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Abstract—Local governments in Japan need to assess landscape quality from the perspective of 

aesthetics before approving new construction. However, ground surveys are time-consuming and 

expensive to perform over wide areas. This paper proposes a methodology using a digital surface 

model (DSM) to estimate a local landscape index, referred to as the “enclosure index”, in urban 

areas. The index is defined as the ratio of occluded area to the entire field of view. The index can be 

applied to local landscape assessment from the viewpoint of a human, and it is expected to allow for 

estimating the landscape quality over a wide area at low cost. The index is defined in two different 

projections, and two types of DSMs for calculating the index were investigated: DSM from airborne 

LiDAR (LiDAR-DSM) and DSM generated from stereoscopic aerial images (Image-DSM). 

Enclosure index (occlusion) maps were generated, and the indices were calculated in the study area 

of Higashiyama, Kyoto, Japan. As a result of validation based on ground truth data, it was found that 

the index from LiDAR-DSM was more accurate than that from Image-DSM because the height 

accuracy of LiDAR-DSM was higher than that of Image-DSM, especially for narrow streets, where 

three-dimensional coordinates are difficult to restore by using aerial images. Even though last-pulse 

mode LiDAR data may yield underestimated DSM, it was found that the proposed methodology is 

effective for estimating the index over a wide area at low cost. 

 

Index Terms --- Urban areas, Geospatial analysis 

 

1. Introduction  

Regulation of new building construction in urban areas is necessary for preserving or improving 

local landscape quality. In Japan, the Landscape Act was passed in 2004 in order to build and 

preserve beautiful landscapes as well as to create attractive and comfortable living environments. The 

national government, local governments, businesses and local residents are encouraged to share the 
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responsibility to promote the development of aesthetically pleasing landscapes [1]. For example, 

Nishinomiya City in Hyogo Prefecture, Japan, enacted a regulation for a specific residential area to 

the effect that newly constructed houses should have a green space ratio of at least 15% (proportion of 

the vegetation area to the whole visible area). The regulation specifies a simple formula for 

calculating the green space ratio [2]. Local governments need to assess landscape quality from the 

perspective of aesthetics before approving new construction. The landscape index is calculated 

through ground surveys by local government officials. However, such surveys are time-consuming 

and expensive to extend over a wide area. Accordingly, it is difficult to apply the regulation to the 

entire city. Therefore, a simple and effective approach to assess local landscape is required. 

Remote sensing may be capable of measuring local landscape indices over a large area at low cost. 

Height data are necessary to assess local landscape from the viewpoint of a human. Airborne light 

detection and ranging (LiDAR) is useful for generating digital surface models (DSMs) over wide 

areas. On the other hand, stereoscopic aerial images can generate DSMs through photogrammetric 

processing. Because an archive of aerial images is much more than that of LiDAR data in Japan, 

DSMs generated from aerial images may be used for local landscape assessment in terms of data 

availability. Hereafter, DSMs generated using LiDAR and aerial images are called LiDAR-DSM and 

Image-DSM, respectively. In general, the height accuracy of Image-DSM is lower than that of 

LiDAR-DSM.  

The use of LiDAR-DSM in local landscape assessment has been reported, but many of the 

previous studies have focused on vegetation and forest canopy structure [3-5]. Application to urban 

landscape assessment entails classifying point clouds into different objects and evaluating the object 

arrangement and percentage as seen from overhead [6-10]. For example, Yu et al. [11] estimated 

urban density such as building coverage ratio and floor area ratio, and Alexander et al. [12] visualized 

roofs of buildings from LiDAR-DSM. However, urban landscape assessment taking into account the 

human sense of aesthetics should be conducted from the perspective on the ground, and 

accomplishing this is the aim of this study. To the authors’ knowledge, no such method has been 

reported. In addition, LiDAR-DSM and Image-DSM have yet to be compared in terms of landscape 

index accuracy. 

In this paper, we focus on an important landscape index known as “enclosure index” and propose 

a methodology for estimating this index using DSMs. The enclosure index is defined as the ratio of 

the area occluded by objects to the entire visible area. This paper reports on methodology for 
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estimating the enclosure index from the viewpoint of human aesthetics by using DSM obtained from 

remote sensing. 

An overview of the newly proposed method is given in Section 2. The locations used in the study 

and the data collected from these sites are presented in Section 3. The experimental results are 

reported in Section 4. The results, the validity of the algorithm and a comparison between 

LiDAR-DSM and Image-DSM in terms of estimation accuracy are discussed in Section 5. Section 6 

concludes the paper. 

