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Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum
effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation
method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-
molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-
H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without
perturbative expansion of prepared model potential functions but with explicit interactions between
nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is
realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as
radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4874635]

Liquid para-hydrogen (p-H2) is a typical quantum liquid,
which exhibits anomalous properties especially at low tem-
perature. Due to the strong nuclear quantum effect (NQE),
liquid p-H2 shows broad radial distribution functions (RDFs)
and rapid diffusion properties even at low temperature,
which cannot be reproduced by the classical simulation
approaches.1–6 Hydrogen is of primary importance not only
in the fundamental condensed phase physics but also in its
potential applications as energy source without harmful by-
products. It is therefore important to establish an a priori com-
putational method to predict the anomalous properties of p-H2

liquids.
Methods suitable for numerical simulations of real p-

H2 ensembles have been proposed using the path integral
Monte Carlo (PIMC),1, 2 linearized semiclassical initial value
representation (LSC-IVR),7, 8 centroid molecular dynamics
(CMD),3, 4, 6 ring-polymer molecular dynamics (RPMD),9 and
the thermal Gaussian molecular dynamics (TGMD).10 These
all are based on the imaginary-time path-integral theory, and
the latter four have been implemented for calculations of time
correlation functions (TCFs) accounting for particularly im-
portant NQEs such as zero-point energy (ZPE) effect. They
unanimously adopted the Silvera-Goldman potential11 which
assumes that the p-H2 molecules are a spherically symmetric
particle in the rotational ground state. This spherical model
combined with the above quantum simulation methods has
well reproduced the static and dynamical properties of liquid
p-H2.1–6, 9, 10 We thus consider that the next step is to treat the
interaction potential in less empirical way.

We have recently developed an efficient theoretical
framework of a non-Born-Oppenheimer (non-BO) nuclear
and electron wave packet (NWP and EWP) method non-
perturbatively taking into account the NQEs such as nuclear
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delocalization and ZPE, and applied it to the intra- and inter-
molecular energies of a hydrogen dimer.12 In this Com-
munication, we extend it to a real-time condensed-phase
simulation method of nuclear and electron wave packet
molecular dynamics (NEWPMD) for liquid p-H2.

The NEWPMD approach describes nuclei by floating and
breathing Gaussian WPs via the time-dependent Hartree ap-
proach, and EWPs by the perfect-pairing (PP) valence bond
(VB) theory that appropriately treats the Pauli exclusion en-
ergy. The combination of EWP and PP VB has been demon-
strated to yield accurate potential energy curves for H2, LiH,
CH2, and H2O.12–14 We start by considering a H2 dimer and
denote the four electrons (4e) by a, b, c, and d, and the four
nuclei (4n) by A, B, C, and D. Here, the nuclei (A, B) and elec-
trons (a, b) form one hydrogen molecule, while the remain-
ing (C, D) and (c, d) compose another hydrogen molecule.
The time-dependent total wave function ψ(t), where the EWP
pairs (a, b) and (c, d) are coupled in the singlet configuration,
is introduced as

ψ(t) = A[φa(q1)φb(q2)φc(q3)φd(q4)�(1, 2, 3, 4)]

×�A(Q1)�B(Q2)�C(Q3)�D(Q4), (1)

where A is an antisymmetrizer for 4e.13, 14 For simplic-
ity, ¯ = 1, an electron charge is unity and all the coordi-
nates are mass scaled. The spin function �(1, 2, 3, 4) ex-
presses the PP VB, �(1, 2, 3, 4) = (α(1)β(2) − β(1)α(2))/√

2 × (α(3)β(4) − β(3)α(4))/
√

2. Each term in ψ(t) is com-
posed of the 3D symmetric (spherical) Gaussian WP basis
functions. The nuclear wave function part is introduced by
the Hartree product of NWPs;

�K (Qi) ≡
(

1

2π	2
K (t)

