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1 Introduction

It has been a long standing fundamental question in theoretical physics whether the graviton,
a spin-2 field that mediates the gravitational force, can have a finite mass or not. While Fierz
and Pauli’s pioneering work in 1939 [1] found a consistent linear theory of massive gravity,
Boulware and Deser in 1972 [2] showed that generic nonlinear extensions of the theory exhibit
ghost-type instability, often called Boulware-Deser (BD) ghost. It took almost 40 years since
then until de Rham, Gabadadze and Tolley (dRGT) in 2010 [3, 4] finally found a nonlinear
completion of the Fierz and Pauli’s theory without the BD ghost. While the theory was
initially found by demanding the absence of the BD ghost in the so called decoupling limit,
it was later proved by Hassan and Rosen [5, 6] that the theory is free from the BD ghost at
the fully non-linear level even away from the decoupling limit.

Despite the recent theoretical progress in massive gravity, it is still fair to say that
cosmology in massive gravity has not been established yet. In this respect, two no-go results
are currently known against simple realization of viable cosmology in massive gravity. The
first one forbids the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology in the
original dRGT theory [7]. This no-go can be avoided either by considering open FLRW
cosmology in the original theory [8] or by slightly extending the theory with a de Sitter or
FLRW fiducial metric [9] (see [10] for self-accelerating FLRW solutions and [11–13] for non
self-accelerating FLRW solutions with a generalized fiducial metric). However, the second
no-go tells that all homogeneous and isotropic FLRW solutions in the dRGT theory, either in
its original form or with a more general fiducial metric, are unstable [14]. There then seem (at
least) three possible options to go around the second no-go: (i) to relax either homogeneity [7]
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or isotropy [15, 16] of the background solution; (ii) to extend the theory either by introducing
extra degree(s) of freedom [17, 18] or by abandoning the direct connection with the Fierz and
Pauli’s theory [19–21]; or (iii) to change the way how matter fields couple to gravity [22, 23].

The quasidilaton theory [17] introduces an extra scalar degree of freedom to the dRGT
theory and thus falls into the category (ii). There exists a scaling-type solution that expresses
a self-accelerating de Sitter universe in the flat FLRW chart. However, the scaling solution
in the original theory turned out to be unstable [24, 25]. (See [26] for another type of
self-accelerating solution in the decoupling limit.) Fortunately, the scaling solution can be
stabilized in a range of parameters by introducing a new coupling constant corresponding to
the amount of disformal transformation to the fiducial metric [27]. For the minimal model
of this type, stability of cosmological evolution in the presence of matter fields was recently
studied in [28]. The theory can be further generalized as in [29], allowing for a larger set of
parameters.

In the present paper we shall propose yet another extension of the quasidilaton theory
of massive gravity, motivated by the new matter coupling [22]. The role of the new matter
coupling is to make it possible for the kinetic energy of the quasidilaton scalar to couple to
both physical and fiducial metrics simultaneously.

The rest of the present paper is organized as follows. In section 2 we describe the
dRGT theory, the original quasidilaton theory and the new quasidilaton theory step by step.
In section 3 we analyze the background equations of motion with the FLRW ansatz and find
an exact scaling-type solution that expresses a self-accelerating de Sitter universe. This is a
continuous deformation of the same type of solution that was already found in the original
quasidilaton theory. What is interesting is that, unlike the extension considered in [27],
properties of the scaling-type solution depends crucially on a new parameter introduced by the
extension in the present paper. For example, in the limit of a small Hubble expansion rate, the
effective Newton’s constant for the FLRW background evolution is positive as far as the new
parameter is non-zero, irrespective of other parameters of the theory. In section 4 we analyze
tensor, vector and scalar perturbations around the de Sitter solution. Based on the result
of the perturbative analysis, in section 5 we study the stability of subhorizon perturbations
around the de Sitter solution. It is shown that all physical degrees of freedom have finite
quadratic kinetic terms and are stable in a range of parameters while the effective Newton’s
constant for the background is positive, even when the genuine cosmological constant is set
to zero. Section 6 is devoted to a summary and discussions.

2 From dRGT to new quasidilaton theory

In this section we describe the dRGT theory, the original quasidilaton theory and the new
quasidilaton theory step by step.

