
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—This paper presents a method for automatic extraction of Ground Control Points (GCPs) of fully polarimetric Synthetic 

Aperture Radar (SAR) images obtained from various satellites with different viewing angles. The Scale-Invariant Feature Transform 

(SIFT) algorithm is applied to extract candidate GCPs, where two-way keypoint matching eliminates improbable correspondence 

keypoints. Minimizing the Root Mean Squared Error (RMSE) also removes matching points with large RMSE through a pseudo-affine 

transformation. In addition, information entropy and spatial dispersion quality constraints enable quantification of the spatial 

distribution of the GCPs. In accordance with full polarization, applying the SIFT-OCT algorithm (the SIFT algorithm with the first 

scale-space octave skipped) to polarimetric SAR data is examined. The Total Power (TP) image represents a combination of the 

characteristic of all four polarization images (HH, HV, VH, and VV). Therefore, GCP extraction using TP image rather than each 

polarization image is proposed in order to maximize the accuracy of GCP extraction for all of the polarization data, as the TP image 

generates the highest Signal-to-Noise Ratio (SNR) value. The SNR in conjunction with the Matching Correlation Surface (MCS) is used 

as an indicator of the reliability and accuracy of GCP extraction. After successfully applying the method to Advanced Land Observing 

Satellite (ALOS)/Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Japanese Earth Resources Satellite-1 (JERS-1) 

SAR images, the GCP matching accuracy is further improved by using geometric calibration.  

 
Index Terms—Automatic GCP extraction, polarimetric Synthetic Aperture Radar (SAR), Total Power (TP), Scale-Invariant Feature 

Transform (SIFT), geometric calibration, Signal-to-Noise Ratio (SNR). 
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I. INTRODUCTION 

 
In recent years, the operation of fully polarimetric Synthetic Aperture Radar (SAR) systems has accelerated the development of 

various applications, for example, image fusion and classification or detection of changes in images. Prior to implementing such 

applications, SAR images must be co-registered with sufficient accuracy depending on the application requirements [1], [2]. The 

Ground Control Point (GCP) extraction is the most important first step in an accurate image co-registration. The principles of ideal 

GCP extraction are as follows: (1) the GCPs should be spread uniformly throughout the image to provide a clear indication of 

distortion in any direction; (2) the minimum number of the GCPs should be three for possible linear solution; (3) their coordinates 

should be precisely known. GCP extraction can be performed manually or automatically. For manual extraction, GCPs are 

determined by visual examination, which is a time-consuming task with potentially unstable results [3]. GCP extraction for SAR 

images is more difficult than for optical remote sensing images due to the influence of multiplicative speckle noise [1], [2], and no 

general mapping exists between the intensities of different SAR images [4]. For these reasons, it is extremely challenging to attain 

high precision in determining GCPs from images as well as high accuracy and reliability when performing co-registration. 

This process is additionally hindered by the GCP extraction of polarimetric SAR images since each type of polarization (HH, 

HV, VH or VV) yields a different pattern of scattering from the ground. Also, the number and locations of GCPs extracted from 

pairs of HH images may be different from the results extracted from pairs of images with other polarization patterns. In addition, 

polarimetric SARs operate in several types of observation modes. For example, Advanced Land Observing Satellite 

(ALOS)/Phased Array type L-band Synthetic Aperture Radar (PALSAR) operates in a fine beam single polarization (FBS) mode, 

fine beam dual polarization (FBD) mode, fine beam fully polarimetric (PLR) mode [5] and ScanSAR mode. Whereas the off-nadir 

angle in the PLR mode is 21.5°, the angles for the FBS and FBD modes are set to 34.3°. Therefore, if images acquired, for example, 

in PLR and FBS modes are co-registered, the effects of the different acquisition viewing geometries in these two modes may 

become apparent. This problem may also occur when other types of SAR images acquired at different viewing geometries are 

co-registered. The effects of such differences in viewpoint and viewing geometry should be investigated for the purposes of 

improving the accuracy of GCP extraction. Since the motivation for this paper is the development of a method for accurate 

automatic GCP extraction of SAR images, using fully polarimetric synthetic aperture radar (PolSAR) images, it also extends to 

include the GCP extraction using two or more images acquired at different times, from different sensors or from different 

viewpoints.  

According to the literature, the GCP extraction is performed primarily using feature based techniques. These techniques are very 

sensitive to effects such as multiplicative speckle in the SAR images [2]; and it may be difficult to extract and match features (i.e., 

shapes) that change with time [1]. As a matter of fact, such techniques for GCP extraction are bound to be uncertain. Therefore, the 
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point feature-based multi-sensor SAR image matching should be considered. 

The Scale-Invariant Feature Transform (SIFT) algorithm proposed by Lowe [6] can be used to solve problems arising from these 

difficulties since it constitutes an approach for detecting and extracting local feature descriptors that are reasonably invariant to 

changes in illumination, image noise, rotation, scaling and small changes in viewpoint. Schwind et al. [1] stated that the SIFT 

algorithm is capable of selecting and matching different characteristic features between images at various levels of scaling. With 

these properties, the SIFT algorithm can be applied to SAR images for detecting and matching stable features, particularly at lower 

scale levels, where the influence of speckle noise is reduced. 

GCP extraction schemes using remotely sensed imagery based on the SIFT algorithm have also been developed. For example, 

Shargai et al. [7] utilized the algorithm to extract tie-points from aerial images, obtaining satisfactory results, although the details 

were not presented. Wessel et al. [8] developed the GCP extraction technique for near-real-time SAR images by using the SIFT 

algorithm in combination with DEM data and high-precision orbit parameters from a reference image to obtain GCPs, where a 

least-squares adjustment of the imprecise orbit is applied to eliminate incorrect matches. In the method proposed by Liu and Yu [9], 

the SIFT algorithm is used to match the destination and reference images, after which edge extraction is performed on SAR images 

by using the Canny operator. Liu et al. [10] proposed SIFT-based automatic tie-point extraction for multi-temporal SAR images, 

where a histogram-based preprocessing method is used to increase the number of tie-points, and SIFT parameters are optimized by 

extending the region of the descriptor.  

