratio R depends on the spatial
arrangement of the detectors. We review another approach by Mihalczo et al. (1997) and
Valentine (1999) to infer ket from the ratio R; it utilizes accurate Monte Carlo simulations of
the CSDNA method. We consider this approach from a viewpoint of the uniqueness of the

inferred “experimental” Kegt.

2. Formulations of the Ratio of Power Spectral Densities
2.1. Auto-power spectral density of an ionization chamber

We derive here the auto-power spectral density (APSD), G,(w), of an ionization
chamber containing a 2>2Cf source . It is assumed that the alpha-decay of the 252Cf source does
not contribute to the detection of the chamber and that all detections are due to the spontaneous
fissions. This can be achieved by setting an appropriate discriminator threshold. The responses
of the electronic components of the detection system, denoted by h (@),h, (@), and hg(w) In
(Mihalczo et al., 1990), are not considered in this paper because they are all eventually
eliminated in the ratio of spectral densities (Eq. (1)) (Yamane et al, 1986). The auto-correlation

function of detector 1 for a time lag between two detection times, (i.e.,z =t, —t;) is given by
Rll(T)dtldtz = glsil"ltdtl . glsimdtz + glsinté('[)dtldtz , (2)
where ¢, =detection efficiency of detector 1 per spontaneous fission of 2°°Cf, and S;, =

number of fissions per unit time in the 2°2Cf source. Given that the 2>2Cf source intensity per

unit volume has a spatial distribution S(r), S;, Iis given by

Sing = |, S(r)dr . 3)
Fourier transforming Ry4(z) in Eq. (2) yields the APSD of detector 1:
Gll(a)) = Elsint, fOI’ w * 0. (4)



2.2. Cross-power spectral density between detectors 2 and 3

To derive the formulation of the cross-power spectral density (CPSD) between detectors 2
and 3, we start with the derivation of the cross-correlation function between the two detectors.
The correlation between the detections in the two detectors stems from the fact that two or
more neutrons are emitted simultaneously from a spontaneous fission of 2°°Cf or a
neutron-induced fission. The formulation for the CPSD has been derived in previous papers
(Sutton and Doub, 1991; Endo et al, 2006; Yamamoto, 2014a; Yamamoto, 2014b), but is
presented again here.

First, a Green’s function that represents the neutron density at (r,E,Q,t) due to one

neutron emitted at (ry, Eq,€Q,ty) is introduced (Sutton and Doub, 1991; Endo et al., 2006):
G(r.E,Q,t|ry, Eg,Q0,t5) = G(r,E, Q[ rp, Ep, o5t — 1)

5

s ZW(V E.Q)y; (rp, Eg, Qq)e 7). ©

v(E) iz

This Green’s function is slightly different from the original expression in that the right-hand
side is divided by the neutron velocity v(E). w,(r,E,Q) and WZ(r,E,Q) are the 7/ th
eigenfunctions of the forward and adjoint a—mode eigenvalue equations at position r with

energy E and direction €, respectively:
-Q-Vy,(r,E,Q)-2(r,E)y,(r,E, Q)
+ j dQ [dE'Z (r, @ - Q,E' - E)y, (r,E',Q) (6)

Zf( )j 4 [dE"vE ¢ (1, E')y, (1. E, Q’)+Ew(r E,Q)=0,

Q- v‘//(; (r,E,Q)-Z,(r,E)y,(r,E,Q)
+j dQ’IdE’ZS(r,Q > Q E—E)W(rE Q) )

VZ (r E)

j dQ’jdE';(f(E)%(r E,Q "(r,E,Q)=0,

where X, = the macroscopic total cross section, X = the macroscopic scattering cross

section, X'; = the macroscopic fission cross section, y:(E)= the prompt neutron spectrum,

and v =the number of prompt neutrons per fission. The adjoint and forward eigenfunctions are



normalized as

0 1 *
jv olrj0 dEJ.M dﬂﬁyxm(r, E, Q) (r E,Q)=5,,, (8)

where &, is the Kronecker delta. Using the Green’s function of Eq. (5), the fission reaction
rate at (r,t;) caused by @ neutrons emitted from a >2Cf spontaneous fission at t, is given
by

