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Abstract— A fully Polarimetric Synthetic Aperture Radar 

(PolSAR) image allows the generation of a number of 

polarimetric descriptors. These descriptors are sensitive to 

changes in land use and cover. Thus, the objective of this study 

is twofold: first, to identify the most effective descriptors for 

each change type and ascertain the best complementary pairs 

from the selected polarimetric descriptors; and second, to 

develop an information fusion approach to use the unique 

features found in each polarimetric descriptor to obtain a better 

change map for urban and suburban environments. The 

effectiveness of each descriptor was assessed through statistical 

analysis of the sensitivity index in selected areas and through 

change detection results obtained by using the supervised 

thresholding method. A good agreement was found between the 

statistical analysis and the performance of each descriptor. 

Finally, a polarimetric information fusion method based on the 

coupling of modified thresholding with a region-growing 

algorithm was implemented for the identified complementary 

descriptor pairs. The mapping accuracy, as measured by the 

Kappa coefficient, was improved by 0.09 (from 0.76 to 0.85) 

with a significant reduction of false and missing alarm rates 

compared to using single polarimetric SAR images. 

 
Index Terms— Synthetic aperture radar, Urban changes, 

Change detection algorithms, Polarimetric descriptors.  

I. INTRODUCTION 

nformation on land use and cover and the changing 

patterns of these data is always a hot topic because of its 

importance in several applications, including land policy 

development, site selection, and demographic and 

environmental issues at the national, regional, and global 

scale. Collecting the change information by ground-based 

survey is more accurate than any other method, but this is 

impractical to do regularly and at short intervals in a rapidly 

growing urban area. Thus, remote sensing is the best 

available technique to monitor these changes. The utility of 

synthetic aperture radar (SAR) images in change detection 

has already been proven for urban change detection and 

disaster monitoring [1]–[4]. However, the full potential of 

Polarimetric SAR (PolSAR) images still needs to be 

explored. 

The use of radar intensity information has been suggested 

for change detection rather than correlation coefficients and 

phase differences between co-polarized channels [5]. Several 

studies have been published based on radar intensities 

[1]–[6], but most of these studies were based on single 

polarimetric images rather than fully polarimetric images [1], 

[4], [6]. A fully polarimetric image allows the development 
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of several descriptors by different image processing 

algorithms. The representation and fundamental methods are 

based on incoherent analysis, which works with an ensemble 

average of several pixels to give second order statics of 

polarimetric information [7]. This allows the generation of 

several very useful pieces of information and descriptors [8], 

[9]. These descriptors could supplement the results derived 

from single polarization images by adding several unique 

features, reflecting the complex nature of man-made 

structures, that could be sensitive to different types of 

changes in urban environments. 

The availability of several processing techniques and the 

possibility of generating several descriptors from fully 

PolSAR images have created a good opportunity to conduct a 

sensitivity study to find the most effective descriptors for 

detecting several types of change. In this study, we also 

identify the best pairs of complementary components of these 

polarimetric descriptors. Furthermore, we develop an 

information fusion approach to combine information from 

the unique features found in each polarimetric descriptor in 

order to generate a better change map for urban and suburban 

environments.  

The data used and study area are described in Section II. 

Section III contains an explanation of the methodology 

followed in this study. In the first part, we discuss the 

processing technique used to generate the polarimetric 

descriptors, and in the second part, we discuss the proposed 

polarimetric fusion technique. The results are presented and 

discussed in Section IV. The discussion of the results 

includes the sensitivity analysis and results obtained from the 

fusion of selected complementary pairs of polarimetric 

descriptors. Finally, our conclusions are given in Section V. 

II. DATA USED AND STUDY AREA 

Ho Chi Min City, one of the fastest growing Asian cities, 

was selected for the study. Its location is shown in Fig. 1. To 

detect changed areas, two fully polarimetric images acquired 

by the Advanced Land Observing Satellite (ALOS) Phased 

Array type L-band Synthetic Aperture Radar (PALSAR) in 

April 2007 and April 2011 were used. To reduce the effects 

of phenological changes in vegetation and water content on 

the land surface, the images were acquired at nearly the same 

time of year. Additionally, both years selected had a normal 

precipitation pattern. Thus, all the changes detected in 

multi-temporal images are assumed to be related to human 

activity. To confirm all possible types of change, a section of 

approximately 18km × 45km pixels that includes a core urban 

area and a rapidly expanding suburban area, was selected. To 

assess the accuracy of our approach, Advanced Visible and 

Near Infrared Radiometer type-2 (AVNIR-2) images 
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acquired on nearly the same dates as the PALSAR images 

were used. In addition, high-resolution QuickBird images 

from Google Earth were used as a supplementary source to 

develop a reference change map.  