This paper is arranged as follows, Section I outlines the application of the proposed method to GCP extraction of multi-temporal 

polarimetric SAR images acquired using various satellites at different viewing angles. It is found that, for the fully polarimetric 

SAR images GCP extraction, the locations and numbers of GCPs are different for each type of polarization data (HH, HV, VH or 

VV). Therefore, GCP extraction using TP images rather than each polarization image is suggested. In Section II, SIFT algorithm is 

described, after which the method for automatic GCP extraction of multi-temporal polarimetric SAR images is presented. In 

Section III, the characteristics of the areas used in the experiments are introduced. The experimental results are reported and 

discussed in Section IV. Finally, the paper is concluded in Section V. 

II. METHOD 

The proposed method for automatic GCP extraction of multi-temporal polarimetric SAR images is depicted the Fig. 1. The 

method starts with the base (HHb, HVb, VHb, and VVb) and the warp (HHw, HVw, VHw, and VVw) of the polarimetric SAR images. In 

addition, the total power received by each of these channels of the polarimetric radar system is considered to encapsulate all the 

polarizations. The following subsections outline each step of the method. 
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A. Automatic GCP extraction procedure 

Keypoint Extraction 

To extract the candidate keypoints, the Scale-Invariant Feature Transform (SIFT) algorithm introduced by Lowe [6] is used. An 

outline of the pertinent points of the SIFT algorithm is presented below. The first step in detecting keypoints is the convolution of 

the image with Gaussian filters at different scale levels (referred to as scale-space extrema detection), follows by the generation of 

Difference-of-Gaussian (DoG) images from the differences between adjacent blurred images. If the scale space of an image is 
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then the DoG image is given by 
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Here, G(x,y,σ) is a variable-scale Gaussian, I(x,y) is the input image, σ is the scale level such that kσ is a neighboring scale level, and 

* is the convolution operator in x and y. 

Keypoints are identified as local maxima and minima in DoG images across all scale levels. Each pixel in a DoG image is 

compared with its eight neighbors at the same scale level and the nine corresponding pixels at the adjacent scale levels. If the pixel 

is a local maximum or minimum, it is selected as a candidate keypoint. In the second step, each candidate keypoint is checked for 

localization accuracy (keypoint localization). Since a close fit to nearby data in terms of location, scale level and ratio of principal 

curvatures is required, any keypoints which are found to have low contrast (i.e., high sensitivity to noise) or which are poorly 

localized along an edge are eliminated. The third step involves the assignment of an orientation to each keypoint. A gradient 

orientation histogram is computed in the neighborhood of the keypoint, and the contribution of each neighboring pixel is weighted 

by both the gradient magnitude and a Gaussian-weighted circular window with a value of σ that is 1.5 times that of the scale level 

of the keypoint. Peaks of the histogram correspond to dominant orientations. The gradient magnitude m(x,y) and the gradient 

orientation θ(x,y) are given by 

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm ,        (4) 
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In the fourth step, the keypoint descriptor is computed as a set of orientation histograms on 4 × 4-pixel neighborhoods, with eight 

orientation bins in each histogram. Therefore, a SIFT descriptor is a 128-element feature vector. This vector is normalized to obtain 

a highly distinctive keypoint and to enhance the invariance to affine changes in illumination. 
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Schwind et al. [1] proposed a modification of the original SIFT algorithm, which was named SIFT-OCT (where the first 

scale-space octave is skipped) as an extension for the SAR images. Images acquired with the spaceborne SAR sensors Radarsat-1 

and ERS-2 were tested. They found out that matches with poor quality were generated in the first octave (highest scale level) of the 

scale space pyramid. However, more robust keypoints can be detected at lower scale levels due to the reduced influence of speckle 

noise at smaller scale levels in all octaves. Therefore, skipping the first octave of the scale space pyramid was suggested. Since in 

this study we focus on polarimetric SAR images, the extension of SIFT-OCT to polarimetric data was examined. 

Two-way Keypoint Matching 

Beis and Lowe [11] proposed an approximation algorithm referred to as Best-Bin-First (BBF) for matching SIFT keypoints. In 

the experiments by Schwind et al. [1], it was found that the performance of SIFT algorithm detection in combination with BBF 

matching is the highest for images acquired with the same sensor. However, the matching performance may be lower for images 

acquired from various satellites at different viewing angles. Therefore, the keypoint matching strategy proposed by Lowe [12] can 

be applied in order to achieve accurate GCP extraction of two or more images acquired from different viewpoints or with different 

sensors.  

Dare et al. [3] also proposed an improved model for automatic feature-based image registration of SAR and SPOT images, in 

which they focused on developing a method for locating GCPs within the images. In this model, two-way feature matching 

algorithms are highlighted to ensure that similar features can be detected from different remote sensing imagery. Two-way 

matching was proposed since the redundancy is an important factor in the matching procedure. Redundancy can ensure that 

accurate matches are selected properly, with minimum improbable matches.  

In the proposed method, the two-way keypoint matching is introduced in the keypoint matching procedure. This idea employs 

the initial keypoint matching procedure as proposed by Lowe [12], where the Euclidean distance between the descriptor vectors is 

calculated in order to match two descriptors. Matching the descriptor vectors in the base image (or input image) on the basis of the 

ratio of the descriptor distance between the two best matches of the warp image (or reference image) is performed for each keypoint. 