2.1 dRGT

We begin with describing the dRGT massive gravity theory [4]. In the covariant formulation
the theory is described by a physical metric gµν and four scalar fields called Stückelberg
fields, φa (a = 0, 1, 2, 3). The theory enjoys the Poincare symmetry in the Stückelberg field
space, i.e. the action is invariant under the following transformation

φa → φa + ca, φa → Λa
bφ

b, (2.1)
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where ca are constants and Λa
b represents a Lorentz transformation. Hence the Stückelberg

fields enter the action only through the pull-back of the Minkowski metric in the field space
to the spacetime defined as

fµν = ηab∂µφ
a∂νφ

b, ηab = diag(−1, 1, 1, 1). (2.2)

Using the tensor fµν , often called a fiducial metric, it is convenient to define

Kµ
ν = δµν −

(

√

g−1f
)µ

ν
. (2.3)

The graviton mass terms that describe interactions between the physical metric and the
Stückelberg fields are then constructed as

IdRGT[gµν , fµν ] = M2
Plm

2
g

∫

d4x
√−g [L2(K) + α3L3(K) + α4L4(K)] , (2.4)

where

L2(K) =
1

2

(

[K]2 −
[

K2
]

)

, L3(K) =
1

6

(

[K]3 − 3 [K]
[

K2
]

+ 2
[

K3
]

)

,

L4(K) =
1

24

(

[K]4 − 6 [K]2
[

K2
]

+ 3
[

K2
]2

+ 8 [K]
[

K3
]

− 6
[

K4
]

)

, (2.5)

and a square bracket in (2.5) denotes trace operation. The theory is free from BD ghost at
the fully non-linear level [5, 6]. However, it has been a rather non-trivial task to find stable
cosmological solutions.

2.2 Original quasidilaton

The quasidilaton theory is an extension of dRGT theory that involves an extra scalar field,
called a quasidilaton. In its covariant formulation the theory is thus described by the physical
metric gµν , the four Stückelberg fields φa and the quasidilaton scalar σ. In addition to the
Poincare symmetry as described in the previous subsection, the theory is invariant under the
global transformation

σ → σ + σ0, φa → e−σ0/MPlφa, (2.6)

where σ0 is an arbitrary constant. One can construct graviton mass terms that are invariant
under the global transformation by simply replacing Kµ

ν in the dRGT mass terms with

K̄µ
ν = δµν − eσ/MPl

(

√

g−1f
)µ

ν
. (2.7)

Adding a kinetic term of the quasidilaton scalar, one then obtains

IQD[gµν , fµν , σ] = M2
Plm

2
g

∫

d4x
√−g

[

L2(K̄)+α3L3(K̄)+α4L4(K̄)
]

−ω

2

∫

d4x
√−g gµν∂µσ∂νσ,

(2.8)
where ω is a dimensionless constant. Thanks to the global symmetry (2.6), the quasidilaton
theory allows for a scaling-type solution that describes a self-accelerating de Sitter universe in
the flat FLRW chart. While the self-accelerating de Sitter solution in the original quasidilaton
theory is unstable [24, 25], an extension of the theory makes the same solution stable in a
range of parameters [27].
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2.3 New quasidilaton

In the present paper we propose yet another extension of the quasidilaton theory of Poincare
invariant massive gravity. In the original theory, the kinetic term of the quasidilaton scalar
σ is given in terms of the physical metric gµν . In the new theory we consider the following
effective metric to construct the kinetic term of the quasidilaton scalar.

geffµν = gµν + 2βeσ/MPlgµρ

(

√

g−1f
)ρ

ν
+ β2e2σ/MPlfµν , (2.9)

where β is a dimensionless constant. This is a simple extension of the effective metric proposed
by [22]. (See also [30].) Hereafter, it is assumed that β is non-negative in order to avoid
signature change of the effective metric. It is evident that this effective metric respects the
global quasidilaton symmetry (2.6). We thus propose the action of the new quasidilaton
theory as

INQD[gµν , fµν , σ]=M2
Plm

2
g

∫

d4x
√−g

[

L2(K̄)+α3L3(K̄)+α4L4(K̄)
]

−ω
2

∫

d4x
√−geffg

µν
eff ∂µσ∂νσ,

(2.10)
where geff and gµνeff are the determinant and the inverse of geffµν . The new quasidilaton theory
is thus parameterized by (mg, α3, α4, ω, β). Adding the Einstein-Hilbert action, the total
action is then

Itot = IEH + INQD, IEH =
M2

Pl

2

∫

d4x
√−g (R− 2Λ). (2.11)