III. METHODOLOGY  

The process flow diagram of the sensitivity analysis and 

the fusion of polarimetric descriptors in multi-temporal 

PolSAR images is presented in Fig. 2. Details of the 

methodology are given in the following sub-sections. 

A. Generation of Polarimetric Descriptors and 

Preprocessing 

Several polarimetric decomposition methodologies are 

available to extract the physical scattering mechanism. In this 

study, we use descriptors obtained from different stages of 

the polarimetric processing: four polarimetric components 

(HH, HV, VH, and VV), the diagonal elements of the 

coherency matrix (T11, T22, and T33), the eigenvector-based 

descriptors alpha (), and Entropy (H) [8], and three physical 

scattering components, surface scattering (PS), double 

bounce (PD), and volume scattering (PV) [9].  

The PolSAR data consist of complex scattering values, 

which can be represented by the 2 × 2 scattering matrix 

shown in Eq. (1). 
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For mono-static radar imaging of a reciprocal medium, we 

have SHV = SVH [7].  

In a multilook PolSAR image, each pixel is represented by 

a 3 × 3 coherency matrix 
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where * represents the complex conjugate operation.  

The value of H obtained from a Cloud and Pottier 

alpha-entropy (α-H) decomposition of the coherency matrix 

[8] defines the roughness of the scattering: H = 0 indicates a 

single scattering mechanism, while H = 1 indicates a random 

mixture of scattering mechanisms. The scattering angle (α), 

representing the mean scattering mechanism, is a continuous 

angle ranging from 0° to 90°. In a model-based approach, the 

scattering matrix is decomposed into the physical scattering 

components PS, PD, and PV [9]. 

All generated descriptors were geocoded and co-registered 

to the Universal Transverse Mercator (UTM) system using 

the Global Digital Elevation Model (GDEM) with 30 m pixel 

spacing using ASF MapReady 3.2 [10]. In order to reduce the 

speckle noise present in the SAR image, Enhanced Lee filter 

[11] of window size 5×5 was implemented. The window 

size was selected with caution, if the size is bigger the spatial 

resolution will lose and if the window size is smaller, the 

filter will not be effective [1], [12]. 

B. Change Image Development 

The Normalized Difference Ratio (NDR) operator is used 

to generate the change image. The NDR operator is defined 

as:  
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Fig. 1. Study area.                                                                           Fig. 2. Process flow diagram. 

 

 

 

Fig. 2. Process flow diagram. Fig. 1. Study area. 
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where, x1 and x2 are the SAR backscattering magnitude at two 

dates, t1 and t2, obtained from co-registered images. This 

operator was introduced by Coppin and Bauer in [13] and 

later used on optical images in [14] and on SAR images in 

[12]. The NDR operator is better for change detection than 

other traditional operators [12], [14] because the NDR image 

has less errors than an image produced by difference or ratio 

operator. We now compare the errors generated from NDR 

and ratio operator. For the easeness the Eq. (3) can be 

rewritten as follows: 
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where, y is the change image generated from NDR operation. 

According to the law of error propagation, the variance of 

NDR operator, 
2

y , can be derived as follows: 
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Assume that the variance of x1,(

2

1x ), and x2, (
2

2x ) are equal 

and substitute them by 
2

x . 
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Similarly, the ratio operation is defined as: 
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where, z is the image generated from ratio operation, x1 and x2 

are the backscattering magnitude at two dates. According to 

the law of error propagation, the variance of ratio operator 

can be calculated as follows: 
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Similar to the NDR operation, 
2

1x  and 
2

2x  are assumed to 

be equal and substituting them by 
2

x  and gives: 
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Dividing Eq (5) by Eq (7) gives: 
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The right hand side of Eq. (8) is less than 1 for all value of x2 

> 0.414x1. This suggests that the variance of ratio operator is 

smaller than the variance of NDR operator only if the 

backscattering intensity is decreased heavily i.e x2 < 0.414x1. 

This fact is presented in the Fig. 3 generated by plotting the 

contour line using Eq. (8). It is shown that a very small area 

has the ratio higher than 1, that means ratio operator is better 

than NDR in very limited combination of x1 and x2. As the 

probability of error in detecting changes increases with the 

variance [15], the NDR method produces less error than the 

ratio method. Therefore, NDR operator has been adopted in 

this study. 

The input SAR images have a Gamma distribution and it 

approximates to the Gaussian distribution while increasing 

the number of look. Given a change area in an input images, 

the image obtained by the ratio and NDR operator is a 

multi-mode image. Thus, a joint distribution is necessary. 

Regarding the probability density function (PDF) of such 

multi-model images, the authors in [2] performed a 

comparative study of Nakagami, Lognormal and Weibull 

distribution for ratio images, and concluded that all have 

comparable results. Similarly, the no-change area is better 

modeled with Gaussian distribution than the Logistic and 

Student’s t distribution with the image generated by the NDR 

operator [12]. 