If the Euclidean distance of the second-closest match is smaller than the matching threshold, which is 0.6 times the distance of the 

closest match, the point is accepted as a “match for the base image” (referred to as forward matching), and a check is performed for 

all base images. This step is repeated by matching the feature descriptors in which the warp and base images are represented as an 

input image and a reference image, respectively. Using the same matching threshold, the matching points in this case are accepted 

as “matches for the warp image” (referred to as backward matching). Searching for corresponding points by forward matching will 

not produce the same results as by backward matching due to differences in the ratio between the two best matches. Finally, the 

intersections of these two matching sets are accepted as “two-way matches”, and non-intersecting matches are eliminated. Thus, 

the two-way keypoint matching step excludes improbable correspondence keypoints. 
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RMSE Minimization 

To ensure that no false matches remain, the Root Mean Squared Error (RMSE) minimization is used. This step helps to remove 

large errors from the set of GCPs. First, the number of extracted GCPs is used to conduct the pseudo-affine transformation given in 

Eq. (6), and the RMSE is calculated for each point. Then, the GCPs with large errors are removed by applying a fixed threshold. 

The thresholds used in this experiment were common for all studied areas, and their values were fixed at 1.75 pixels through 

empirical examination in the case of data acquired from similar viewing angles. In the same manner, 5 and 1,700 pixels were used 

as thresholds for the cases of data acquired at different viewing angles and with different satellites, respectively. The pseudo-affine 

transformation is implemented to determine the predicted coordinates using the following equations: 
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where xi and yi are the input source coordinates, Xi’ and Yi’ are the predicted coordinates and a1 to a8 are polynomial coefficients. 

Information Entropy and Spatial Dispersion Quality Constraints 

To quantify the spatial distribution of GCPs, the information entropy of local regions and the spatial dispersion quality 

constraints are used. Cheng et al. [13] stated that although the number of points is not important, the robustness and the accuracy of 

GCP extraction are related to the distribution of the points. Hence, a broad distribution of points across the images is crucial. 

Taking the local regions as Regions Of Interest (ROI), with the GCPs at the respective centers of the regions, the entropy is derived 

from 
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where Hi is the entropy of local region i, j is the grayscale intensity value (0–255) and Pj is the probability of j being within the ROI. 

The weighted mean center ( wmcwmc yx , ) is the average of the xi and yi coordinates for a series of points i weighted by the entropy 

of the local region: 

























=

∑

∑

∑

∑

=

=

=

=

n

i
i

n

i
ii

n

i
i

n

i
ii

wmcwmc

w

yw

w

xw
yx

1

1

1

1 ,),( .                    (8) 

Here, xi and yi are the coordinates of the point of interest, wi is the weight of point i, and n is the number of points.  

Therefore, an index Disp [13], which expresses the quality of spatial dispersion (where a small Disp value indicates poor spatial 

distribution and vice versa), is defined as 
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A sufficient number of accurate GCPs are selected by referring to the information entropy of the local regions and spatial 

dispersion quality constraints. For the experiments, a 3 × 3 kernel is used for local regions that neighbor the GCPs. Further to define 

the number of GCPs within an image, the maximum value of Disp is selected, and each image should contain at least 15 points. In 

fact, in the experiments, three criteria are used to check whether the minimum matching requirements are met: 

1) From [14], the minimum number of GCPs required is nmin = (t + 1)*(t + 2)/2, where t is the degree of the polynomial 

equation. An n-point pseudo-affine transformation (first-degree polynomial warp) is used. 

2) From the experiments, the number of GCPs remaining after minimizing the RMSE is examined. It was found that more 

than 15 GCP matches remained in all cases. 

3) The image size is considered in defining the minimum number of GCPs. 

This method uses the SIFT algorithm for SAR imagery; however, the SIFT algorithm was originally developed for optical 

images. Since speckle noise in SAR images can lead to false detections at small scale levels, filtering is often used to remove noise 

[15], even though it may reduce the spatial resolution of the original image and decrease the number of detected keypoints. 

Furthermore, as in the original SIFT algorithm as proposed by Lowe, Random Sample Consensus (RANSAC) [16]—which is an 

iterative method capable of estimating the parameters of a mathematical model from a set of observed data even if it contains a 

large proportion of outliers—is used to remove false matches. Outliers are data that do not fit the model and arise from extreme 

levels of noise or from erroneous measurements. However, some disadvantages are found when using this method, such as the fact 

that no upper bound exists on the time necessary to compute these parameters. Furthermore, when the number of computational 

iterations is limited, the generated solution may not be the optimal result. From Eqs. (10) and (11), a larger number of iterations (N) 

can increase the probability p of producing a reasonable model. Let u represent the probability that the obtained data point is an 

inlier and v represent the probability of observing an outlier. A minimum of points m are required to determine the underlying 

model parameters: 

Nmup )1(1 −=− ,
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Other disadvantages of RANSAC include the requirement for setting problem-specific predefined thresholds in order to 

determine the number of points that fit the model, and the necessity to estimate the model parameters using all of the data not 

identified as outliers. With the limitations described above, the proposed method can be applied to compensate for the use of 
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RANSAC and to eliminate the effects of speckle noise. As a consequence, a large number of keypoints are initially selected, and 

accurate matches are eventually obtained in a time- and cost-effective manner. 

B. Geometric calibration 

Rather than scanning a surface, radar systems turn from side-to-side and record the locations of objects by using the distance 

from the sensor to the object along the line of sight. An image collected by using this geometry is referred to as a slant range image. 

Such images exhibit a systematic geometric distortion in the range direction. At ground range, pixel size varies across the range 

direction due to the changing incidence angle, and this makes the image appear compressed in the near range.  

Images from PALSAR Level 1.1 were used here as experimental data. This means that slant range geometry is provided at Level 

1.1, whereas this is not the case for ground range geometry. Therefore, in this step, geometric calibration is used to correct the 

ground range geometry by converting the distances from the slant range to the ground range. Subsequently the slant range radar 

images are re-sampled with a fixed ground range pixel size by assuming a flat terrain. After obtaining images with a fixed ground 

range pixel size, the dispersed GCPs then conform to the adjusted ground range pixel size.  