3 de Sitter background

We consider a flat FLRW ansatz

gµνdx
µν = −N(t)2dt2 + a(t)2δijdx

idxj , φ0 = f(t), φi = a0x
i, σ = σ̄(t), (3.1)

where a0 is a constant. The fiducial metric and the effective metric are then

fµνdx
µdxν = −(ḟ)2dt2 + a20δijdx

idxj ,

geffµνdx
µdxν = −(1 + βrX)2N2dt2 + (1 + βX)2a2δijdx

idxj , (3.2)

where an over-dot represents derivative with respect to t and we have introduced the following
quantities

X =
eσ̄/MPla0

a
, r =

ḟa

Na0
. (3.3)

The independent background equations of motion are

0 =
J̇

N
+ 4HJ,

3H2 = Λ+m2
gρX +

ω

2

(1 + βX)3

(1 + βrX)2

(

Ẋ

NX
+H

)2

,

−2Ḣ

N
= (1− r)Xm2

gJX +
ω

2

(1 + βX)2[(1 + βX) + (1 + βrX)]

(1 + βrX)2

(

Ẋ

NX
+H

)2

, (3.4)
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where H = ȧ/(Na) is the Hubble expansion rate and

J = m2
gX(1−X)

[

3 + 3(1−X)α3 + (1−X)2α4

]

+
ω

2

βX(1 + βX)3

(1 + βrX)2

(

Ẋ

NX
+H

)2

,

ρX = (X − 1)
[

(X − 1)(X − 4)α3 + (X − 1)2α4 − 3(X − 2)
]

,

JX = (X − 1)(X − 3)α3 + (X − 1)2α4 + 3− 2X,

(3.5)

The first equation in (3.4) implies that J decays as ∝ 1/a4 as the universe expands. We
thus have an attractor de Sitter solution at J = 0 as

H = mgh, X = X0, r = r0, (3.6)

where h, X0 and r0 are constants satisfying

X0(1−X0)
[

3 + 3(1−X0)α3 + (1−X0)
2α4

]

+
ω

2

βX0(1 + βX0)
3

(1 + βr0X0)2
h2 = 0,

−3h2 + λ+ ρX0 +
ω

2

(1 + βX0)
3

(1 + βrX0)2
h2 = 0,

(1− r0)X0JX0 +
ω

2

(1 + βX0)
2[(1 + βX0) + (1 + βr0X0)]

(1 + βrX0)2
h2 = 0. (3.7)

Here, ρX0 and JX0 are ρX and JX , respectively, evaluated at X = X0 and we have defined
λ = Λ/m2

g.

By using the set of equations, one can express (λ, α3, α4) in terms of (h2, X0, r0) as

λ = 3h2 + (1−X0)
2 +

ωh2(1 + βX0)
2Aλ

2(1 + βr0X0)2(r0 − 1)X2
0

,

α3 =
2

X0 − 1
+

ωh2(1 + βX0)
2A3

2(1 + βr0X0)2(r0 − 1)X2
0

,

α4 =
3

(X0 − 1)2
+

ωh2(1 + βX0)
2A4

2(1 + βr0X0)2(r0 − 1)X2
0

, (3.8)

where

Aλ = (1− r0)X
2
0β

2 + 2[−r0X
2
0 + (1 + r0)X0 − r0]X0β − (1 + r0)X

2
0 + 4X0 − 2,

A3 =
(1− r0)X

2
0β

2 + [(1 + r0)X0 − 2r0]X0β + 2(X0 − 1)

(X0 − 1)2
,

A4 =
(r0 − 1)(X0 − 3)X2

0β
2 + 2[(2r0 + 1)X0 − 3r0]X0β + 6(X0 − 1)

(X0 − 1)3
. (3.9)

One can then calculate partial derivatives of (λ, α3, α4) w.r.t. (h
2, X0, r0). By inverting the

Jacobian matrix, one obtains

(

∂h2

∂λ

)

α3,α4

=
1

3

[

1 +
c3ω

2h2

c1ωh2 + c2

]−1

, (3.10)
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where

c1 = (1 + βX0)
{

X5
0 (1− r0)

3β5+X4
0 (1− r0)

[

(r0X
2
0+2(−r20 − r0 + 1)X0 + r0(4r0 − 3)

]

β4

−X3
0

[

(2r0+1)(r20+2r0−2)X2
0+2(−3r30−6r20+7r0−1)X0+(5r30+4r20−9r0+3)