) 3
4

exp[XK (Qi − RK (t))2

+iPK (t) · (Qi − RK (t))] (2)
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with XK = (−1 + 2i
K (t)	K (t))/4	2
K (t) and the EWP in

the electronic part of a form

φk(qi) ≡
(

1

2πρ2
k

) 3
4

exp

[
− (qi − rk(t))2

4ρ2
k

]
. (3)

The Gaussian NWP is specified by the WP center RK(t),
its width 	K(t), and their conjugate momenta PK(t) and

K(t), respectively. On the other hand, the Gaussian widths
of EWPs, ρk, are assumed to be constant at 0.654 Å for
electrons a and c and 0.370 Å for electrons b and d in the
present MD simulation, i.e., the EWPs are frozen and do not
breath. The values of EWP width are determined from a cal-
culation on a H2 dimer.15 Further, the EWP centers rk(t) de-
pend on the hydrogen nuclear coordinates at each moment as
ra(t) = rb(t) = (RA(t) + RB(t))/2 and rc(t) = rd(t) = (RC(t)
+ RD(t))/2. The EWPs are not evolved variationally, but in-
stead can instantly adjust their widths and positions to NWP
dynamics at each moment. It is assumed that EWP breath-
ing itself is small enough to be neglected compared to the
total EWP width, and that the timescale of EWP dynamics
is naturally much shorter than the timescale of NWP dynam-
ics. The latter assumption is related to the BO approximation.
These approximations, which have been validated in Ref. 15,
greatly simplify the derivations of equations of motion (EOM)
for hydrogen molecules from the time-dependent variational
principle to yield,15

ṘK = ∂Hext

∂PK

, ṖK = −∂Hext

∂RK

,

(4)

	̇K = 1

3

∂Hext

∂
K

, 
̇K = −1

3

∂Hext

∂	K

,

with the extended Hamiltonian function,

Hext ≡
A,B,C,D∑

K

[
P2

K

2Mnuc
+ 3
2

K

2Mnuc
+ 3¯2

8Mnuc	
2
K

]

+〈V (q1, q2, q3, q4; Q1, Q2, Q3, Q4)〉, (5)

where Mnuc is a relative mass of a proton to an electron.
Note that ¯ has been retrieved here and hereafter. {RK, PK}
and {	K, 
K} can be regarded as conjugate coordinate and
momentum pairs. The system dynamics can be described
with the potential concept in this extended Hamiltonian.16, 17

In order to solve the EOM (4), we explicitly and non-
perturbatively derive the potential expectation in Eq. (5) by
the total wave function ψ(t).15 It is thus distinguished from
most of the previous NWP approaches in which a poten-
tial surface was given in advance by a separate modeling
and, in many cases, expanded quadratically around the mov-
ing NWP centers to perturbatively take into account the
NQEs.10, 16, 18–25

Finally, we extend the above formulation for the 4e-
4n system to a system composed of many-body hydrogen
molecules. The extended Hamiltonian appearing in the EOM

(4) for the Nmol-body system is derived as15

Hext(Nmol) ≡
Nnuc∑
K

[
P2

K

2Mnuc
+ 3
2

K

2Mnuc
+ 3¯2

8Mnuc	
2
K

]

+
Nnuc∑
I>J

1

|RI − RJ |erf

⎛
⎝ |RI − RJ |

2
1
2
(
	2

I + 	2
J

) 1
2

⎞
⎠

+
Nmol∑

ab>cd

V ab,cd −
Nmol∑
ab

(Nmol − 2)vab, (6)

where Nnuc and Nmol(=Nnuc/2) are total numbers of nuclei
and molecules, respectively. V ab,cd and vab are explicitly de-
rived in Ref. 15. Two electrons a and b (or c and d) constitut-
ing one hydrogen molecule should be calculated as a pair in
V ab,cd , leading to the maximum number of summation Nmol.
Since the summation of V ab,cd by all molecular pairs causes
multiple counting of the intramolecular electron energies, we
need to subtract an energy of a single hydrogen molecule
vab. Real-time microscopic trajectories of condensed-phase
hydrogen molecules can be simulated using the EOM (4)
with Hext(Nmol) where no empirical parameter to specify the
intra- and inter-molecular interactions was introduced.