C. Performance evaluation of GCP extraction  

Casu et al. [17] exploited the amplitude information of the SAR image pairs, acquired at different times to calculate the 

deformation time-series. This approach calculates a matching correlation surface (MCS) as the inner product between two 

oversampled SAR images to estimate the range and azimuth shifts for each identified pixel. They also found that the accuracy of 

this approach is on the order of 1/10th−1/20th of a pixel. In this regard, the MCS can be exploited to estimate the signal-to-noise 

ratio (SNR). The SNR can be used to evaluate the performance of the GCP extraction.  

The MCS [17] is then achieved by computing between the amplitudes of the base and the warp images determined from the 

dispersed GCPs for each polarimetric image, given in Eq. (12). Considering the image sizes, the appropriate matching window 

surrounding each GCP or identified pixel (i, j) used for computing the MCS was set to 31×31 pixel size.  

wb

bwjiMCS
σσ

σ
=),( ,   

                
(12) 

where σbw is the covariance term. σb and σw are the standard deviation values for the base and warp amplitude images, respectively. 

Thus, the SNR is estimated from Eq. (13). It is represented by the ratio of the correlation surface’s peak to the mean of the 

surrounding value. Therefore, the SNR can be used as an indicator of the reliability and accuracy of the GCP extraction. The higher 

SNR value is used to examine the improvements of GCP extraction that can be applied to any polarization data. 
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where i and j are the element for the generic pixel of range and azimuth coordinates (x,y). N and M are the image size dimensions 

along the range and azimuth directions, respectively. 

III. EXPERIMENTAL REGIONS 

The fully polarimetric SAR images used for experiments, cover four areas in Japan. Fig. 2 shows examples of VH-polarization 

PALSAR images for each of these areas, which were generated through azimuth compression of PALSAR Level 1.1 images with a 

1/16 compression ratio. In the images of the Chiba region, some urban areas and Narita International Airport can be seen. 

Additionally, agricultural areas, in particular paddy fields, are widespread along the Tone River (left-to-right in the center of the 

image) and along the coast (right side). In the images of the Kyoto region, most of the area is covered by mountains, and Obama 

and Wakasa Bay can be seen in the northern part of the image. The Hokkaido images show urban areas surrounded by mountains 

and the Sea of Japan. Finally, the images of the Saitama/Tokyo region depict the Kanto Plain, a flat area where commercial, 

residential and agricultural areas are mixed. The properties of the full polarization data are displayed in Table 1. Furthermore, the 

properties of the multi-temporal Japanese Earth Resources Satellite-1 (JERS-1) SAR images obtained with the same satellite at 

similar viewing angles are shown in Table 3, for which scenes in the Ubon Ratchathani region are used. The imaged region consists 

of woodland (the Phou Xiang Thong National Biodiversity Conservation), rivers (the Mun River joins the Mekong River at Khong 

Chiam) and rural areas. The properties of SAR images obtained with the same satellite at different viewing angles (Osaka, Japan), 

as well as images obtained with different satellites at different viewing angles (Buri Ram, Thailand) are presented in Table 4.  

IV. RESULTS AND DISCUSSION 

The method given in Section II was applied to GCP extraction of multi-temporal polarimetric SAR images acquired (1) with the 

same satellite at similar viewing angles, (2) with the same satellite at different viewing angles and (3) with different satellites at 

different viewing angles. The details of the results and a discussion are presented below. 

A. GCP extraction of SAR images obtained with the same satellite at similar viewing angles 

Figs. 3(a) and (b) show the GCPs extracted from images of the Kyoto area, where the GCPs are found on the entire base and 

warp images for HH polarization images before and after the spatial dispersion quality steps, respectively. Table 2 lists the detailed 

experimental results of GCP extraction for the four areas in Japan (Chiba, Kyoto, Hokkaido, and Saitama/Tokyo). To verify the 

applicability of the proposed method, the SNR in conjunction with the MCS, as described in Section II C was used as an indicator 
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of the reliability and accuracy of GCP extraction. The number of GCPs is shown for the two-way keypoint matching step, which 

includes forward, backward and identical matching. The calculated SNR values for the GCPs indicate that this filter strategy reduce 

improbable matches, however SNR values were still low. Therefore, RMSE minimization step was used which can remove large 

errors in the process of selecting the candidate GCPs. As a result, the number of GCPs decreased and highly accurate GCPs were 

derived. Furthermore, the quality of distribution of the GCPs was also quantified by utilizing the information entropy and spatial 

distribution quality constraints (column: SDQ). The columns entitled "Number of GCPs-SDQ" and "SNR-SDQ" show the number 

of GCPs and the SNR values after applying the information entropy and spatial dispersion quality constraints, respectively. The 

maximum Disp value limited the number of extracted GCPs. In a few cases of Chiba, it was found that the SNR values slightly 

decreased, since the points with the high match rates were eliminated. Nevertheless, the effect of this phenomenon was small, and 

thus the method is still considered effective for selecting GCPs. SNR values calculated at each consequent step continuously 

increased for all cases of the polarimetric SAR and TP images. Moreover, the computation time for the processes was short, and 

was dependent on the number of keypoints to be matched.  