F(r.t;ity) = j:dEngszjv olr(,j;o dEoLmdQOU(E)Zf (r,E)

xG(r, E,Q|rg, Eq, Qo;ts —10)qS(rp) x5 (Ep, 20) (9)

o [ —ay(ts —tp)
:ZZOIO dEL”dng(r, E)y,(r,E,@)S,e ",

where y.(Eq,£2,) = the energy and direction distributions of fission neutrons from the 2°Cf
source, and S, is defined by

S, =qf, dr [, dEo[, d€%S(ro)xs(Eo, Ro)wy (o, Eo, ). (10)
The cross-correlation function of a pair of neutron detections at t; by detector 2 and at t,

(t, >t;) by detector 3 resulting from the fission at t; is

Ry (z,t)= Y py )] " dto [, dry["dEq [, dF(ro.tito)
v=0

X1 (Ep)

Ar (11)

© zf(E )
x [, dr[ dE[, dQu(E)Z4s(rE)G(r,E, 21, Eg, Qoity —tr)(v—1) 47[0

x [, dr[ “dE[, dQu(E)Lg,(rE)G(rE,Q|r, By, Rt ~tf)v

S = S (am+apt t t
= Z Z _ZF€—>mn D2mD3ne mn e mi g T nt2 )
¢=0m=0 n=0%"¢

where Xy, = the cross section of detector 2 and p; (v)= the probability density function of
the number of induced fission neutrons. F,_,,, and D,, are defined as follows:

Frsmn =v(y=D)f dr[ “dE[, dQX¢(rE)y,(rE Q)¢ n(la(n),  (12)

. E
()= dELﬂdg";fr)

D, = jv drI;OdELﬁdQZdz(r, E)y ., (r,E, Q). (14)

Ym(r,E,Q), (13)

The cross-correlation function of a pair of neutron detections at t; by detector 2 and at t,



(t, >, 7=t,—t;) by detector 3 resulting from all fissions before t; is

t o0 a0 a0
Ri(0)=[" Re(nt)dt; =Y 3 S1FrosmnDomDsn y-arne. (15)
* Zomoono  @rlam+an)

Next, the cross-correlation between the detectors 2 and 3 due to multiple neutron emission
from the 2°2Cf source is considered. The cross-correlation function of a pair of neutron
detections at t; by detector 2 and at t, (t, >t;) by detector 3 resulting from all spontaneous

fissions before t; is
*© t 0
Re(r)= 2 ps(@)] " dto[, dro [ "dEq [, d€S(rp)
g=0

xJ.Vdr_[;odELﬂdQu(E)Zdz(r,E)G(r,E,ero,EO,QO;tl—to)q;(s(Eo,Qo) )
xJ'Vdr.[:dEL”dQU(E)ZM(r, E)G(r,E, Q| 1y, Ey, Qoitr —to)(q—1) 75 (Eq, )

o]

o0
-y 3s DymDan ="
- mn ’
m=0on-0  %mtxn

Where ps(q)= the probability density function of the number of spontaneous fission
neutrons,

Smn = (@ =D, dryS (1) 5,m (o) 5,0 (1) (17)

lsm (o) = [, dEo [, d€07(Eo,R0)wm (1o, E, o). (18)

The CPSD between detectors 2 and 3, G,3(w), is obtained as the Fourier transform of the

cross-correlation functions R (z) and Rg(7):

Gas(@)= [ (R (z)+Ry(r))e " dr

=> ZAlen?,J‘O e e dr+ 3 Y Angnp[ €€ Tdr (19)
m=0n=0 m=0n=0 —
=2 Z(AmZ,nS —+ Anz n2 . ]
m=0n=0 an +lw an —lw
where i=+/-1, and
- S/Fﬁ—>mn D2mD3n
= L2 g | —<M =N 20
AmZ,n3 (;}[ a, mn (am+an) ( )



2.3. Cross-power spectral density between detectors 1 and 2 or 3
Following the derivations for the APSD and the CPSD presented thus far, the
cross-correlation function of a pair of neutron detections at t, by detector 1andat t; (t; >tp,