 

2. Methodology 

2.1 Overview of Enclosure Index 

As mentioned in Section 1, the enclosure index is defined as the ratio of the area occluded by 

objects to the entire visible area. The basic idea behind identifying the occluded area is varying the 

azimuth from 0° to 360° and determining the maximum elevation angle at which the view is 

occluded by objects. First, we present two definitions of the enclosure index expressed in different 

projections. Next, we briefly introduce a method for interpolating the height of invalid cells for 

LiDAR-DSM. LiDAR-DSM data are originally point data, which are subsequently converted into 

grid data for simple coding. An interpolation technique is necessary because some cells have no 

valid height. Finally, we describe the calculation of the enclosure index from DSM data. 

 

2.2 Enclosure Index 1 

Figure 1 shows the viewable area from the viewpoint of a person of height h in the direction of the 

azimuth . We assume that  and the elevation angle  are divided into intervals  and , 

respectively. We vary the value of  in steps of  from ° to 360° -  and determine the maximum 

elevation angle max at which occlusion occurs due to objects within the maximum range Dmax at each 

. Then, a function of occlusion, given by Eq. (1), is generated. 
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As a result, we can generate a map similar to that shown in Figure 2(a) (referred to as occlusion map 

below). Enclosure index EI1 in azimuth-elevation angle space is given by 
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where A1 and A2 denote the sky area and the occluded area in azimuth-elevation angle space, 

respectively, and ds1(,) denotes an area of a cell in Figure 2(a). ds1(,) is given by 

 ),(1ds                                  (3) 

According to Eq. (2), EI1 can be from 0 to 100%.  

 

2.3 Enclosure Index 2 (equisolid angle projection) 

Although it has the advantage of simple calculation, EI1 also has the disadvantage that it 

exaggerates areas at large values of . For example, a point at an elevation angle of 90° is projected 

onto an area defined by the intervals [° - /2, ° /2] and [° - /2, 36° - /2] in Figure 

2(a). Instead, an equisolid angle projection (Figure 2(b)) may be more useful for evaluating the 

degree of enclosure because all unit areas in the space are equal. In this research, an enclosure index 

evaluated in equisolid angle projected space is defined as enclosure index 2 (EI2).  

Let us calculate the area ds2 (, ) of a finite element in equisolid angle projection where the 

azimuth range is [ -/2, +/2] and the elevation angle range is [ -/2, +/2].  and  

denote intervals of  and , respectively. Assume that this finite element is located on the surface of 

a sphere of radius R. In this case, ds2 (, ) (which is independent of  and dependent on ) is 

expressed as  

      coscos),( 2
2 RRRds                    (4) 

Therefore, EI2 can be calculated from the following:  
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where B1 and B2 denote the area corresponding to the sky and the occluded area in equisolid angle 

projected space, respectively. An occlusion function, f(, ) is same as that given by Eq. 1 used to 

calculate EI1. Actual calculation using Eq. 5 is rather time-consuming because ds2 (, ) is dependent 

on  while ds1 (, ) is constant. 
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2.4 Interpolation of LiDAR-DSM data points 

In the case of searching for max (Fig. 1), grid-based DSM data are more suitable than point cloud 

data because processing using grid-based DSM data is simpler and more efficient. Original point 

cloud data can be converted into grid data by assigning points to the nearest respective cells. However, 

there are many invalid cells without height data z in the case of LiDAR-DSM. Therefore, 

interpolation of DSM data is indispensable before calculating the enclosure index. 

Inverse distance weighted interpolation is employed because of its simple implementation. The 

weights of the data available for the interpolation are assigned such that they are inversely 

proportional to the distances from the target point. Assume that a cell has coordinates (xp, yp, zp), and 

zp is unknown. Cells with valid heights whose coordinates are (xi, yi, zi) are searched within a window 

of a certain area. zp is interpolated when a sufficient number of valid cells are available within the 

window: 







n

i i

n

i ii
p

z
z

1

1




                              (6) 

where  

22 )()(

1

pipi

i
yyxx 

                       (7) 

Iterative interpolation is implemented until no invalid cells remain. 

 

2.5 Calculation of Enclosure Index 

We can calculate the enclosure index of a specific cell as follows. Assume that  is fixed. Figure 3 

illustrates a search when |dx|≤|dy|, i.e., 45° ≤ ≤ 135° and 225° ≤ ≤ 315°. Cells at a certain 

position along the y axis that share the same direction are used to interpolate the height z along the y 

axis. The interpolation weights are assigned such that they are inversely proportional to the distance 

from the point to the cell center. When |dx| > |dy|, cells at a certain position along the x axis that share 

the direction arrow are used to interpolate height along the x axis. Eventually, the elevation angle  is 

calculated with respect to the interpolated height. max is selected among a set of values within the 

maximum range Dmax. In an occlusion map in the azimuth-elevation angle space (Figure 2(a)), the 

range [-90°, max] at  is regarded as occluded. The occlusion map is completed by changing the value 
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of  from 0° to 360° - , and EI1 is calculated by using Eq. (2). EI2 can be calculated by using the 

occlusion map of EI1 and Eq. (5). 