C. Sensitivity Analysis 

Two approaches were considered for sensitivity analysis: 

the first is the analysis of separability index for several 

selected changed areas for each polarimetric descriptor; the 

second is change mapping using a single polarimetric 

descriptor.  

1) Separability Index 

The separability index of a descriptor indicates the degree 

of separability of that descriptor. It is computed from Eq. (9) 

[16].  

.        (9) 

Here, µc and σc are the mean and standard deviation of the 

change class, and µuc and σuc are the mean and standard 

deviation of the no-change class. The descriptor with the 
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Fig. 3. Contour map of ratio of error propagation in NDR and 

ratio image. 

 



highest separability index is the best to use for change 

detection. In order to compute the separability index, a prior 

knowledge of the change area is required. Hence, four major 

change classes—bare land to built-up, agriculture to built-up 

(under construction), deforestation, and agricultural to bare 

land (smoothing of agricultural land) — were identified with 

reference to the high-resolution AVNIR-2 optical images and 

analyzed.  

D. Change Mapping Through Supervised Thresholding 

Using a Single Polarimetric Descriptor 

By assuming a Gaussian distribution of no-change areas in 

the change image generated by the NDR operator, a threshold 

value was identified in a supervised manner. The NDR image 

allows a clear preliminary assessment of changes by simple 

visual inspection [14]. Fig. 4 shows the NDR image for the 

HH polarimetric component. Bright areas indicate increased 

backscattering intensity, whereas dark areas indicate 

decreased backscattering intensity. The majority of the area is 

moderately bright or dark and is composed of those pixels 

having values around 0. This area is characterized as the 

no-change (smooth) area. Thus, it is easy to recognize 

clusters of no-change area by visual inspection (Fig. 4).  

The basic premise in using remote sensing data for change 

detection is that changes in land cover must result in changes 

in reflectance values and changes in reflectance due to land 

cover change must be large with respect to reflectance 

changes caused by other factors [17]. However, in the case of 

SAR images, it is the result of changes in backscatter and 

changes in the backscatter value due to the land cover change 

must be larger than the changes in backscatter caused by 

other factors. 

As the no-change area has a Gaussian distribution, the 

range μ±3σ covers almost all pixels (99.7% of the total 

sample), and the rest is assumed to be noise. Therefore, it is 

clear that expanding the threshold value (e.g. μ±4σ) will not 

increase inclusion of the no-change pixel considerably. With 

reference to the basic premise, none of the change pixels fall  

in the range of no-change area i.e. μ±3σ. If we narrow down 

the threshold value, change pixels do not fall in that range, 

eventually increase the missing alarm of no-change area and 

false alarm of change area. For example, if narrow down the 

threshold value to μ±2σ, 4% of the no-change pixels classify 

as the change area. Therefore, μ±3σ would be the ideal 

threshold value to segment the no-change area from change 

and adopt in this study. 

Several sample no-change clusters in the change image are 

needed to select manually. If the sample no-change area has 

mean (μ) and standard deviation (σ), the threshold values can 

be computed as: 

          {
               (  )      

                (  )      
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The advantage of this method is that no assumption is 

required about change areas, which is unpredictable. This 

method appears to give nearly the same results as the manual 

trial-and-error procedure, but it depends on the selected 

sample [12].  

With the inherent problem of the supervised methodology, 

the accuracy of this method depends on the selected sample. 

However, due to the implementational advantage of the 

image generated by NDR operator, that allows a clear 

preliminary assessment of the change area by simple visual 

inspection [14], a sufficiently large number of sample 

no-change pixels are possible to select. Thus, the threshold 

range is unlikely to shift significantly. 

A change in the land use or cover pattern alters the 

backscattering mechanism, and thus changes the 

backscattering intensity. For example, changing from bare 

land to a built-up area changes the backscattering mechanism 

from surface to double bounced reflection, which causes an 

increase in backscattering intensity. Similarly, deforestation 

changes the backscattering mechanism from volume to 

surface reflection, thus decreasing the backscattering 

intensity. Because such backscattering mechanisms are 

known for each feature, we assume the terms “increase in 

backscattering intensity” and “decrease in backscattering 

intensity” always have the same meaning for different 

features. However, this assumption may not be valid for some 

descriptors such as Ps, α and H. Changes in pixels located 

beyond the left threshold obtained from Eq. (10) are 

attributed to a decrease in backscattering intensity and those 

located beyond the right threshold are attributed to an 

increase in backscattering intensity. 

E.  Polarimetric Fusion by Considering Spatial 

Information for Change Detection 

We propose the fusion of several descriptors, to be effected 

by coupling thresholding with a region-growing algorithm 

that considers spatial information. 