T =t —ty) by detector 2 is given by
t 00
Ri2(z) = I_loo dtojv dro_[o dEoL”dQoglqs(ro)}(s(Eo,Qo)

xjv o|rj0 dEjMdszu(E)zdz(r,E)G(r,E,mrO,EO,QO;tl—tO) (21)

o0
—O0mT
=& z Sm Dzme me,

m=0

Neutron detections in detector 2 or 3 always follow a spontaneous fission in detector 1. Thus,
noting that the integration range of the Fourier transformation of Eq. (21) is from 0 to <, we

obtain the CPSD between detectors 1 and 2:

0

I —lory. _ SmDom
Cra(0)= [y Ra(0)e " dr =6 3 R (22)

2.4. Ratio of spectral densities and fundamental mode approximation
As a result, we obtain the ratio of spectral densities of the CSDNA method that takes into

account the spatial and energy dependence:

- & E E SiSpDyy D . :
_ Gp(0)Gi3(@) _ 1m=0n=0 I P P
R(a))—G (@)l )— p—— . . (23)
11\@) B3\ @D
S A n
" mzzlonzzlo( 2 an+io Anan2 On — iw]

The ratio of spectral densities, R(w), is in general a complex number and is not independent of
frequency. If the higher harmonic components are neglected except for /=m=n=0, the ratio

of spectral densities becomes

5135

SoF '
Sin{oo—>00+ Soo]
Qg

ROE

(24)

Thus, by introducing the fundamental mode approximation, the ratio of spectral densities

becomes a real number and independent of frequency.



Next, consider how to relate R, to the reactivity or kesr. In the absence of delayed

neutrons, the reactivity p(=1-1/kq) is given by the product of the fundamental mode ¢«

and the (prompt) neutron generation time A:
p=—0pA. (25)

The (prompt) neutron generation time, A, is given by
<¢o(r E.Q) o(E )'//0(r E 9)>

(Lirm(OWZ¢ (1 E)wo(r E, Q)

where the angle brackets denote integration over all phase space, and ¢g = the fundamental

(26)

mode adjoint flux of the A-mode transport eigenvalue equation:

Q-Vy(r,E, Q) - Z(r,E)o (r.E.Q)

+f, dg'jg’dE'Zs(r,g 5 QLE > E)i(r E,Q) o
5 (r,E B )
+%krﬁ)j4,,dﬂ'fo dE" v+ (B¢ (r,E', Q) =0,
and
linl®) =[] cE], a0 L D e 0). (29)

Here, we assume that ¢0 %‘//o and 1 ¢ n(r)= 1 (r). Then, using the orthonormality

relationship in Eq. (8) for the numerator of Eq. (26), we obtain
1

A= . (29)
(1.00VZ (r,E)yo(r E. @)
Using Eqgs. (24), (25), and (29), we find a relationship between the reactivity p and Ry :
2
Ry = £150 , (30)
S| - SoFo—00 +So
p (1102 (1 E)yo(r,E,Q))
where

S0 = A(S(N 25 (E, 2w (r E, ), (31)
Fosso0 = V(v =0)(Z¢ (1, E)lpo(r, E;Q)1 ¢ o111 (1)), (32)
So0 = 4@ —1)(S(N)15,0(NI5,0(r))- (33)

The constants Sy, Fy_,q9, and Sy used in Eq. (30) are obtained by calculations. While R,

by the fundamental mode approximation does not depend on the locations of detectors 2 and 3,

it depends on the location of detector 1, i.e., S(r). When we furthermore neglect the spatial



and energy dependence (i.e., point-Kinetics approximation), R, in Eq. (30) becomes

=2
&0
Ro,p = L , (34)
il ~ _1 -
~av=D G-
p Vv

where the subscript p denotes the point-kinetics approximation. While Sutton and Doub (1991)
related the reactivity to R(w) without introducing the fundamental mode approximation, the
present paper does so by neglecting all higher harmonic components except for the
fundamental mode. As a subcritical multiplying system becomes critical, «( approaches zero
in the absence of delayed neutrons and oy <<a; <a, <---. As one can see in Egs. (19), (20)
and (22), apand «, are in the denominators of Gp,(®), Giz3(®w), and Gyz(w). Thus when
aq s very close to zero, the terms including «,, and a,(m,n>1)in Gy, (w), Gy3(w), and
Gy3(w) become negligibly small compared with the terms of the fundamental mode. Therefore,
the fundamental mode approximation in Eq. (30) can be more accurate for a subcritical system

that is nearly critical.