]

β3

+X2
0 (1−X0)[(10r

2
0 + 5r0 − 6)X0 − (7r0 + 2)(2r0 − 1)]β2

+3X0(1−X0)
2(1− 4r0)β − 3(1−X0)

2
}

,

c2 = 2X5
0 (1− r0)

3(1−X0)(1 + βr0X0)
2β2,

c3 =
1

2
(1−X0)

2(1 + βX0)
6. (3.11)

This quantity must be positive in order for the Hubble expansion rate to be an increasing
function of the energy density coupling to the physical metric. In other words, the positiv-
ity of this quantity is nothing but the positivity of the effective Newton’s constant for the
background FLRW cosmology. For β = 0, the expression (3.10) reduces to the result known
in the original quasidilaton as

(

∂h2

∂λ

)

α3,α4

=
2

6− ω
, for β = 0. (3.12)

The positivity of this quantity is incompatible with the stability of the de Sitter attractor
solution in the original quasidilaton theory, i.e. with β = 0. On the other hand, with β > 0
(see subsection 2.3 for the reason why we do not consider a negative β), we shall see that
the positivity of (∂h2/∂λ)α3,α4 can be compatible with the stability of the de Sitter attractor
solution. For example, if we take the Minkowski limit (h → 0) while keeping β non-zero then
we reach the following universal value, which is positive:

(

∂h2

∂λ

)

α3,α4

→ 1

3
, (h → 0 with β kept finite and positive). (3.13)

4 Perturbations

In this section we analyze tensor, vector and scalar perturbations around the de Sitter solution
that we described in the previous section.

4.1 Tensor perturbations

For tensor perturbations

δgij = a2hTT
ij (4.1)

with δijhTT
ij = 0 and δki∂kh

TT
ij = 0, we expand the total action (2.11) up to quadratic order

in perturbations. After decomposing the perturbations into Fourier modes, we obtain the
quadratic Lagrangian as

LT =
M2

Pl

8
a3N

[

|ḣTT
ij |2
N2

−
(

k2

a2
+M2

GW

)

|hTT
ij |2

]

, (4.2)

where

M2
GW =

[

(1 + βX0)(µ3β
3 + µ2β

2 + µ1β + µ0)

(X0 − 1)2(r0 − 1)(1 + βr0X0)2
ωh2 +

X3
0 (r0 − 1)

X0 − 1

]

m2
g. (4.3)
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and

µ3 = −X3
0 (1− r0)

2,

µ2 = 2X2
0 [r0X

2
0 + (r20 − 2r0 − 1)X0 + r0(3− 2r0)],

µ1 = X0[(r0 + 1)2X2
0 − 8X0 + 6− 2r20],

µ0 = 2(X0 − 1)(X0r0 + r0 − 2). (4.4)

4.2 Vector perturbations

For vector perturbations

δg0i = aNBT
i , δgij =

a2

2
(∂iE

T
j + ∂jE

T
i ), (4.5)

with δij∂iB
T
j = 0 and δij∂iE

T
j = 0, we expand the total action (2.11) up to quadratic order

in perturbations. We find that the quadratic action does not depend on time derivatives of
BT

i . After decomposing the perturbations into Fourier modes, one can then eliminate BT
i by

solving its equation of motion as

BT
i =

c2V
k2

a2

c2V
k2

a2
+M2

GW

aĖT
i

2N
, (4.6)

where

c2V =
(r0 + 1)2(r0 − 1)(1 + βr0X0)

2(1 + βX0)(1 + r0 + 2βr0X0)

M2
GW

ωh2m2
g

. (4.7)

The reduced quadratic Lagrangian is then

LV =
M2

Pl

16

∫

d4xa3N
k2M2

GW

c2V
k2

a2
+M2

GW

[

|ĖT
i |2
N2

−
(

c2V
k2

a2
+M2

GW

)

|ET
i |2
]

, (4.8)

4.3 Scalar perturbations

For scalar perturbations

δg00 = −2N2Φ, δg0i = aN∂iB, δgij = a2
[

2δijΨ+

(

∂i∂j −
1

3
δijδ

kl∂k∂l

)

E

]

, (4.9)

and
δσ = MPlσ1, (4.10)

we expand the total action (2.11) up to quadratic order in perturbations. We find that the
quadratic action does not depend on time derivatives of Φ and B. After decomposing the
perturbations into Fourier modes, one can then eliminate Φ and B by solving their equations
of motion. We then change the variables from (σ1, E, Ψ) to (σ̃1, E, Ψ) by