If we have threshold values t1 and t2 (t1 < t2) obtained from 

Eq. (10), we can compute the mean (μ) and standard 

deviation (σ) of values falling within this threshold range. It 

is empirically found that a majority of false alarms come 

from t1 ± σ or t2 ± σ; that is, from the overlap of the histograms 

of the change and no-change classes, as shown in Fig. 5. 

Thus, the threshold values were modified to mitigate this 

effect. The pixels in the range t1 + σ to t2 - σ are classified as 

belonging to the no-change group. Similarly, pixels with 

value less than t1 - σ are classified as having a decrease in 

intensity and those with value greater than t2 + σ are classified 

as having an increase in intensity. The remaining pixels, from 

t1 - σ to t1 + σ and from t2 - σ to t2 + σ remained unclassified 

[12]. 

The fusion process is explained here for the two 

descriptors case. This operation was carried out in two steps. 

First, the union operation was performed for all pixels 

classified by both descriptors; this operation is illustrated in 

 
Fig. 4. Change image generation using the NDR operator. HH 

component of PolSAR images (a) taken in 2007, (b) taken in 

2011 and (c) the change image. 

 



Fig. 6. At this stage, we have two types of pixels: classified 

and unclassified. The classified pixels are a member of one of 

three classes C1, C2, or C3, which represent no change, 

increased intensity, and decreased intensity, respectively. 

The classified pixels are treated as seed pixels, after which 

unclassified pixels are classified by a region-growing 

approach that operates locally. 

Formally, let U represents the set of unclassified pixels. 

For all x in U, compute the distance (Δxi) from each 

connected class as follows: 

                     (11) 

where, i = 1,2, or 3, g(x) is the value of pixel x, and gi(c) is the 

average pixel value for each class. The connected class 

members are obtained from two time dilations of x. 

We next obtain Δxi for each descriptor to be fused. For 

descriptor 1, decp1Inc, decp1Dec, and decp1Noc are the 

distances of the pixel x(i, j) to the increased intensity class, 

the decreased intensity class and the no-change class, 

respectively. Similarly, for descriptor 2, decp2Inc, 

decp2Dec, decp2Noc, are the distances to the increased 

intensity class, the decreased intensity class and the 

no-change class, respectively. Now, the overall distances of 

all classes from x(i, j), considering both descriptors, is 

computed as follows. 

 .      (12) 

Here, distInc is the overall distance of pixel x(i, j) to the 

increased intensity class, distDec is the overall distance of x(i, 

j) from the decreased intensity class, and distNoc is the 

overall distance of x(i, j) from the no-change class.  

Each unclassified pixel is assigned to the class that has the 

minimum distance from the pixel. This classification is 

similar to the k-minimum distance classifier. The process will 

be repeated as long as there is an unclassified pixel with at 

least two neighboring classes. The remaining pixels will be 

classified as no-change. This method can be extended to 

more than two descriptors in an analogous manner. 

IV. RESULTS AND DISCUSSION 

The assumption of the null hypothesis, Gaussian 

distribution in no-change area, was verified with normal 

probability curve. And the effectiveness of the supervised 

thresholding was verified by comparing the performance 

with a parametric approach (minimum error thresholding) [6] 

and a non-parametric approach (Otsu thresholding) [20].  

Given that the study area has the positive (increased 

backscattering intensity) and negative changes (decreased 

backscattering intensity). The resulting image generated 

through NDR operator will have multi-model histogram; 

therefore, theoretically derived PDF will not be able to model 

such dataset. Many previous work with such kinds of datasets 

assumed a joint distribution and performed a statistical test 

for each area (changed and no-changed) in order to identify 

the approximate distribution. For example: in paper [1] a 

generalized Gaussian distribution was assumed and verified 

with the statistical test while implementing the logratio 

operator. The paper [2] concluded that three non-Gaussian 

distributions, Nakagami, Log-normal, and Weibull 

distribution for ratio image of the amplitude values of SAR 

images have similar performance. In another work [3] 

Gaussian distribution was assumed in both change and 

no-change area while using the difference operator and 

continuing without any test. Similarly, in [6] Nakagami and 

lognormal distributions are recommended in the image 

generated from modified ratio operator. Likewise, in order to 

test the null hypothesis that no-change areas are normally 

distributed, an NDR image generated from the HH 

component was subjected to analysis in this study. 

The study area was divided into three subzones. The 

experiment was performed for four datasets, one for the 

whole study area and each of the three subzones. A normal 

probability curve fitting method was used to verify the 

Gaussian distribution in the sample no-change area selected 

from each zone. The results are presented in Figs. 7(a)–(d). 