3. Numerical Tests
3.1. Description of the numerical test

We have applied the rigorous formula of the ratio of spectral densities to a subcritical
multiplying system whose geometry is a one-dimensional infinite slab. This example is the
same as that in the author’s previous paper (Yamamoto, 2014b). The energy-dependence is
neglected in the numerical tests in this paper. As shown in Fig. 1, the slab has a thickness of 55
cm. Vacuum boundary conditions are imposed on both sides of the slab. The multiplying
system has the following properties:

3, =028cm?, ¥ =0.049cm?, 3,=0.05cm?, ©=2200m/s, v=2,
ket =0.95865 £ 0.00002, g = 3.
[Fig. 1]

The number of neutrons emitted by a neutron-induced fission and a spontaneous fission is
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assumed fixed. Thus, we set v(v—-1)=v(v-1)=2 and q(q—1)=q(q—1)= 6. Neutron
scattering is assumed to be isotropic in the laboratory system. The eigenvalue calculations for
kert and «p, of this subcritical system were conducted using a test Monte Carlo program
developed by the author. All Monte Carlo eigenvalue calculations, including the a—mode
calculations, were conducted with 40,000 neutrons per cycle, 100 discard cycles and 12,000
active cycles. To calculate the ratio of spectral densities as described in Eq. (23), a large
number of higher order mode a—eigenvalues and eigenfunctions (flux distributions) are needed.
A Monte Carlo calculation method developed by Yamamoto (2011b) for solving higher
harmonics a—mode eigenvalue problems was used up to the third order harmonics. In general,
lower order harmonics are more important for mode analyses of a subcritical system. The
accurate results based on neutron transport theory were used up to the third order harmonics.
Beyond the third order, the a—eigenvalues and flux distributions were approximated with

diffusion theory:

ap=0(Z; + 2+ DB2 vz, ), m>4, (35)
* 21) .
X) = X) = sinB(x+d), 0<x<H,m=>4, 36
V() =ym(X) =/ g SinBn(x+d) (36)
where
(m+)x
=~ = 37
M H+2d S

D = diffusion coefficient (=1/3%;), H = thickness of the slab, and d = extrapolated length

(=0.7104/ %}). The orthonormality condition is

[ 0w (0D = S (38)

Table 1 compares the a—eigenvalues calculated with the Monte Carlo method with the
diffusion theory. These results are reproduced from (Yamamoto, 2014b). The diffusion theory
agrees well with the transport theory for the fundamental mode. As the order increases, the

difference between two methods increases. Because the energy-dependence is not considered in
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this paper, the angular adjoint flux for 0<m<3 is obtained by reversing the angular
distribution of the forward flux: ://;(r,ﬂ) =y, (r-Q).

The positions of the detectors and the 2>2Cf source for the numerical test are shown in Fig.
1. The position of the 2>2Cf source (detector 1) (x = 34.0 cm) is off-center of the slab, which
activates the asymmetric higher harmonic modes as well as the symmetric modes. Detectors 2
(D2) (x = 41.4 cm) and 3 (D3) (x = 13.6 cm) are located near the top and bottom of the first
higher harmonic mode, respectively. The spectral densities defined by Egs. (22) and (19) were
calculated using the eigenvalues and the eigenfunctions of modes up to order 250. No

higher-order modes substantially affect the spectral densities, as shown later.
[Table 1]
3.2. Monte Carlo simulation method of the CSDNA method

The spectral densities, Gj(®), Gp(@), Gjz(w), and G,3(w) were obtained by
performing a Monte Carlo simulation of the CSDNA method as the reference solutions. The
calculation flow of the simulation is almost the same as in (Yamamoto, 2014a). The Monte
Carlo simulation is based on the analog Monte Carlo technique in which any
variance-reduction techniques are disabled. The calculation flow of the Monte Carlo simulation
is as follows.

(1) A neutron from a spontaneous fission is emitted isotropically at t=t,, which coincides
with the starting time of the data blocks of the three detectors. A data block is made up of
time samples of a detector response composed of M = 213 =8192 time bins. Each time bin
has a width of 4 (= 4 X107 s) and contains the number of detections that occur during the
corresponding time bin. A spontaneous fission is registered in the time bin of detector 1
corresponding to the time t. This Monte Carlo simulation assumed that all spontaneous
fissions were registered to detector 1 without count loss; thus, &; =1.