 

3. Study Area and Data Used 

Higashiyama Ward in Kyoto, Japan, was selected as the study area (Figure 4). Higashiyama is 

hilly and contains traditional temples and shrines. This area is expected to allow for convenient 

assessment of landscape including not only gardens inside temples and shrines, but also streets and 

roads. In particular, viewpoints from many narrow streets, approximately 5 m in width, are 

indispensable for assessing the landscape in this area. 

Airborne LiDAR data were acquired in June 2002, and the data density was approximately 1.0 

points/m2. The horizontal and vertical accuracies were ±50 cm and ±15 cm, respectively. Last-pulse 

mode data were available, and aerial stereo images of the study area acquired using a UCX camera on 

November 17, 2007, were also available. Tie points present in more than one image were 

automatically obtained, and DSM was generated with the software packages Match-AT version 5.4 

[13] and Match-T version 5.4 [14], respectively. Tie points were used to determine the relative 

positions and orientations of cameras. Orthogonal projection images were generated by using a 50-m 

mesh digital elevation model (DEM) published by the Geospatial Information Authority of Japan [15]. 

DEM was generated from topographic maps at a scale of 1:25,000. As a result, grid-based DSMs with 

a spatial resolution of 1 m were prepared.  

 

4. Results 

4.1 Estimated Enclosure Index 

In the experiment, Dmax was set to 100 m through empirical examination. h was set to 1.5 m in 

consideration of the viewpoint of a human.  and  were set to 1.0°. The enclosure index was 

calculated by applying the methodology described in Section 2.  

For estimation using LiDAR data, original airborne LiDAR data were first converted into grid data 

and subsequently into DSM images. The grid size was set to 1.0 m. The airborne LiDAR data were 

filtered following [16], and digital terrain model (DTM) images without any invalid cells were 

generated. DSM images were interpolated when more than 4 valid cells were available within a 5 × 5 

window. The index was calculated at ground points where the DSM value was equal to the DTM 

value. The EI1 distribution of the study area is shown in Figure 5.  
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For estimation using Image-DSM, the index was calculated at the cells where it was calculated 

using LiDAR-DSM. Because it was difficult to filter ground data from Image-DSM data, the ground 

data obtained by filtering using LiDAR-DSM were used. The reason for this difficulty was that the 

boundaries between roads and buildings in DSM were not as clear as those of LiDAR-DSM. The EI1 

distribution in the study area is shown in Figure 6. 

 

4.2 Validation 

On-site measurement of the enclosure index was conducted using a digital camera (Canon EOS 

Kiss X5) with a fisheye lens (Sigma 4.5 mm F2.8 EX DC). The assessment was conducted using 30 

data points shown in Figure 4. Figure 7 shows sample images. Two images were taken forward and 

backward along the horizontal optical axis at 1.5 m height. Areas corresponding to the sky were 

extracted semi-automatically and corrected manually. The lens used was designed to produce 

equisolid angle projection, and thus the areas corresponding to the sky and the enclosure index were 

easily calculated. The sum of the sky areas in the forward and backward images are equivalent to B1 

of Figure 2. With these sky areas, f (, ) is generated and then EI2 was calculated. EI1 was 

calculated by using f (, ) and the factor cos given by Eq. 4. The results for EI1 and EI2 calculated 

from LiDAR-DSM and Image-DSM are shown in Figures 8(a) and 8(b), respectively. The root mean 

square errors (RMSEs) for the four cases were 2.85% and 2.72% for EI1 and EI2 from LiDAR-DSM, 

respectively, and 6.63% and 5.40% for EI1 and EI2 from Image -DSM, respectively. 

 

5. Discussion 

5.1 Comparison of results obtained from LiDAR-DSM and Image-DSM 

In order to compare the two DSMs, their horizontal and vertical accuracies should be examined. 

However, the horizontal and vertical accuracies of Image-DSM were not clear in this study. 