When comparing the results for the four areas, no differences were found. However, there are certain factors that affect the 

accuracy, such as the size of the images and the characteristics of the topography. To evaluate the changes in accuracy resulting 

from different image sizes, the different sizes of the same SAR images were used (first with the original images and then with 

images compressed using a 1/16 azimuth compression ratio). This was done by applying the adapted SIFT-OCT algorithm to the 

polarimetric SAR imagery, as described in Section II A. The comparative results are in Table 2 and Fig. 4, respectively. These 

results shows that the application of the SIFT-OCT algorithm (reduction in size) entails higher accuracy at all steps and reduces the 

processing time. Considering the performance in the case of the SIFT algorithm, Schwind et al. [1], [2], found that the majority of 

false matches occurred at the first octave (highest scale) of the scale space pyramid. Furthermore, the presence of speckle noise in 

SAR images obstructs accurate detection. For this reason, the GCP matching accuracy was poor in this case. On the other hand, 

considering the case of the SIFT-OCT algorithm for polarimetric SAR images compressed using a 1/16 azimuth compression ratio 

(Fig. 4), more robust keypoints can be found at the lower scale level due to the reduced influence of speckle noise in all the octaves 

with the compressed images. For this reason, accurate matches are selected, which results in high GCP matching accuracy. It can 

thus be seen that the SIFT-OCT algorithm can be effective in obtaining higher performance in GCP extraction of polarimetric SAR 

images. 

In order to demonstrate the topographical factors, it is preferable to use SAR images with a 1/16 azimuth compression ratio, as 

noise is reduced in this way. Fig. 4(a) shows all polarizations for the Chiba area provide the highest GCP matching accuracy. The 

image of the Chiba area (partly flat/slightly fluctuating terrain), which exhibit a mixed type of land cover (an airport; various bodies 

of water; vegetation and conurbations). In the image of the Hokkaido area, the land cover constitutes a mixture of residential, 
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agricultural and mountainous areas and various bodies of water. In fact, the accuracy of the polarizations for the Hokkaido area in 

Fig. 4(b) is lower than that of the Chiba area, owing to the mountains surrounding the imaged area. For this reason, the accuracy for 

all polarizations in the case of the Kyoto area (fluctuating terrain) in Fig. 4(c) is lower, as almost all of the images contain 

mountainous areas. The Saitama/Tokyo area, illustrates that in the case where the entire image consists of commercial and 

residential neighborhoods including high-rise buildings, all polarizations for the Saitama/Tokyo area in Fig. 4(d) yield the lowest 

GCP matching accuracy. The influence of low accuracy is attributed to the phenomena of shadows and the foreshortening effect, 

which occur at locations with buildings and are especially pronounced in densely built-up areas. In addition, from studying image 

of the Saitama/Tokyo area, it was demonstrated that the accuracy in neighborhoods consisting of high-rise buildings was lower 

than that for other residential areas in partly flat/slightly fluctuating terrain in Chiba or Hokkaido areas. 

The performance of the GCP extraction with respect to polarimetric data in Table 2 and Fig. 4 was considered. It was found that 

the SNR values of the TP data were lower than those of polarized data in Table 2. This is because the influence of multiplicative 

speckle noise of the original SAR data (i.e., the proposed method was tested with the original images). The speckle noise influences 

the performance of the GCP extraction for SAR data. On the other hand, when the proposed method was tested with the same SAR 

images compressed using a 1/16 azimuth compression ratio, the speckle noise is reduced. It was found that the TP images generated 

the highest SNR values in all cases, as shown in Fig. 4. The graphical comparison of the four areas of the fully polarimetric data is 

shown in Fig 4. It can be observed that, in all cases, the TP images generated the highest SNR values (and hence the highest GCP 

matching accuracy). Therefore, GCP extraction performed by using a TP image, rather than each polarization image, maximizes 

the GCP matching accuracy for all polarization data. Considering the implications of this result, the TP is the sum of all of the 

polarization powers. Thus, TP images represent a combination of the characteristics of all four polarization images, and it follows 

that the GCPs retrieved from TP images encapsulate all four polarizations. Finally, as noted in Section III, the four areas include 

different types of land cover. Looking closely at the obtained results, no discrepancies are found in the GCP extraction images. 

Therefore, the method can function correctly regardless of the type of land cover.  

In addition, this method is applicable to GCP extraction of multi-temporal SAR images acquired with the same satellite at similar 

viewing angles. Table 3 shows the results of GCP extraction for multi-temporal JERS-1 SAR images of Ubon Ratchathani area in 

Thailand. A total of 8 images were tested, where the image acquired on the earliest date (1993/03) was used as the base image, and 

the other images represented warp images. The results in Table 3 demonstrate that the proposed method performs well when 

applied to multiple images. Here, the GCP matching accuracy is high, with SNR values amounting to more than 0.01 in all cases. 

Finally, from this experiment on SAR images acquired with PALSAR and JERS-1, it can be considered that the method can be 

successful on other SAR images as well.  
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B. GCP extraction of SAR images obtained with the same satellite at different viewing angles and with geometric calibration 

PALSAR Level 1.1 images of an area of Osaka city (Fig. 5) obtained at different viewing angles were tested using the proposed 

method. Figs. 5(a) and (b) show the GCPs extracted from the base and warp images for HH polarization images before and after 

geometric calibration, respectively. Details of the test data are given in Table 4. The off-nadir angles of the base and warp images 

were 34.3° and 23.1°, respectively. Only HH and HV polarization (and TP production) were tested, as the base images were taken 

with dual polarization. Fig. 5(a) presents the results of GCP extraction for the original HH data. It can be seen that the extracted 

GCPs span the entire area of the images. In addition, geometric calibration of the PALSAR Level 1.1 images was considered, as 

described in Section II B. To improve the GCP matching accuracy, geometric calibration of the SAR images was performed, and 

the results of GCP extraction for the geometrically calibrated HH data are presented in Fig. 5(b). Again, the extracted GCPs are 

spread across the entire area of the images. Table 5 lists the output from automatic GCP extraction for SAR images retrieved with 

the same satellite at different viewing angles. SNR values for each step in the method— namely, two-way keypoint matching, 

minimization of RMSE and application of spatial dispersion quality constraints—increase continuously before and after geometric 

calibration. This has been the case for both types of polarization including TP, which provided higher GCP matching accuracy after 

the calibration. Moreover, the SNR values before and after calibration are presented in Table 5, which shows the TP image 

generating the highest SNR value in both cases.  