Further, to show the range of μ ± 3σ within the no-change 

area with respect to all areas, a Gaussian PDF is also shown 

for each zone (Figs. 7(f)–(i)). By using the same sample 

no-change pixels, threshold values were obtained for each 

zone; the change results are shown in Figs. 7(j)–(m). The 

results in all zones are very consistent and reasonable. From 

this analysis, it is clear that the no-change area can be stably 

approximated with a Gaussian distribution. Thus, the null 
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Fig. 5. Modified thresholding. The two threshold values 

are t1 and t2, and σ is the standard deviation in the 

unchanged class (t1 to t2). The regions t1 ± σ and t2 ± σ, in 

which two classes overlap (dark area), are left unclassified 

after modifying the threshold values. 

 
Fig. 6. Union operation of classified changed areas obtained 

from modified thresholding in a complementary pair of 

polarimetric descriptors. (a) Descriptor 1, (b) descriptor 2, and 

(c) results obtained by the union of areas classified in (a) and 

(b). Three pixels, x(i, j), x(i, j+1) and x(i, j+2), are unclassified by 

both descriptors. 
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Fig. 7. Test results for Normal distribution. (a) – (d) Normal probability curve for sample no-change area in each selected zone, (e) 

ROC curve with various thresholding values in all area presented in (j), (f) - (i) Gaussian PDF fitting for sample no-change area and 

whole area in each zone and (j)–(m) corresponding change results in each zone based on the threshold value obtained from the 

sample no-change pixels, overlaid with Pauli vector false color composite. 



hypothesis was not rejected for the HH component. We 

assume that other polarimetric descriptors also have the same 

statistical distribution. A detailed analysis of this approach is 

presented in [12]. 

In order to confirm the appropriate thresholding value, a 

receiver operating characteristic (ROC) curve was generated 

with five different thresholding values (μ±4σ, μ±3σ, μ±2.5σ, 

μ±2σ, and μ±2.5σ where μ is the mean and σ is the standard 

deviation in the sample no-change area) and presented in Fig. 

7. (e). The threshold value, which generates the closest point 

in the ROC curve from the upper left corner (0,1) (having the 

highest probability of detection and the lowest probability of 

false alarm) is the best to segment the change area from 

no-change area [21]. From the visual analysis, it is inferred 

that, some value in between μ±3σ and μ±2.5σ could give the 

best results. The point is very close to the μ±3σ and that does 

not make a significant difference in the results with respect to 

the μ±3σ (Fig. 7(e)). Therefore, the assumption of μ±3σ as a 

threshold value (Eq. 10) to segment the no-change 

background from change area is valid. 

Similarly, Fig. 8 (a) shows the change map obtained from 

the manual trial and error procedure (MTEP) thresholding, 

Fig. 8 (b) from supervised thresholding, Fig. 8 (c) from 

minimum error thresholding and Fig. 8 (d) from Otsu 

thresholding. The Kappa indices are 0.76, 0.74, 0.70 and 0.71 
for MTEP, supervised method, minimum error algorithm and 

Otsu thresholding algorithm, respectively. The results 

obtained from minimum error thresholding has the lowest 

accuracy. The big missing alarm in both increased and 

decreased backscattering areas was identified, though the 

majority of error comes from decreasing backscattering area. 

While implementing the Otsu thresholding, it omits a large 

decrease backscattering area and gained a commission in an 

increased backscattering area. The major reasons behind the 

poor performance in minimum error are two folds: one is due 

to the inappropriate assumption of the same statistical 

distribution in both change and no-change classes, and the 

other is the uses of single thresholding values for detecting 

two types of changes (increased and decreased 

backscattering). The Otsu thresholding approach also suffers 

from the same problem. When converting data into a 

single-tail statistic, the nature of the curve will differ from 

both tails and a single threshold value cannot perfectly judge 

both types of change. That is, what is good for one type of 

change (increased or decreased backscattering) will not be 

good for the other. In this case, a higher missing alarm rate in 

detecting decreased backscattering areas and false alarm in 

the increased backscattering area were identified even though 

the thresholding values obtained from Otsu algorithm is 

reasonable. In order to solve such problems: one tail problem, 

and the same distribution for change and no-change areas, a 

supervised thresholding methodology appear to be effective 

among three approaches. Therefore, we adopt the supervised 

thresholding method for sensitivity analysis and as a 

pre-processing for polarimetric fusion process. 

A. Sensitivity Analysis 

1) Separability Analysis 

A separability index was computed from Eq.(9) for each 

major change classes (agriculture to under construction area, 

bare land to built-up area, deforestation, and agriculture to 

bare land area) across all considered polarimetric descriptors. 

The NDR images of each descriptor obtained from 

multi-temporal PolSAR images were subjected to analysis. 

Fig. 9 shows the separability index for each descriptor in the 

selected change classes. Higher separability indexes indicate 

a better ability to detect changes. 