Therefore, it was compared with LiDAR-DSM, whereby the differences in height at 30 points 

located on roads were calculated for Image-DSM and LiDAR-DSM (Figure 9). While LiDAR-DSM 

is not guaranteed to be highly accurate (±50 cm for horizontal and ±15 cm for vertical accuracies), 

heights at points on major roads can be used for such comparison. It was shown that the heights of 

points at narrow streets for Image-DSM were not reliable. Figure 10 shows the relation between 

road/street width and error in enclosure index estimated by using Image-DSM. This figure 

demonstrates that narrow streets yield comparatively larger errors. Two major reasons for these large 
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errors can be considered (Figures 11 and 12). One is that the heights at points in narrow streets were 

overestimated whereas heights at points on buildings facing streets were accurate (Figure 11(a)). The 

other reason might be that heights of buildings facing narrow streets were overestimated whereas 

heights of narrow streets were accurate (Figure 12(a)). 

Occlusion maps for narrow streets generated by using LiDAR-DSM are more accurate than those 

generated by using Image-DSM. In Figure 13, occlusion maps estimated by using LiDAR-DSM are 

overlapped onto actual landscape in azimuth-elevation angle space. This figure demonstrates that 

LiDAR-DSM can be used for effective evaluation of enclosure indices. Therefore, it is concluded 

that LiDAR-DSM is more robust than Image-DSM with respect to estimating enclosure indices, and 

that Image-DSM should not be used for estimating enclosure indices in areas with narrow streets 

(less than 5 m in width). 

 

5.2 Computation time 

Computation time is among the most critical issues for application to wide areas. Figures 8(a) and 

8(b) show the differences between results obtained for EI1 and EI2, respectively. It is clear that EI2 

was in general smaller than EI1 because the portion of the area corresponding to the sky for EI2 was 

smaller than that for EI1. While EI2 corresponds to a view closer to that of a human, the trend in terms 

of error is rather similar to that for EI1. On the other hand, EI1 requires less time to calculate than EI2. 

In addition, the range of EI1 is wider than that of EI2, which is more appropriate to assess different 

degree of enclosure. Therefore, EI1 is more suitable to use than EI2. 

The following discussion is focused on LiDAR-DSM-driven EI1, based on the discussion in 

Subsection 5.1. Here, we examined the effect of the maximum search range Dmax on computation time 

to calculate all points on ground (334,041): 37 minutes and 2.85% RMSE for 50-m Dmax, 70 minutes 

and 2.72% for 100 m, 109 minutes and 2.69% for 150 m, and 173 minutes and 2.69% for 250 m. The 

search was executed on a Windows 7 personal computer with an Intel Core i7 (3.20 GHz) processor 

and 6 GB of RAM. In the study area, the RMSEs of the two models were almost equal as long as Dmax 

was 100 m or longer. However, when Dmax was shorter than 100 m, the RMSEs increased because 

there were high buildings located outside a short distance of each other. The optimization of Dmax 

depends on the study area, and if high-rise buildings are dominant, Dmax can be smaller than that used 

for the study area in this study. 
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There may be several approaches to reducing the computation time. For example, although  was 

set to 1° in the experiment, it can be set to a higher value. Another way is to increase the grid size. It 

was found that RMSE increased for grids coarser than 1.0 m. Because this parameter was found to be 

sensitive to the estimation error, other approaches to reduce the computation time should be examined 

in future studies.  

 

5.3 Calibration of LiDAR-DSM 

Black circles in Figure 8(a) show that the proposed algorithm underestimated enclosure indices. 

This was partly because data from airborne LiDAR were acquired in last-pulse mode. In the case of 

vegetation, the last-pulse mode may measure not the top of the vegetation surface, but rather the 

ground, trunks or branches. Therefore, more accurate estimation of the index may require calibration 

of the data if only last-pulse mode data are available. For example, the gain coefficient for converting 

original DSM data to pseudo-DSM data can be estimated using half of the data set of the actual 

enclosure index to minimize the sum of squared errors between the estimated and the actual enclosure 

index. The optimal gain coefficient as obtained by the authors was higher than 2.0. While this 

calibration failed, it may still be possible to estimate the gain coefficient for vegetation and that for 

other objects. In this case, the vegetation should be masked semi-automatically or manually using 

aerial images. 

 

5.4 Variation in enclosure index according to azimuth 

EI1 is estimated by considering the entire range of 360° for the azimuth at a specific cell. Figure 14 

shows the 360° azimuth range of the occlusion map at a specific cell was divided into two 180° 

regions (denoted as A and B). This division was conducted so that the difference in enclosure indices 

between Regions A and B would be maximized. Figures 15(a) and 15(b) show the maximum and 

minimum enclosure index distributions, respectively. The divided ranges depend on location. 