Considering Table 5 and Table 2, the TP data generated the highest SNR values in Table 5, while the SNR values of the TP data 

were lower than those of polarized data in Table 2. In both these cases, the original SAR images were used. To illustrate the 

contrast between images acquired at similar and different viewing angles, the Osaka city area (referred to as the “case with different 

viewing angles”) was compared with the Saitama/Tokyo area (referred to as the “case with similar viewing angles”), since their 

topographies (urban land coverage) of the areas are comparatively similar. The HH, HV, and TP values in Table 2 (column: 

SNR-SDQ) for the Saitama/Tokyo area are 0.011, 0.030, and 0.029 pixels, and the values in Table 5 (column: SNR-SDQ) for the 

Osaka city area are 0.004, 0.005, and 0.014 pixels before geometric calibration and 0.005, 0.007, and 0.016 pixels after geometric 

calibration. For the Saitama/Tokyo area, it was found that the TP data provided higher SNR value than the HH data. However the 

SNR value of the HV data seemed to generate higher than the TP data. Because of the effect of the number of combined 

polarization data (i.e., the TP data for the Saitama/Tokyo area was produced from four polarization data, while the dual polarization 

(HH and HV) data were used to produce the TP data for the Osaka area). Since the difference is negligible (only 0.001), the TP data 

was still considered effective for generating the highest SNR value (or the highest GCP matching accuracy). It can be seen that the 

results in Table 5 were consistent with the results in Table 2 given in similar topographic characteristics. 

In addition, Table 5 shows that the case with different viewing angles provided lower GCP matching accuracy at every step of 

the method. Even though the two-way keypoint matching presented in Table 2 (for the case with similar viewing angles) generated 
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lower SNR values, by the final stage of the method, the case with similar viewing angles provided higher GCP matching accuracy. 

The lower accuracy in the case with different viewing angles is attributed to the influence of shadows and the foreshortening effect. 

These phenomena, which occur at locations with buildings and are especially pronounced in densely built-up areas, obstruct the 

analysis of SAR images. The Osaka city area is highly urbanized, with a large number of adjacent high-rise buildings. Moreover, 

the foreshortening effect increases as the incidence angle is reduced, as well as in the presence of high mountains (or high-rise 

buildings in this experiment). The off-nadir angles of the base and warp images are 34.3° and 23.1°, respectively, for the SAR 

images obtained with the same satellite at different viewing angles. The incidence angles of the base and warp images were 

calculated based on the near-range and far-range angles, which are 36.5° to 40.7° and 24.8° to 26.6°, respectively. Therefore, in the 

case with different viewing angles, the foreshortening effect can occur. This phenomenon may have an impact on the GCP 

extraction accuracy. 

C. GCP extraction of SAR images obtained with different satellites at different viewing angles 

GCP extraction of images of the Buri Ram area in the northeast part of Thailand retrieved from PALSAR Level 1.5 (represented 

as the base image) and JERS-1 Level 2.1 were tested, where the images were acquired at different viewing angles (Fig. 6). Details 

of the test data are listed in Table 4. The products of the PALSAR Level 1.5 images are available in ground range geometry, with 

multi-look processing in both the range and azimuth. The pixel spacing can be selected, and the latitudes and longitudes in the 

products can be calculated. For JERS-1 images acquired from the National Space Development Agency of Japan (NASDA), level 

2.1 products were obtained by multi-look processing and were delivered in ground range projection with 12.5 m pixel spacing 

corrected for their specific antenna pattern and range spreading loss. Here, the polarization of the JERS-1 SAR data was HH only, 

and the PALSAR data incorporated dual polarization. The cases under examination were (1) HHPALSAR(base) and HHJERS-1(warp) and 

(2) HVPALSAR(base) and HHJERS-1(warp). Fig. 6 shows the GCP extraction results for HVPALSAR(base) and HHJERS-1(warp), where the original 

data for the base and warp images are shown in Figs. 6(a) and (c), with red rectangles marking the overlap between the images. Figs. 

6(b) and (d) highlight the GCP extraction from the two images. Table 6 also shows the GCP extraction results for these SAR 

images obtained with different satellites at different viewing angles. From this table, as in the other examples, SNR values increase 

after each step of the method for both the HH and HV polarizations. In general, the SNR of the result becomes higher when the 

number of measurements increases. The SNR was used as an indicator of the GCP extraction. As the SNR was computed based on 

the MCS, the MCS of all dispersed GCPs were computed using the amplitudes of the base and the warp images. A matching 

correlation factor was exploited for the performance evaluation of the GCP extraction. In some cases, it might be possible to obtain 

low MCS from some dispersed GCPs. Thus, low SNR value might be generated. Hence, it is not possible to always have higher 

SNR from large number of measurements while using the MCS based computation. In this regard, the GCP extraction of SAR 

images acquired at different sensors or different viewing angles generated lower SNR than those for the case of the same sensor or 
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similar viewing angles. In addition, a rather low SNR values were obtained since only a small portion of the total area overlapped. 

Comparing the results in Table 6 with those for the case when only the viewing angles were different (Table 5), the case of 

different satellites provided the lowest accuracy at each stage of the method. This is attributed to the differences in the technical 

specifications; namely, off-nadir angles, spatial resolution, swath width, acquisition dates (there is a period of around 9 years 

between the acquisition of the two sets of images), and the multi-look and gray-level characteristics. Since different sources acquire 

data based on these factors, different signal structures were produced. Hence, these factors had an impact on the detection of GCPs, 

and improbable matches were obtained. A final note about this experiment is that two combinations of polarization (HHPALSAR and 

HHJERS-1, HVPALSAR and HHJERS-1), were tested. It can be seen from Table 6 that GCP extraction with similar polarizations produced 

considerably higher SNR values than GCP extraction with different polarizations.  