σ1 =
Ψ

1 + βr0X0
+ σ̃1, (4.11)

to find that Ψ is also non-dynamical, i.e. the quadratic Lagrangian does not contain time
derivatives of Ψ. One can thus eliminate Ψ as well by using its equation of motion. Finally, we
obtain the reduced quadratic Lagrangian for the two dynamical variables (σ̃1, E) of the form

LS =
M2

Pl

2
Na3

(

1

N2
ẏTKẏ +

2mg

N
ẏTMy −m2

gy
TV y

)

, (4.12)
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where K = KT , M = −MT and V = V T are 2× 2 matrices and

y =

(

σ̃1
k2E

6(1+βr0X0)

)

. (4.13)

Hereafter, we consider subhorizon modes, i.e. modes with k/a ≫ H. We suppose that
H ∼ |mg| up to a factor of order unity, meaning that subhorizon modes satisfy k/a ≫ |mg|
as well, and that β > 0. (See subsection 2.3 for the reason why we do not consider a negative
β.) It is convenient to introduce

κ ≡ k

mga
, |κ| ≫ 1 (4.14)

as a bookkeeping parameter. With H ∼ |mg| and β > 0, the matrices K, M and V are
expanded as

K =

(

K11 K12

K12 K22

)

= K(0)

(

1 −1
−1 1

)

+ κ−2

(

K
(−2)
11 K

(−2)
12

K
(−2)
12 K

(−2)
22

)

+O(κ−4),

M =

(

0 M12

−M12 0

)

= M (0)

(

0 1
−1 0

)

+O(κ−2),

V =

(

V11 V12

V12 V22

)

= κ2V (2)

(

1 −1
−1 1

)

+

(

V
(0)
11 V

(0)
12

V
(0)
12 V

(0)
22

)

+O(κ−2). (4.15)

The leading-order components are

K(0) =
(1 + βX0)

3ω

1 + βr0X0
,

M (0) = −3

2

β2X2
0 (1 + βX0)

2(r0 − 1)2ωh

2X2
0β

2 + (2 + 3r0 − r20)X0β + r0 + 1
,

V (2) =
(1 + βX0)

3(1 + r0 + 2βr0X0)ω

2X2
0β

2 + (2 + 3r0 − r20)X0β + r0 + 1
. (4.16)

The following combination of the sub-leading components will also be needed for the stability
analysis in the next section.

K(−2) ≡ K
(−2)
11 +K

(−2)
22 + 2K

(−2)
12 =

9β2X2
0 (1− r0)(1 + βX0)

3ωh2

2X2
0β

2 + (2 + 3r0 − r20)X0β + r0 + 1
,

V (0) ≡ V
(0)
11 + V

(0)
22 + 2V

(0)
12 = 0. (4.17)

5 Subhorizon stability

In order to avoid instabilities whose time scales are parametrically shorter than the cosmolog-
ical time scale H−1, we require that modes with k/a ≫ H, i.e. subhorizon modes, be stable.
Other types of instabilities, if exist, would be as slow as the standard Jeans instability and
thus could be harmless. Throughout this section we assume that H ∼ |mg| and that β > 0.
(See subsection 2.3 for the reason why we do not consider a negative β.)
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5.1 No-ghost condition

For scalar perturbations, we impose that both of the two eigenvalues of the matrix K be
positive for subhorizon modes. Since

K22 = K(0) +O(κ−2),
detK

K22
= K(−2)κ−2 +O(κ−4), (5.1)

where κ is defined in (4.14), the necessary and sufficient condition for the positivity of the
two eigenvalues in the subhorizon limit is that

K(0) > 0, K(−2)κ−2 > 0. (5.2)

For vector perturbations, we shall see in the next subsection that the absence of gradient
instability for subhorizon modes requires that c2V > 0. Under this condition, the coefficient
of the kinetic term is positive for subhorizon modes if and only if

M2
GW > 0. (5.3)

For tensor modes, the coefficient of kinetic term is constant and always positive.