(2) The neutron flies to the next collision site. The flight distance s is determined by

s=—/n& /%, where & is a uniform pseudo-random number from (0, 1]. The time of the
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neutron is updatedto t'=t-s/v.

(3) If &, <2 /2, the neutron is captured and the random walk terminates. When the capture
occurs within the region of detector 2 or 3, one neutron count is registered in the respective
time bin corresponding to time t'. Each detector region is a thin layer with a width of
0.534 cm. The width of the detector is the slab thickness (55 cm) divided by 103.

(4) If the reaction is not a capture and &3 <2’ /2, the neutron induces a fission reaction and
the random walk terminates. v (= 2) neutrons are stored in the fission source bank.

(5) If the reaction is a scattering, then determine the scattered neutron direction and return to
step (2).

(6) If the neutron is killed by the capture or fission reaction but the fission source bank is not
empty, a neutron is removed from the bank and emitted isotropically from the fission site.
Then go to step (2). If the bank was empty, go to the next step.

(7) Steps (1) through (6) are repeated g (= the number of neutrons emitted from the
spontaneous fission) times.

(8) The time of the next spontaneous fission is updated to ty =ty — ¢n&, /S , Where Sint is the
number of spontaneous fissions of the 2°2Cf source per unit time. In this simulation, Sin=
4000571, Then return to step (1). If t; exceeds the end of the data block, then calculate
the correlation functions, APSD, and CPSDs using the data blocks. Clear the data blocks
before returning to step (1).

(9) Steps (1) through (8) are continued until the desired statistics are obtained.

For calculating the APSD and the CPSDs from the data blocks, we used a data processing
method employed in MCNP-DSP (Valentine and Mihalczo, 1996; Valentine and Mihalczo,
1997). The method to calculate the CPSDs is illustrated below. The circular cross-correlation

function is obtained as:
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M-1

Ryy (M = D XYM —(n—k)) - (39)
k=0

where x and y are the detector signals of detectors 2 and 3, respectively, and n = lag index. The

detector signals are assumed to be periodic as X =Xm. k) and Yi=Ymik) - The

cross-correlation function is calculated for each data block and averaged with the values from
the previous data blocks. Using the cross-correlation function, the one-sided CPSD is
calculated as:

CPSD(w) = 2 f Ry (r)e 7 dz
) | ) | (40)
=2[ Ry (@)eTdr + 2 Ry (r)e'"dr,

where O0<w <o (Uhrig, 1970). The real and imaginary parts of the CPSD, respectively, in

discretized form are

M-1 M-1

Z_: Ry (n) cos(ayn4)+ Z_: Ry (n) cos(y nAﬂ , (41)

Re[CPSD(wy)]= 2{
n=0 n=0

M-1

i Ryx(n)sin(eyna)- MZ_:

n=0 n=0

1

Im[CPSD(w, ) ]= 2{ Ryy () sin(ay nAﬂ , (42)

where @, =27k/(4-M),k=0,1,..., M/2, Re[ ] = real part, and Im[ ] = imaginary part.

3.3. Calculation results

The theoretical values of Re[Gj3(w)], IM[G;3(w)], Re[Gyz(w)], IM[Gys(w)],
Re[R(w)], and Im[R(w)] are compared with the results of the Monte Carlo simulation in
Figs. 2, 3, 4, 5, 6, and 7, respectively. The theoretical values in these figures are in good
agreement with the results of the Monte Carlo simulation. The agreement verifies the
theoretical formula for the CSDNA method. The theoretical value of R(w) at = 0 Hz is
0.1203. On the other hand, if the diffusion approximation defined by Egs. (35)-(37) is adopted
for all modes, R(w)=0.1246 at = 0 Hz. The diffusion approximation is not sufficient to
obtain quantitatively accurate results even for a simple problem considered in this example.