Combinations of the two indices indicate that there are three types of landscape: (1) open spaces (low 

enclosure indices in all directions), (2) closed spaces (high enclosure indices in all directions), and (3) 

partly open spaces (low or high enclosure indices depending on direction). These combinations can 

provide more information about local landscape. 
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6. Conclusion 

This paper presented a definition of enclosure index and methodology for estimating it by using 

DSM. The index was defined as the ratio of occluded area to the entire field of view. It can assess 

local landscape from the viewpoint of a human, which is a new contribution to applications of DSM. 

Even though last-pulse mode data were available, the error rate of the index estimated by using 

LiDAR-DSM data was acceptable at approximately 3%, whereas that of the index estimated by using 

Image-DSM data was approximately 7%. It was because the height accuracy of LiDAR-DSM was 

higher than that of Image-DSM, especially for narrow streets (less than 5 m in width). Two enclosure 

indices, EI1 in azimuth-elevation angle space and EI2 in equisolid angle projection, were compared. 

EI1 was selected because of less computation time and wider index range. The occlusion map can be 

calculated at any point of DSM, and the division of the azimuth range into two regions generates 

more information about enclosure pattern. Using this information, one possible application of the 

enclosure index is for assessing landscape in terms of traffic safety or security. In future, we will 

examine methodology to estimate other landscape indices including green space index. 
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Figure captions 

Figure 1.  Maximum elevation angle max at which occlusion by objects is present from the 

viewpoint of a human of height h along azimuth  within the maximum range Dmax. 

Figure 2.  Calcuation of enclosure index. (a) Enclosure index 1 (EI1) in azimuth-elevation angle 

space, and (b) Enclosure index 2 (EI2) in equisolid-angle projected space. 

Figure 3.  Search along azimuth . 

Figure 4.  Aerial photograph of the study area (927 m × 1144 m). Yellow cross denotes verification 

points where measurements were conducted using a digital camera with a fisheye lens. 

Figure 5.  Estimated EI1 using LiDAR-DSM. Gray denotes non-ground points where estimation 

was not conducted. 

Figure 6.  Estimated EI1 using Image-DSM.  

Figure 7.  Measurement using images acquired with a digital camera with a fisheye lens. (a) 

Forward viewing angle and (b) backward viewing angle. Areas corresponding to the sky areas 

are shown in blue. The locations of the surveys are denoted with yellow crosses in Figure 1. 

Figure 8.  Comparison between estimated and actual enclosure indices. (a) EI1 from LiDAR-DSM 

and Image-DSM and (b) EI2 from LiDAR-DSM and Image-DSM. 

Figure 9.  Relation between road/street width and height difference between Image-DSM and 

LiDAR-DSM. 

Figure 10.  Relation between road/street width and the error in the enclosure index estimated by 

using Image-DSM.  

Figure 11.  Error type 1 for narrow streets in Figure 10 (a) Estimated Image-DSM (dashed line and 

crosses), viewing direction (solid line) and actual viewing direction (chain line), (b) estimated 

landscape in azimuth-elevation angle space, and (c) actual landscape in azimuth-elevation 

angle space. Cell brightness in (b) was reprojected from aerial images. 

Figure 12.  Error type 2 for narrow streets in Figure 10 (a) Estimated Image-DSM (dashed line and 

crosses), viewing direction (solid line) and actual viewing direction (chain line), (b) estimated 

landscape in azimuth-elevation angle space, and (c) actual landscape in azimuth-elevation 

angle space. Cell brightnesss in (b) was reprojected from aerial images. 



Figure 13.  Enclosure index estimated by using LiDAR-DSM. Estimated landscape is overlapped 

onto actual landscape in azimuth angle-elevation angle space. Red denotes DSM except roads, 

and blue denotes roads obtained by filtering. 

Figure 14.  Division of azimuth range for generating maximum and minimum enclosure indices. 

Figure 15.   Estimated (a) maximum and (b) minimum enclosure index. 
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(a) 

 

(b) Estimated EI1 = 54.1% 

 

(c) Actual EI1 = 79.0% 

 

Figure 11.   

  



 

 

 

 

 

 

 

(a) 

 

(b) Estimated EI1 = 86.7% 

 

(c) Actual EI1 = 78.1% 

Figure 12.   

 



 

(a) Estimated EI1 = 60.3%, actual EI1 = 62.1%, Estimated EI2 = 65.4%, actual EI2 = 68.2% 

  

(b) Estimated EI1 = 68.3%, actual EI1 = 72.0%, Estimated EI2 = 76.4%, actual EI2 = 80.4% 

  

(c) Estimated EI1 = 65.0%, actual EI1 = 67.5%, Estimated EI2 = 72.1%, actual EI2 = 74.7% 
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