5.2 Positivity of sound speed squared

For scalar modes, the kinetic matrix K is diagonalized by the change of variables from y to
ỹ through

y =

(

1 0

−K12
K22

1

)

ỹ. (5.4)

By employing the ansatz1

ỹ ∝ exp

(

i|mg|
∫

ΩNdt

)

, (5.5)

and neglecting the time dependence of Ω, a andN (we are interested in modes with k/a ≫ H),
the equations of motion is reduced to the dispersion relation

(detK)Ω4 − [K11V22 +K22V11 − 2K12V12 + 4(M12)
2]Ω2 + detV = 0. (5.6)

It is easy to estimate the order of each coefficient as

detK = κ−2K(0)K(−2) +O(κ−4) =O(κ−2),

K11V22+K22V11−2K12V12+4(M12)
2=[K(0)V (0)+K(−2)V (2)+4(M (0))2]+O(κ−2) =O(κ0),

detV = κ2V (2)V (0) +O(κ0) =O(κ0),

(5.7)

where we have used V (0) = 0 to show the last equality. Thus there is a pair of positive and
negative frequency modes with Ω2 = O(κ0), corresponding to a vanishing sound speed. The
other pair of modes corresponds to

Ω2 =
K(0)V (0) +K(−2)V (2) + 4(M (0))2

K(0)K(−2)
κ2 +O(κ0). (5.8)

1This ansatz is appropriate for m
2
g > 0. For m

2
g < 0, one can simply replace κ

2 and Ω2 by −κ
2 and −Ω2,

respectively, and then all results below hold. In particular, (5.9), (5.10) and (5.12) are unchanged by this
replacement.
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Hence, we obtain the sound speed squared for this pair as

c2s = lim
κ→∞

κ−2Ω2 =
K(0)V (0) +K(−2)V (2) + 4(M (0))2

K(0)K(−2)
=

(

1 + βr0X0

1 + βX0

)2

. (5.9)

This is always positive and thus there is no classical instability for subhorizon modes. This
value of c2s corresponds to the speed limit set by the light cone of the background effective
metric geffµν (see (3.2)).

For vector perturbations, from the action (4.8) one can easily read off the dispersion
relation for modes with k/a ≫ H as

Ω2 = c2V κ
2 +O(κ0). (5.10)

Hence the absence of classical instability for subhorizon modes requires that

c2V > 0. (5.11)

As is clear from the quadratic action (4.2), the subhorizon dispersion relation for tensor
perturbations is

Ω2 = κ2 +O(κ0). (5.12)

Thus tensor subhorizon modes are always classically stable.

5.3 Subhorizon stability and self-acceleration

In summary, supposing that H ∼ |mg| and that β > 0, all subhorizon modes are stable if
and only if

K(0) > 0, K(−2)κ−2 > 0, c2V > 0, M2
GW > 0. (5.13)

In addition to these conditions, we require that the effective Newton’s constant for the FLRW
background be positive, i.e.

(

∂h2

∂λ

)

α3,α4

> 0, (5.14)

where the left hand side was calculated in section 3 and the result is shown in (3.10).
Hereafter, we assume thatm2

g > 0. Among the five conditions shown in (5.13) and (5.14),
the first three can be restated as

ω > 0, r0 > 2 + 2
√
2, x− < X0β < x+, (5.15)

where

x± =
1

4

[

r20 − 3r0 − 2± (r0 − 1)
√

r20 − 4r0 − 4

]

. (5.16)

The remaining two conditions are complicated but can be satisfied simultaneously in a range
of parameters. (See explicit self-accelerating examples below.)

Under the condition r0 > 2 + 2
√
2, it is easy to show that x− > 0, meaning that

β = 0 is excluded. This is consistent with the result of [24, 25]: in the original quasidilaton
theory (β = 0) subhorizon modes always suffer from ghost instability if the effective Newton’s
constant for the FLRW background evolution is positive. On the other hand, if β is non-zero
and is between x−/X0 and x+/X0 then subhorizon modes are stable in a range of parameters.

The subhorizon behavior of the new quasidilaton theory considered in this paper is quite
different from that of the original quasidilaton theory. This is because in the subhorizon limit,
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various quantities such as detK are dominated by terms that are absent for β = 0, where β
is the new parameter that measures the strength of the coupling of the kinetic energy of the
quasidilaton scalar to the fiducial metric. Hence, the β → 0 limit and the subhorizon limit
do not commute. In other words, the subhorizon limit of the new quasidilaton theory with
β > 0 is quite different from that of the original theory. (See subsection 2.3 for the reason
why we do not consider a negative β.)