The CPSD, G,3(w), is divided into two components, G2f3(a)) and G33(w), that are due to
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multiple emissions of induced fission neutrons and spontaneous fission neutrons, respectively.

szs(a’) and G3(w) are defined based on Eg. (19) as follows:

G2f3(a)) z Z( m2,n3 Ber_12 } (43)

mo”oan+la) o, —lw

where

= SZFfamn\ D2mD3n
23 =2, , (44)
m " ?=0 ( oy }(am+an)

G33(w) = i > (DZmD_Sn N D3mD_2n ] (45)

0N Oam+an aptlo  op—lo
To see the contribution of each component, Fig. 8 shows the theoretical values of the real parts
of Gyz(w), GZfB(a)), and Gj;(w). Fig. 8 illustrates merely one example of szS(co) and

G3(w) . The contribution of two components depends on the locations of ®2Cf source and two
detectors and many other factors.

[Fig. 2],[Fig. 3],[Fig. 4],[Fig. 5],[Fig. 6],[Fig. 7],[Fig. 8]
If the maximum order of the higher harmonics is not large enough, the theoretical value of
R(w) depends on the maximum order of the higher harmonics that was considered. Fig. 9
shows the theoretical values of R(w) at @ =0 Hz (=R(0)) as a function of the number of the
maximum order considered (shown as “Case 1”). This example exhibits a relatively modest
variation of R(0) with the number of the maximum order. “Case 2” in Fig. 9 is another
example in which detectors 1, 2, and 3 are located at x = 41.4 cm, 27.5 cm (center of the slab),
and 13.6 cm, respectively. In Case 2, the fundamental mode approximation largely

overestimates R(0) compared with the fully converged one.

[Fig. 9]
Table 2 shows how R(0) depends on the arrangement of the three detectors. The values

of ket in Table 2 were estimated by substituting R(0) in Table 2 into R, in Eq. (30). The
estimated ket in Table 2 ranges from 0.954 to 0.976. To investigate the effect of subcriticality

on the estimated kerr, consider a nearly critical system (kert = 0.99854) as another numerical

example where X'¢ =0.0531 cm?, but the geometry and other constants are the same as in the

previous example. For this nearly critical system, all eigenvalues and eigenfunctions are
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obtained by diffusion theory. The a—eigenvalues up to the third higher harmonic are shown in
Table 3. Table 4 shows calculation results for the nearly critical system. The arrangements of
the detectors on which Table 4 is based are the same as for Table 2. The spectral ratios, R(0),
are close to the ratios by the fundamental mode approximation, R,, regardless of the
arrangement of detectors 2 and 3 because «y <<ay <ay <---. The estimated kert’s agree with
the exact one to four decimal places. As kesr decreases, the range of variation becomes wider as
can be seen in Tables 2 and 4. On the other hand, in a nearly critical system (Table 4), the
estimated Kesr 1S expected to be independent of the arrangement of the three detectors.
[Table 2], [Table 3], [Table 4]
4. Another Method for Inferring e
As shown in Sec. 3, the ratio of spectral densities significantly varies with the locations of
the detectors except in a nearly critical system. The ratio of spectral densities, R(0), that takes
into account a sufficient number of higher harmonics differs from R, obtained by the
fundamental mode approximation. Thus, using R(0) in Eq. (30) instead of R, is likely to
result in ambiguity as to estimating kef. Another method for inferring ket using the ratio of
spectral densities was proposed by Mihalczo et al. (1997) and Valentine (1999). In that method,
a Monte Carlo simulation and a measurement are performed for a subcritical system to which
the CSDNA method is applied to obtain the ratios of spectral densities. The ratios of spectral
densities obtained by the Monte Carlo simulation and the measurement are denoted
by R.and R,,, respectively. The bias in the ratio of spectral densities is defined as R, —R.; it
is attributed to the insufficient representation of the nuclear data and the Monte Carlo model. In
addition to the Monte Carlo simulation for the CSDNA method, a criticality calculation is
performed to obtain ker, which is denoted byk. . The same Monte Carlo code and nuclear data
are used for both the simulation of the CSDNA method and the kest calculation. It is assumed

that if R,=R., there is no bias in the criticality calculation, and k. is equal to the
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“experimental” ker. However, R, is usually different from R.. To infer the “experimental”
ket, the Monte Carlo model is slightly perturbed. A Monte Carlo simulation for the CSDNA
method and a criticality calculation are performed for the perturbed system. The

“experimental” kesr is determined from the following relationship:

==, (46)

where k., = the “experimental” kett, R, = the ratio of spectral density in the perturbed

p

system, and Kk, = ket in the perturbed system. Eq. (46) assumes that the sensitivity of the ratio
of spectral densities to kert due to the bias in the nuclear data and the Monte Carlo model is the
same as that due to the intentionally added perturbation. Eg. (46) also assumes a linear
relationship between the ratio of spectral densities and ker. Thus, the perturbation must be
sufficiently small that the linearity holds. Furthermore, the perturbation must be large enough
such that it is greater than the uncertainties in the simulated parameters. If the “experimental”
ketr Obtained from Eq. (46) depends on the type of perturbation, the “experimental” ket is not a
uniquely determined value and is not truly “experimental”. In the point-kinetics approximation
in Eq. (34), the “experimental” kess is completely independent of the type of perturbation unless
v is changed. Perez et al. (1997) demonstrated that Eq. (46) is valid using first-order
perturbations of the transport operators for the ratio of spectral densities and kesr. Because the
ratio of spectral densities is given by the involved formula in Eg. (23), the uniqueness of
(Rp —Re)/(kp —k¢) is not always straightforwardly explained. Valentine et al. (2000) applied
Eqg. (46) to inferring the “experimental” ket of a highly enriched uranyl nitrate solution
contained in a cylindrical tank. Perturbations were made to the uranium density, the solution

density, the tank dimensions, and the uranium enrichment. The sensitivities,

(Rp —R¢)/(kp —k¢), were calculated from the data in (Valentine et al., 2000) and are shown in

Tables 5 and 6. All calculated data (R,,,R;,kp, andk ) that are needed for Tables 5 and 6 were
calculated by the authors of (Valentine et al., 2000) with MCNP-DSP code (Valentine and
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Mihalczo, 1996), a modified version of MCNP for simulating the CSDNA method. The
sensitivity in Table 5 seems to be relatively independent of the type of perturbation. On the
other hand, the sensitivity in Table 6, where kest is much lower, is more sensitive to the type of
perturbation. This finding is accentuated in another subcritical experiment in (Blakeman et al.,
2008). This experiment was performed for configurations of two coaxial, cylindrical tanks of
highly-enriched uranyl nitrate solution. While the sensitivities, (R, —R;)/(k, —k;), ranged
from -0.98 to -1.06 for ket ~ 0.94, they did from -0.06 to -1.42 for ket ~ 0.86. It is presumed that
how independent the sensitivity, (R, —R;)/(k, —k;), is of the type of perturbation depends on
its subcriticality. Our discussion does not accurately explain the uniqueness of the
“experimental” ket inferred by Eq. (46). However, the variation of the inferred “experimental”
ket is eventually very minor regardless of the type of perturbation. This method was applied to
a plutonium metal system (Valentine, 2003), a highly enriched metal system (Blakeman et al.,
2006). The review in these evaluation reports in the International Handbook of Evaluated
Criticality Safety Benchmark Experiments (ICSBEP) claims that the method using Eq. (46)
may be a practically useful method to infer “experimental” ket with an acceptable level of
accuracy.
[Table 5], [Table 6]
5. Conclusions
A theoretical formula for the ratio of spectral densities that is measured in the CSDNA
method is derived in this paper. Although similar formulations were derived in previous papers,
no numerical example or verification has been presented. The present paper has shown that
numerical tests in the one-dimensional infinite slab verify the formula for the ratio. The
forward and adjoint kinetic mode (a«—mode) eigenvalues and eigenfunctions that are included in
the formula were obtained by solving the a—mode transport equation up to the third higher
harmonic. Beyond the fourth higher harmonic, the diffusion approximation was applied to

obtain the eigenvalues and the eigenfunctions. The theoretical values reproduce well the results
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calculated by the Monte Carlo simulation for the CSDNA method. The theoretical formula is
deemed to be verified through the comparison with the Monte Carlo simulation.

By neglecting higher harmonics except for the fundamental mode, the ratio of spectral
densities can be related to ket or p (=1-1/keff) as seen in Eq. (30). However, a measured ratio of
spectral densities is contaminated by the higher harmonics unless the system is nearly critical.
Using a measured ratio of spectral densities in Eq. (30) does not yield a unique kess because it
depends significantly on the locations of the detectors in the CSDNA method.