To confirm whether the present simulation method de-
scribes a liquid state of p-H2 correctly, we check the basic
properties of the simulated p-H2 system discussing the NQEs
introduced by the NWPs. The liquid p-H2 systems are com-
posed of 1200, 576, and 252 molecules in a cubic simulation
box with a periodic boundary condition. The liquid p-H2 is
set at the saturated vapor pressure; the molar volume is 27.0
× 10−6 m3/mol and 32.0 × 10−6 m3/mol at 14 K and 25 K,
respectively.3 In the cooling and equilibration runs, we make
only the atomic center momentum degrees of freedom, PK(t),
influenced by the heat bath set by the velocity scaling thermo-
stat and Berendsen methods with T = 14 K and 25 K. Other
degrees of freedom are freely time-evolved by the EOM (4).
After the careful cooling and equilibration runs, the whole
phase space reaches the thermal equilibrium owing to heat
conduction between the degrees of freedom controlled by the
heat bath and the other degrees of freedom free from the heat
bath. After the equilibration runs, we carry out the NVE (mi-
crocanonical) simulations for 100 ps. The computational costs
for the current NEWPMD are reasonable since the EOM (4)
representing the quantum hydrogens include only the auxil-
iary WP coordinates and momenta. The truncations of the
electron exchange integrals in the interaction energy also con-
tribute to reduce the computational cost.15

The average detailed structures of hydrogen molecules
in the condensed p-H2 liquid are calculated owing to the
diatomic hydrogen structure described in our method. In
Table I, the average microscopic structures of diatomic hy-
drogen molecules are listed and compared for different sys-
tem size and temperatures. The average H–H bond length,
〈rHH〉, becomes longer in the liquid case than in the isolated
free molecule case, which is nontrivial but agrees with the ex-
perimental finding in the low-pressure solid.26 The calculated
〈rHH〉 of 0.762 Å is reasonably compared to the experimental
result, 0.755 Å. Since the most stable solvation structure is
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TABLE I. Average microscopic structures of hydrogen molecules. The nu-
merical errors are smaller than the last significant figure. Stronger condensed-
phase effects elongate H–H bond length rHH. NWP width 	 has the clear
correlation with rHH. A molecular angle formed by two hydrogen molecules
θ of 90◦ supports the most stable T-shape solvation configuration.

Nmol T (K) 〈rHH〉 (Å) 〈	〉 (Å) 〈θ〉 (deg.)

1200 14 0.7619 0.065920 90.0
1200 25 0.7616 0.065916 90.0
576 14 0.7619 0.065920 90.0
576 25 0.7616 0.065916 90.0
252 14 0.7619 0.065920 90.0
252 25 0.7616 0.065916 90.0
1 0 0.7450 0.064861 . . .

the T-shape configuration drawn in Fig. S1 of the supplemen-
tary material,15 the H–H bond of the right molecule is more
elongated by the attraction from the electron distribution in
the bonding region of the left H2 molecule as the liquid struc-
ture becomes more condensed. Actually, the H–H bond is
more stretched at 14 K than at 25 K; the lower temperature
makes the p-H2 liquid more structured as will be indicated in
Fig. 1, which induces the longer H–H bond at 14 K. The aver-
aged NWP width, 〈	〉, is correlated to the H–H bond length
〈rHH〉. As the H–H bond stretches, the NWP width becomes
delocalized, and vice versa. This behavior, which has been
observed and discussed in the hydrogen monomer and dimer
cases,12 thus remains in the liquid phase. The NWP width in
the present model is primarily determined by the intramolec-
ular bonding potential. In comparison, the thermal de Broglie
wavelength of free translational motions of H2 molecule is
much larger, approximately 2.8 Å at 20 K. The accuracy of

 0  2  4  6  8  10

Full WP
WP center

CoM

g(
r)