In Fig. 9, it can be clearly seen that PV, HV, and T33 have 

very similar indexes and are the highest in three change 

classes: agriculture to bare land (surface smoothing), 

construction, and deforestation. However, they are not good 

indicators for the change from bare land to built-up area. 

Some other descriptors appear better for detecting such 

changes. The descriptors α, T22, and PD appear to be better 

than any others for detecting bare land to building changes. If 

we consider the polarimetric components HH and VV, 

 
Fig. 9. Separability index of different polarimetric descriptors in major change classes. 

 
Fig. 8. Change mapping using several methods - (a) MTEP, (b) 

supervised, (c) minimum error thresholding and (d) Otsu 

thresholding. 

 



neither shows the highest separability index in any change 

class. However, they are moderately effective for each 

change. 

Thus, from this analysis, what we can say is that a single 

descriptor cannot be equally effective for each type of change 

and some descriptors appear to be better for detecting specific 

types of change. Therefore, it is likely to improve the overall 

accuracy of change detection if we make use of 

complementary pairs: that is, use those polarimetric 

descriptors that have better separability indexes in a tight 

coupling. PV, T33, and HV are more sensitive to three of the 

major types of change (agricultural to bare land, 

deforestation, and construction). Similarly, T22, PD, and α are 

the most sensitive to changes in the dihedral structure. Hence, 

a complementary pair can be formed by taking one descriptor 

from each group. 

2) Change Detection from Polarimetric Descriptors and 

Discussion 

Fig. 10 shows change detection maps developed from 

pairs of polarimetric descriptors for April 2007 to April 2011 

data. The accuracy assessment is summarized in Table 1. 

Change detection results obtained from H and α are shown in 

Figs. 10 (c) and (d), respectively. The accuracy obtained from 

H is slightly better than that from α; however, the major 

sources of error are the same in both. Some specific change 

Table 1. Comparison of urban and suburban change mapping accuracies from different polarimetric descriptors. 

Indicators HH HV VH VV T11 T22 T33 PD PV PS α H 

False alarm 

rate (%) 11.96 10.27 

 

10.52 14.55 13.83 9.60 10.28 12.92 9.41 23.81 19.89 17.20 

Increased 

intensity (%) 84.60 78.67 

 

78.97 83.53 79.56 89.19 72.72 59.29 75.72 63.85 82.43 86.99 

Decreased 

intensity (%) 66.41 63.03 

 

62.9 59.10 67.56 60.06 61.98 15.21 66.51 15.40 21.46 38.98 

Kappa 

coefficient  0.73 0.74 

 

0.74 0.70 0.69 0.73 0.75 0.56 0.76 0.48 0.62 0.68 

False alarm rate  (%) – Percentage of falsely classified pixels.  

Increased intensity (%) – Percentage of correctly detected increased backscattering intensity areas.  

Decreased intensity (%) – Percentage of correctly detected decreased backscattering intensity areas.  

 
Fig. 10. Change map obtained from polarimetric descriptors. (a) – (b) False color composite of Pauli vectors generated from 

PolSAR images in 2007 and 2011, and (c) – (n) change detection maps derived from the various polarimetric descriptors by 

supervised thresholding method, overlaid with Pauli vector false color composite. 



types, such as change from bare land to vegetation, are not 

detected by either descriptor, which leads to many missing 

alarms. 

Figs. 10(e)–(h) indicate the changes in single channel 

backscattering measurements for HH, HV, VH, and VV 

polarizations, respectively. The results obtained from the 

co-polarization descriptors (HH and VV) are very similar. 

Likewise, the results from VH component are very similar to 

those of the HV component. The cross-polarization 

descriptors (HV and VH) give slightly different results from 

those obtained from the co-polarization channels. Some 

water bodies appear as change areas in HH and VV, as shown 

by a yellow circle in Fig. 10. However, they are not changed 

in the reference map. Wind direction, turbidity, and 

movement in the water body can alter the backscattering in 

SAR images. Although these assumptions were not verified, 

we treated these areas as no-change areas. 

Among the model-based decomposition components 

(Figs. 10 (l)–(n)), the change detection map obtained from PV 

exhibits the best detectability. The accuracy obtained from PD 

is not comparable with that from PV but it differs from PV in 

the change types detected and thus they appear to 

complement each other. For PS, false and missing alarms are 

more frequent, but it can detect some changes that are not 

detected by PV or PD. Some water bodies seen as changes are 

not really changed. The source of this false alarm is the same 

as for HH and VV. T11, T22, and T33 (Figs. 10 (i)–(k)) are 

nearly the model-based decomposition. T33 is very similar to 

PV, but T22 mixes results from PS and PD. Even though it is 

close to PD, T22 possesses the detection capability in PS as 

well. This is because T22 is used for computing PS, along with 

other polarimetric descriptors from the coherency matrix. 