V. CONCLUSIONS 

A method for increasing the reliability and accuracy of automatic GCP extraction for multi-temporal polarimetric SAR images 

was proposed. In this method, keypoints were extracted based on the SIFT algorithm, and two-way keypoint matching was used to 

reduce the number of improbable correspondence keypoints. To attain a high accuracy, the RMSE minimization was performed to 

remove any GCP candidates producing large errors. In the next step, only GCPs with high spatial dispersion were selected by using 

a filtering strategy based on information entropy and spatial dispersion quality constraints. Experiments showed that the 

computation time required by this method was short, as well as that the process of matching SAR images produces a high ratio of 

correct matches. Moreover, the SIFT-OCT algorithm was successfully extended to polarimetric SAR data. From the test results, it 

can be seen that TP images are most appropriate for GCP extraction from PolSAR data, which yields the highest SNR values. 

Furthermore, it is also reasonably applicable to dispersed GCPs extracted from data obtained using the other four polarizations. In 

addition, geometric calibration can be used to improve the GCP matching accuracy. By exploiting the amplitude information of a 

sequence of SAR images acquired at different times, the SNR in conjunction with the MCS can be used to properly evaluate the 

performance of GCP extraction. As a result, the proposed method can be successfully applied to achieve automatic GCP extraction 

of full scene multi-temporal polarimetric SAR images with different types of land cover that have been obtained with the same 

satellite at similar viewing angles, with the same satellite at different viewing angles, or with different satellites at different viewing 

angles.  
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Table 1: Properties of fully polarimetric SAR images acquired with the same satellite at similar viewing angles. 

Properties SAR images acquired with the same satellite at similar viewing angles  
(ALOS-PALSAR Level 1.1, Mode: PLR, Quad-pol) 

Area Chiba Kyoto Hokkaido Saitama/Tokyo 
Type Base Warp Base Warp Base Warp Base Warp 

Acquisition date (yyyy/mm/dd) 2006/08/15 2007/04/02 2007/04/17 2009/04/22 2007/05/25 2008/11/27 2006/08/19 2006/10/04 

Image center (lat/long) 35.787  
/ 140.368 

35.778  
/ 140.380 

35.298 
/ 135.669 

35.295  
/ 135.660 

43.246  
/ 141.389 

43.240  
/ 141.360 

35.839  
/ 139.697 

35.831  
/ 139.685 

Size (sample × line) 1,280 × 18,432 1,248 × 18,432 1,088 × 18,432 1,088 × 18,432 
Off-nadir angle 21.5º 21.5º 23.1º 23.1º 
Orbit direction Ascending Ascending Descending Descending 

 
Table 2: GCP extraction results for SAR images of the Chiba, Kyoto, Hokkaido and Saitama/Tokyo areas, Japan. The images were acquired with the same satellite 
at similar viewing angles for fully polarimetric SAR (HH, HV, VH and VV) images which include TP.  

Images Number of GCPs (points) SNR 
Computation 

time (s) Area Polarization 
Two-way keypoint matching  RMSE 

minimization SDQ 
Two-way 
keypoint 
matching 

RMSE 
minimization SDQ 

Forward Backward Identical 

Chiba 

HH 121 117 86 21 21 0.007 0.021 0.021 57 
HV 404 416 310 63 49 0.002 0.011 0.012 70 
VH 413 435 320 68 31 0.002 0.007 0.012 71 
VV 106 117 75 25 20 0.004 0.014 0.009 52 
TP 590 613 470 164 74 0.002 0.006 0.004 88 

Kyoto 

HH 360 358 289 79 21 0.001 0.004 0.011 82 
HV 791 801 645 156 35 0.002 0.006 0.028 130 
VH 769 764 614 154 154 0.002 0.005 0.005 128 
VV 293 304 235 57 23 0.002 0.008 0.012 63 
TP 213 217 181 77 31 0.002 0.004 0.009 66 

Hokkaido 

HH 349 356 275 52 20 0.001 0.004 0.013 89 
HV 459 449 352 80 20 0.002 0.005 0.008 78 
VH 449 446 339 58 55 0.002 0.008 0.009 80 
VV 235 220 179 36 26 0.003 0.006 0.010 65 
TP 831 838 675 221 26 0.002 0.002 0.005 145 

Saitama/ 
Tokyo 

HH 557 555 437 118 21 0.002 0.007 0.011 83 
HV 616 599 475 99 27 0.002 0.006 0.030 90 
VH 524 506 387 79 45 0.002 0.009 0.014 82 
VV 697 719 553 148 125 0.001 0.006 0.008 95 
TP 406 307 311 119 34 0.003 0.008 0.029 65 

SDQ = information entropy and spatial dispersion quality constraints

Table 3: GCP extraction results for multi-temporal SAR images of the Ubon Ratchathani area, Thailand. The images were acquired with the same satellite at 
identical viewing angles (JERS-1 Level 2.1; path-row: 126–277; size: 6,400 × 6,000; orbit direction: descending, off-nadir angle: 35º).  