An alternative method for inferring a unique ket using the CSDNA method is based on the
assumption that the sensitivity of the spectral ratio to the ket is independent of the type of
perturbation. This assumption is valid for a nearly critical system where the fundamental mode
is dominant over the remaining higher harmonics. This paper does not succeed in showing the
theoretical justification of the assumption, and the sensitivity is not completely independent of
the type of perturbation. However, according to the review of the previous results in the
ICSBEP evaluation reports, the proposed method can be a practically available subcriticality
determination technique because an inferred “experimental” ket can be almost uniquely

determined regardless of the type of perturbation.
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Figure 2. Comparison of
Figure 3. Comparison of
Figure 4. Comparison of
Figure 5. Comparison of
Figure 6. Comparison of

Figure 7. Comparison of

Figure captions
source arrangements in the one-dimensional infinite slab for test
Re[G3(@)] between the theory and the Monte Carlo simulation.
Im[G,3(®@)] between the theory and the Monte Carlo simulation.
Re[G,3(w)] between the theory and the Monte Carlo simulation.
Im[G,3(®w)] between the theory and the Monte Carlo simulation.
Re[R(w)] between the theory and the Monte Carlo simulation.

Im[R(w)] between the theory and the Monte Carlo simulation.

Figure 8. Contributions of Re[G2f3(a))] and Re[G33(w)] in Re[Gys(@)].

Figure 9. Variations of R(w) at w = 0 Hz (=R(0)) with the number of maximum order (the

mode order “1” corresponds to the fundamental mode).
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Tablel

Table 1 Comparison of kes and o), between the diffusion theory and the Monte Carlo

calculations
Diffusion theory Monte Carlo
Keff 0.95838 0.95865 + 0.00002
a(s™) 936.25 939.94 + 0.50
(s 3085.0 3120.8+ 0.6
(s 6666.3 6825.2 + 0.8
a3 (s 11680 12166 + 2

2 one standard deviation



Table2

Table 2 Spectral ratios at @ =0 Hz and estimated ket for several detector arrangements.

De;ff for Detector 2 Detector 3 R(0) Kefr * Ry°
(7°Ch)
A B C 0.1203 0.9622
A B D 0.1464 0.9535 0.1312
A D C 0.0993 0.9690
B D C 0.0614 0.9763
B A C 0.0837 0.9675 0.1057
B A D 0.0981 0.9617

A:x=34.0cm, B: x=41.4 cm, C: x =13.6 cm, D: x =27.5 cm (middle point of the slab)
8 The exact ke is 0.9587.
® Fundamental mode approximation



Table3

Table 3 ¢ inthe nearly critical system

n On (3_1)
0 34.25
1 2183
2 5764
3 10778




Table4d

Table 4 Spectral ratios at @ = 0 Hz and estimated kes; for several detector arrangements in the
nearly critical system

Detector 1

2ch Detector 2 Detector 3 R(0) Keft * Ry”
A B C 0.004847 0.99854
A B D 0.004922 0.99852 0.004872
A D C 0.004797 0.99856
B D C 0.003745 0.99858
B A C 0.003806 0.99855 0.003855
B A D 0.003848 0.99854

A:x=34.0cm, B: x=41.4 cm, C: x =13.6 cm, D: x =27.5 cm (middle point of the slab)
8 The exact ke is 0.99854.
® Fundamental mode approximation



Table5

Table 5 Sensitivities and “experimental” ket for Case 1 in SUB-HEU-SOL-THERM-001
(solution height: 30.48 cm, k. =0.9599).

(Rp =R /(kp —k¢) “Experimental” Kegt
Solution density +2% -2.40 0.9630
Uranium density —3% —-2.42 0.9630
Uranium density +3% -2.31 0.9632
Enrichment 93.2% — 80% —-2.24 0.9632
Radius +1.1% -2.34 0.9631




Table6

Table 6 Sensitivities and “experimental” ket for Case 4 in SUB-HEU-SOL-THERM-001

(solution height: 22.86 cm, k. =0.8829).

(Rp =R /(kp —k¢) “Experimental” Kegt
Solution density +2% -1.74 0.8895
Uranium density —3% -1.73 0.8895
Uranium density +3% -1.93 0.8889
Enrichment 93.2% — 80% -2.09 0.8884
Radius +1.1% -1.79 0.8893
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