14 K, 1200 mol.

25 K, 1200 mol.

r, A
o
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FIG. 1. RDFs with quantum delocalization of each NWP (red line), counted
by centers of each NWP (green line), and defined by centers of hydrogen
molecule mass (blue line). The peak positions, height, and width successfully
reproduce the liquid structure of p-H2 measured by the neutron scattering
experiment. The PIMC data with the Silvera-Goldman potential were taken
from Ref. 27. The shoulder appearing in the first peak reflects the diatomic
structure of a hydrogen molecule in the first solvation shell. The peaks and
valleys of the RDF become broader and deviate to the larger distance at the
higher temperature. The current liquidized structure is obtained owing to the
quantization of hydrogen nuclei introduced by the NWPs.

RDFs and diffusion constants to be shown below indicates
that the quantum decoherence is in effect for translational
motions in the liquid phase. The angular coordinate θ denotes
an angle formed by two hydrogen molecules. The average
molecular angle 〈θ〉 listed in Table I are all 90◦, supporting
the most stable T-shape solvation configuration. All the aver-
age microscopic structures listed in Table I almost converge
at the smallest system of 252 molecules.

Figure 1 shows the RDFs obtained from the NEWPMD at
various system size and temperatures. In Figs. 1(a) and 1(b),
we compare the three cases: (I) The RDF calculated with the
quantum delocalization of each NWP (red line), (II) the RDF
counted by the center of each NWP (green line), and (III) the
RDF defined by the center of hydrogen molecule mass (blue
line). The whole shape of the RDF (I) including all the peak
positions, height and width almost agree well with the pre-
vious PIMC,1, 2, 27 LSC-IVR,7 and CMD3, 4, 6 calculations and
the neutron scattering experiments.5, 6 The shoulder appear-
ing in the left part of the first RDF peak reflects the diatomic
structure of a hydrogen molecule in the first solvation shell;
the most stable solvation structure is the configuration drawn
in Fig. S1 of the supplementary material,15 and the nearest
hydrogen atoms around the center hydrogen contribute to the
shoulder around 3.25 Å. Though slightly, this shoulder is em-
phasized and the peak becomes narrower and higher in the
RDF (II) which neglects the NWP delocalization in the RDF
counting. The RDF (III) is quite different from the RDFs (I)
and (II); the former first peak becomes much higher and de-
viates toward the shorter distance, vanishing the shoulder of
the first peak appearing in the RDFs (I) and (II). This discor-
dance suggests that a spherical approximation of a hydrogen
molecule is invalid for the current diatomic picture. Compari-
son of Figs. 1(a) and 1(b) indicates that the peaks and valleys
of the RDF become broader and deviate toward the larger dis-
tance at the higher temperature, while the position of the first
peak does not change, in agreement with the previous CMD
results.3, 4, 6 In addition, the shoulder of the first RDF peak is
weakened at the higher temperature, reflecting the less struc-
tured p-H2 liquid. The direct comparisons with the PIMC re-
sults are also given in Fig. 1. The deviation around the first
peak is mainly attributed to the appearance of the shoulder in
the NEWPMD; in fact, the deviation is larger at 14 K than at
25 K. It is well known that the RDF obtained from the classi-
cal MD exhibits a much sharper and thus an entirely different
distribution, implying that the classical liquid is more likely to
be solidified compared with the quantum liquid.4 The current
quantization of the hydrogen nuclei introduced by the NEW-
PMD makes the intermolecular distance larger and makes the
radial distribution much broader. The effective intermolecular
attraction is reduced by the additional excluded volume effect
and repulsive force caused by the hydrogen NWPs just as the
liquid water case reported before.24, 25

Figure 2 shows the self-diffusion coefficients24, 25 as a
function of N

−1/3
mol calculated in this work as well as the RPMD

and TGMD results.9, 10 In general, a major deviation from a
bulk self-diffusion coefficient follows:

D(N ) = D(∞) − 2.837kBT

6πηl
N

−1/3
mol , (7)
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FIG. 2. Self-diffusion coefficients as a function of N
−1/3
mol compared with

the RPMD and TGMD results. The self-diffusion coefficients are linearly
proportional to N

−1/3
mol and increase quite rapidly with increasing the tem-

perature. The fitting lines are 0.345 − 0.360N
−1/3
mol (dashed-dotted line) and

1.65 − 1.25N
−1/3
mol (dashed line). The estimated NEWPMD diffusion coeffi-

cients and shear viscosities sufficiently agree with the experimental data of
liquid p-H2 at the saturated vapor pressure. These agreements demonstrate
that the current temperature definition, the kinetic temperature of the NWP
center degrees of freedom, is physically valid.

for a cubic cell as was investigated analytically and
numerically.28, 29 η is the shear viscosity, and l = 3.55 Å at
14 K and 3.76 Å at 25 K for the current molar volume.9 As
well as the RPMD and TGMD results, all the self-diffusion
coefficients obtained from the NEWPMD depend linearly on
N

−1/3
mol and thus can be fitted to Eq. (7). This behavior with

the negative slope indicates that the “classical bubble” is not
formed and thereby supports the adequacy of the present
NEWPMD method to simulate the quantum liquid state; the
self-diffusion coefficient of the classical hydrogen liquid de-
creases significantly with increasing the system box.9, 29 The
self-diffusion coefficients of the infinite system obtained by
extrapolating the NEWPMD data to Nmol → ∞ are D(∞)
= 0.345 Å2/ps at 14 K and 1.65 Å2/ps at 25 K, in agree-
ment with the corresponding experimental values of 0.35
− 0.37 Å2/ps at 14 K and 1.4 − 1.6 Å2/ps at 25 K.9, 10 We
can also estimate the shear viscosity η from the gradient of
the linear fitting line. The resulting viscosities are η = 2.28
× 10−5 N s m−2 at 14 K and 1.10 × 10−5 N s m−2 at 25 K,
again in agreement with the experimental shear viscosities
of liquid p-H2 at the saturated vapor pressure, 2.51 N s m−2

at 14 K and 0.943 N s m−2 at 25 K.30 Figure 2 demonstrates
that the NEWPMD self-diffusion coefficients increase quite
rapidly with increasing the temperature. The self-diffusion
coefficients become about five times larger by increasing the
temperature only by less than twice. This can be explained by
combined and correlated effects of the less structured liquid
and the shorter H–H bond length in the higher temperature as
discussed in Table I and Fig. 1.

The current results of temperature dependent self-
diffusion coefficients are suggestive for adequate definition
of thermodynamic temperature in the NEWPMD simulation
which has not been fully understood.24, 25 While the quantum
WP variables account for the NQEs, their extra dimension-
ality leads to an overcounting of quantum states if the phase
space averaging is performed over both the WP center and
width variables. Indeed, integration over all the NWP degrees
of freedom to calculate average system energy in the Boltz-
mann distribution yields a surplus to the ZPE.16 In the current
NEWPMD simulations, the temperature is defined only by
the kinetic temperature of WP center degrees of freedom

assuming their canonical distribution even when embedded
in a quantum WP simulation.15 The assorted agreements
of the self-diffusion coefficients and shear viscosities with
the experiments demonstrate the validity of this definition
since no microscopic adjusting parameter is introduced in the
current NEWPMD.

In conclusion, we for the first time developed the com-
bined NWP and EWP real-time MD simulation method with-
out any empirical parameters for the hydrogen interaction
energies, and applied it to the condensed-phase p-H2 liquid.
Each non-spherical hydrogen molecule in the NEWPMD has
the intramolecular degrees of freedom of H2. The computa-
tional costs for the current NEWPMD are quite reasonable.
Nevertheless, the experimental basic properties of p-H2 liq-
uid such as the RDFs, self-diffusion coefficients, and shear
viscosities were successfully reproduced, demonstrating that
our NEWPMD can be an accurate and efficient quantum MD
method to study condensed-phase p-H2 systems.
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