So far, we kept the cosmological constant Λ (or its dimensionless version λ = Λ/m2
g) as

a placeholder for ordinary matter in order to calculate the response of the Hubble expansion
rate to the energy density coupling to the physical metric gµν . On the other hand, since one of
the modern motivations for massive gravity is to explain the origin of the current acceleration
of the universe, it is favorable if the graviton mass term (as well as the quasidilaton kinetic
action) can hold the de Sitter expansion without the genuine cosmological constant. For this
reason we set λ = 0 from now on.

By setting λ = 0 in (3.8), one obtains

ω =
2(1 + βr0X0)

2(r0 − 1)X2
0

−(1 + βX0)2Aλ

[

3 +
(1−X0)

2

h2

]

. (5.17)

We thus consider the subspace of the parameter space defined by this relation. This subspace
is 4-dimensional and can be spanned by (β, h, r0, X0). In this subspace there are many
examples that satisfy the all five conditions shown in (5.13) and (5.14). For example,

β = 1, h = 1, r0 = 5, X0 = 2, (5.18)

and

β =
1

200
, h = 1, r0 = 200, X0 = 2, (5.19)

satisfy all five conditions shown in (5.13) and (5.14). The corresponding parameters in the
action are, respectively,

Λ = 0, β = 1, ω =
7744

387
, α3 =

66

43
, α4 =

165

43
, (5.20)

and

Λ = 0, β =
1

200
, ω =

1910400000000

27542016533
, α3 =

5426534

2699933
, α4 =

24700201

8099799
. (5.21)

All five conditions are satisfied in neighborhoods of these points, at least.

6 Summary and discussions

We have presented a new quasidilaton theory of Poincare invariant massive gravity, based
on the recently proposed framework of matter coupling that makes it possible for the kinetic
energy of the quasidilaton scalar to couple both physical and fiducial metrics. We have found
a scaling-type exact solution that expresses a self-accelerating de Sitter universe, and then
analyzed linear perturbations around it. We have shown that in a range of parameters all
physical degrees of freedom have non-vanishing quadratic kinetic terms and are stable in the
subhorizon limit, while the effective Newton’s constant for the background is kept positive.

The proposal of the present paper relies on a simple extension of the new matter cou-
pling in massive gravity that was recently introduced in [22]. Based on the analysis in the
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decoupling limit, it was argued in [22, 31] that the BD ghost is absent up to Λ3 = (MPlm
2
g)

1/3

but it may show up at some higher scale. The mass of the BD ghost is expected to be around
mghost ∼ m3

gM
2
Pl/(

√
βχ̇∂iχ), where χ is a canonical scalar field that couples to the effective

metric [22, 32]. The mass of the BD ghost is higher for smaller β. (This is consistent with the
fact that there is no BD ghost up to arbitrarily high scale at classical level if β = 0.) Simply
replacing χ with the quasidilaton σ and noticing that σ̇ ∼ MPlmg on the self-accelerating
background (we still assume that H ∼ mg), we obtain mghost ∼ (Λ3/

√
β) × (Λ2

3/∂iσ). This
means that for ∂iσ below Λ2

3, the lowest possible mass of the BD ghost would be ∼ Λ3/
√
β.

This can be above Λ3 if β is small enough, and the BD ghost can be integrated out. (On the
other hand, σ̇ is above Λ2

3 and thus the self-accelerating solution cannot be described by the
standard Λ3-decoupling limit.)

For β of order unity or higher, it is expected that the BD ghost reappears in some ways.
In the present paper we have explictly shown that the would-be BD degree of freedom (Ψ
in subsection 4.3) has a vanishing time kinetic term and thus is non-dynamical at the level
of the quadratic action for any values of β and k/a. This may be due to high symmetry
of the FLRW background or for other subtle reasons. It is worth while investigating this
issue in more details. For example, as in [14, 33], one may consider linear perturbations
around a Bianchi-I background with axisymmetry as a consistent truncation of nonlinear
perturbations around the self-accelerating de Sitter solution in the flat FLRW chart. The
sixth degree of freedom may or may not show up in the linear perturbations around the
Bianchi-I background. If it does then an important question is how heavy the mass gap is.
If and only if it is heavy enough then one can safely integrate it out. While we admit that
this is a rather important issue, we consider it as outside the scope of the present paper and
leave it for a future work.

It is also worthwhile investigating more general quasidilaton theories by combining the
proposal in the present paper with extra terms considered in [27, 29].
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