Additionally, T11 also has the capability to detect changes that 

cause changes in PS and PD, but it is not as robust. This is 

because T11 is one of the major contributors in the 

computation of PS and PD. The major source of error in T11 is 

the same as in PS. 

The accuracy assessment confirms that the frequency of 

missing alarms in PD is significant. Decreased intensity areas, 

such as those with a change from agricultural land to bare 

land (smoothing area) and deforestation, are not sensitive to 

PD, and thus have higher missing alarm rates. Similarly, 

several increased backscattering areas are under construction 

and thus clear dihedral structures have not been formed, 

resulting in significant changes in PV rather than PD. 

However, the false alarm rate is very low in PD, and PD is 

complementary to PV and T33. T22 is equally sensitive to the 

change from bare land to dihedral structures as PD, but it is 

better than PD for other kinds of changes, such as agricultural 

land to bare land or deforestation. 

T11 and PS have some common information and show 

different scattering characteristics than other descriptors in 

some changes for example, in the deforestation area, while Pv 

is decreased, PS is increased. Additionally, a significant false 

alarm rate occurred in these descriptors may cause a decrease 

in the overall performance if they are used in fusion with 

other descriptors. Therefore, the fusion of T22 and T33, HH 

and HV, and PD and PV would be worthwhile to detect the 

diverse changes occurring in an urban and suburban 

environment and reduce the rate of false and missing alarms. 

Moreover, HH and VV are interchangeable and, of course, 

HV, T33, and PV can replace each other. The accuracy of 

urban change detection by H and α is fairly good. However, 

the increase and decrease in H and α do not have exactly same 

meaning as increased and decreased backscattering from 

other polarimetric descriptors. Thus, they cannot be used to 

complement any other polarimetric descriptors. 

In addition to single polarimetric descriptors, a 

polarimetric similarity test between two images was 

implemented. The likelihood ratio test statistic P can be given 

as. 

            (13) 

where C1 and C2 are the covariance matrices corresponding to 

the images acquired at time 1 and time 2, respectively, and 

Cavg is (C1+C2) / 2. This test statistic has the Wishart 

distribution [3], [18], [19]. 

Fig. 11(c) shows the change map developed from the 

likelihood ratio test statistic P. The overall kappa coefficient 

is 0.79, the overall detectability is 83% with a false alarm rate 

of 12%. The results are better than those of a single 

polarimetric descriptor, but they also fail to solve the false 

alarm problem for an unchanged water body. In addition to 

that, this technique is not very sensitive to changes from 

agricultural land to bare land, which causes a very small 

change in the overall scattering mechanism that is dominated 

by HV (PV). The major disadvantages in this method arise 

from the single-tail curve generated by the likelihood ratio 

test statistic, as shown in Fig. 11(a). A single threshold value 

will distinguish change and no-change areas. Thus, it entails 

two types of deficiency. The first problem is that it can only 

distinguish between change and no-change areas, but not 

between increased and decreased backscattering. The second 

problem is the misclassification error. This arises because the 

change area is not symmetrical, as shown in Fig. 11(b). When 

converting such data into a single-tail statistic, the nature of 

the overall curve will differ from both tails, and a single 

threshold value cannot perfectly judge both types of change. 

That is, what is good for one type of change (increased or 

decreased backscattering) will not be good for the other. In 

this case, a higher missing alarm rate in detecting decreased 

backscattering areas was identified. 
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Fig. 11. Results from likelihood ratio statistic. (a) Histogram 

of the likelihood ratio statistic (P), (b) histogram of the NDR 

image generated from the HH component, and (c) the 

change map derived from the likelihood ratio statistic. 



 
Fig. 12. Change map obtained from the proposed fusion 

method. (a) HH & VV, (b) T22 & T33, (c) PD & TV, overlaid 

in a false color composite of Pauli vectors. 

 

B. Change Mapping Using Complementary Pairs of 

Polarimetric Descriptors 

The polarimetric scattering mechanism analysis and 

change detection results obtained from different descriptors 

imply that several polarimetric descriptors provide 

complementary information about changes. Therefore, the 

performance of change detection can be improved by the 

fusion of several polarimetric descriptors. From the 

sensitivity analysis, three independent sets of complementary 

couple namely {HH, HV (VH is considered equivalent to 

HV)}, {T22, T33}, and {PD, PV} were identified. Each member 

of each set is complementary to the other member of the same 

set and they are complete, i.e. can detect all changes that are 

sensitive to SAR backscatter. From the analysis, it is 

observed that HH and VV have similar responses to the 

various changes, therefore they may be used interchangeably. 