No. 
Acquisition 

date 
(yyyy/mm/dd) 

Image scene 
(lat/long) Type 

Number of GCPs (points) SNR 

C
om

pu
ta

tio
n 

tim
e 

(s
) Two-way keypoint matching 

 RMSE 
minimization SDQ 

T
w

o-
w

ay
 

ke
yp

oi
nt

 
m

at
ch

in
g 

RMSE 
minimization SDQ Forward Backward Identical 

1 1993/03/07 15.274/105.368 Base  
2 1995/05/08 15.258/105.399 

Warp 

327 373 290 104 55 0.027 0.052 0.116 130 
3 1995/12/14 15.258/105.381 314 298 246 59 27 0.029 0.124 0.197 134 
4 1996/01/27 15.528/105.392 780 765 627 189 54 0.015 0.052 0.166 130 
5 1996/03/11 15.258/105.399 484 470 386 129 68 0.035 0.142 0.144 134 
6 1997/11/17 15.258/105.404 180 165 138 44 22 0.072 0.128 0.202 131 
7 1998/02/13 15.286/105.352 289 277 227 85 41 0.040 0.053 0.102 135 
8 1998/03/29 15.258/105.423 489 487 391 102 23 0.027 0.089 0.120 132 

SDQ = information entropy and spatial dispersion quality constraints
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Table 4: Properties of SAR images acquired with the same satellite at different viewing angles and with different satellites at different viewing angles. 

Properties SAR images acquired with the same satellite  
at different viewing angles 

SAR images acquired with different satellites  
at different viewing angles 

Area Osaka city, Japan Buri Ram, Thailand 
Type Base image Warp image Base image Warp image 

Sensor type ALOS-PALSAR Level 1.1 ALOS-PALSAR Level 1.1 ALOS-PALSAR Level 1.5 JERS-1 Level 2.1 
Frequency  1.27 GHz L-Band  1.27 GHz L-Band  1.27 GHz L-Band 1.3 GHz L-band 

Mode or path-row (polarization) FBD (Dual-pol) PLR (Quad-pol) FBD (Dual-pol) 123-275 (HH) 
Orbit direction Ascending Descending 

Acquisition date (yyyy/mm/dd) 2009/07/16 2009/05/09 2007/09/01 1998/05/17 
Image center (lat/long) 34.6042/135.5318 34.7856/135.5171 15.476/102.966 15.258,102.646 

Size (sample × line) 4,640 × 18,432 1,088 × 18,432 6,400 × 5,700 6,400 × 6,000 
Off-nadir angle 34.3º 23.1º 34.3º 35º 

 
Table 5: GCP extraction results for SAR images of the Osaka city area, Japan. The images were acquired with the same satellite at different viewing angles for dual 
polarimetric SAR (HH and HV) images which include TP. 

Geometric 
calibration Polarization 

Number of GCPs (points) SNR 
Computation 

time (s) 
Two-way keypoint matching  RMSE 

minimization SDQ 
Two-way 
keypoint 
matching 

RMSE 
minimization SDQ Forward Backward Identical 

Before 
HH 187 136 123 68 52 0.0030 0.0034 0.0044 272 
HV 270 223 176 89 67 0.0030 0.0039 0.0047 278 
TP 144 97 87 51 50 0.0070 0.0132 0.0137 273 

After 
HH 187 136 123 69 53 0.0039 0.0044 0.0049 280 
HV 270 223 176 92 68 0.0046 0.0064 0.0073 286 
TP 136 77 67 32 32 0.0077 0.0155 0.0155 279 

SDQ = information entropy and spatial dispersion quality constraints

Table 6: GCP extraction results for SAR images of the Buri Ram area, Thailand. The images were acquired with different satellites at different viewing angles for 
similar polarizations and different polarizations. 

Scenario 
Number of GCPs (points) SNR 

Computation 
time (s) Two-way keypoint matching RMSE 

minimization SDQ Two-way keypoint 
matching 

RMSE 
minimization SDQ Forward Backward Identical 

HHPALSAR(base)  
and 

HHJERS-1(warp) 
65 68 25 19 15 0.0021 0.0032 0.0042 175 

HVPALSAR(base) 
and 

HHJERS-1(warp) 
94 80 47 33 16 0.0014 0.0022 0.0035 181 

SDQ = information entropy and spatial dispersion quality constraints 
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Base Image Wrap Image

HHb
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HVb VHb VVb

TPb

HHw
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HVw VHw VVw

TPw
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Information Entropy & 
Spatial Dispersion Quality Constraints

Accurate GCPs

Two-way Keypoint Matching 

END

GCP Evaluation Based on SNR in 
Conjunction with MCS 

 
Fig. 1. Procedure for automatic GCP extraction. 

 
(a) Chiba area 

 
(b) Hokkaido area 

 
(c) Kyoto area 

 
(d) Saitama/Tokyo area 

Fig. 2. VH-polarization PALSAR images with 1/16 azimuth compression ratio 
for four investigated areas in Japan. 
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(a) HHbefore SDQ      (b) HHafter SDQ 

 
Fig. 3. GCP extraction from HH base and warp images (using 
original images with a size of 1,248 × 18,432 pixels) for the 
Kyoto area. GCPs are indicated by red crosses. The number 
of GCPs before and after applying information entropy and 
spatial dispersion quality constraints (SDQ) are 79 and 21, 
respectively. 

 

  
(a) Chiba area. (b) Hokkaido area. 

  
(c) Kyoto area. (d) Saitama/Tokyo area. 

 

 
 

Fig. 4. GCP extraction results for SAR images acquired with the same satellite at similar 
viewing angles with the SIFT-OCT algorithm applied to fully polarimetic SAR images which 
include TP (1/16 azimuth compression ratio). 
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(a) HHbefore geometric calibration.  (b) HHafter geometric calibration. 

 
Fig. 5. GCP extraction from HH base and warp images before and after geometric calibration for the Osaka city area. GCPs are indicated by red crosses. The images 
were acquired with the same satellites at different viewing angles. 
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(a) Original ALOS-PALSAR (HV) image. (b) Magnified ALOS-PALSAR image with extracted GCPs. 

 

 

      
 

(c) Original JERS-1 (HH) image. (d) Magnified JERS-1 image with extracted GCPs. 
Fig. 6. GCP extraction with different polarizations for the Buri Ram area. The images were acquired with different satellites at different viewing angles.  
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