In addition, spatial information is also useful to improve 

change detection performance and so is considered here. 

Thus, the results from using each of the three 

complementary pairs of polarimetric descriptors were 

evaluated independently. Fig. 12 shows the resulting change 

detection maps, and Table 2 gives the corresponding 

mapping accuracy.  

As all the descriptors come from the same data sources, the 

detected results do not seem to differ much visually. The 

overall accuracy assessment, based on the Kappa coefficient, 

shows that the results obtained from the fusion of T22 and T33 

are better than all other fusion results. The unchanged water 

body that is detected as a changed area by the fusion of HH 

and HV is the main source of the increase in the false alarm 

rate. Similarly, the changed features that cause changes in 

surface scattering are missing when using PD and PV only. In 

contrast to that, the fusion of T22 and T33 overcomes both the 

false alarm and missing alarm problems. The false detection 

of the water body was not seen in any of the T22 and T33 

results. Additionally, as discussed in the previous section, it 

is T22, that possesses the potential to detect the same changes 

as PS and is responsible for the improvement of accuracy in 

the fusion of T22 and T33.  

The fusion of polarimetric descriptors improves the results 

in two ways, as we carried it out in two steps. The union 

operator is responsible for overcome the missing alarm 

problem by making use of the complementary characteristics 

of several descriptors. In addition, the classification of 

ambiguous pixels identified by modified thresholding and the 

union operation was done successfully through the 

region-growing algorithm, which was modified to use local 

information from all polarimetric descriptors considered in 

the fusion process. Thus, the accuracy of mapping large areas 

of urban change was notably improved, with a significant 

reduction in the missing and false alarm rates, by the fusion 

of complementary descriptors. 

V. CONCLUSIONS AND RECOMMENDATIONS 

Changes in the radar scattering mechanism for urban and 

suburban areas were investigated by using several 

polarimetric descriptors. Changes in radar backscattering 

from built-up areas are characterized by significant changes 

in PD due to the presence of dihedral structures. T22 is also 

highly sensitive to these changes. All other descriptors 

revealed the same changes; however, they are not as 

effective. Deforestation is characterized by a significant 

decrease in PV. In contrast, PV was found to increase for 

built-up areas in which the structures were not clearly 

dihedral, such as buildings under construction, small houses 

with sloped roofs, and structures not aligned to the image 

orientation. In terms of separability, PV and its family (HV 

and T33) are sensitive to three major changes: deforestation, 

construction, and change from bushes or agricultural land to 

bare land. The descriptors H and α could identify changed 

areas; however, they were not able to distinguish clearly 

between areas of increased and decreased intensity. 

Moreover, they do not have any complementary descriptors. 

A supervised change detection approach was applied to 

various polarimetric descriptors. The accuracy assessment 

results indicated that single polarization observation can give 

a kappa coefficient up to 0.74, and a single polarimetric 

descriptor up to 0.76. These results match the characteristics 

obtained from separability index. Thus, the fusion of 

Table 2. Change mapping accuracies with the fusion of 

several complementary sets of polarimetric descriptors. 

Indicators HH & HV T22 & T33 PD & PV 

False alarm rate 

(%) 8.52 6.50 7.26 

Increased 

intensity (%) 93.20 93.92 92.57 

Decreased 

intensity (%) 79.19 80.14 78.05 

Kappa 

coefficient  0.81 0.85 0.83 

False alarm rate (%) – Percentage of falsely classified 

pixels.  

Increased intensity (%) – Percentage of correctly detected 

increased backscattering intensity areas.  

Decreased intensity (%) – Percentage of correctly detected 

decreased backscattering intensity areas.  



polarimetric descriptors is important to optimize 

performance.  

The major aim of this research is to obtain a change map 

that allows the separation of both types of change areas 

(increased and decreased intensity) from unchanged 

background. To achieve this, a new polarimetric information 

fusion approach based on the coupling of thresholding and a 

region-growing algorithm was implemented for several 

complementary pairs of descriptors. The contextual fusion of 

T22 and T33 gave the best change detection results for urban 

and suburban environments, with a kappa coefficient of 0.85 

and a significant improvement in the false and missing alarm 

rates. 

The supervised thresholding algorithm adopted in this study 

was tested for only ordinary changes and not for changes 

resulting from a disaster in which most of the area could be 

affected by the disaster and it may be difficult to find an 

appropriate no-change sample. Therefore, we strongly 

recommend caution when considering the use of this 

supervised thresholding algorithm to monitor disaster effects. 

Additionally, the different scattering characteristics appear in 

surface scattering seem to be very useful for the automatic 

change pattern detection and is a promising research topic. 

Moreover, it should be noted that apparent changes might 

occur in water bodies due to turbidity or different air 

directions. Users should carefully examine any changes to a 

water body. 
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