Introduction

Urban freight transport is gaining more attention in many megacities of the world due to the movement of more population into urban areas as well as social and environmental problems that are related to urban freight transport. The government is constantly required to tackle problems in urban areas that include creating efficient urban freight transport systems with higher services and lower costs and to ensure a better environment, safer community and well-being of people who are living within. The concept of city logistics has been introduced for establishing efficient and environmentally friendly urban freight transport systems towards sustainable and liveable cities by balancing the above mentioned issues. The essential aspect of city logistics is that although the logistics activity is mainly carried out by private companies, the intervention of public authorities is required to achieve the goals of city logistics by implementing policy measures. Table 1 shows the typical city logistics measures that are possible for evaluation and implementation.

The UDC has been studied and encouraged as a promising concept, where carriers with common customer locations deliver their goods to a single facility. The goods are consolidated into neutral trucks operated by the facility and these trucks continue the last-mile journey to reach the final receivers. Such operation is said to increase the load factor of the trucks and to allow for easier time-windowed operations to avoid traffic congestion.

There are few but successful implementation of urban distribution centres around the world. One of them is the Cityporto case in Italy where the UDC is part of an initial public-private partnership among the Municipality, Province and Chamber of Commerce since 2004. Another case of successful UDC operation is Motomachi at Yokohama, Japan. The success factors for this UDC include good leadership, cooperative collaboration of stakeholders, good business model, use of CNG-powered trucks and pre-assigned parking locations for UDC operated trucks.

Recent studies by researchers have considered urban freight logistics by using the multi-agent systems (MAS) modelling approach to evaluate urban distribution centre. This research will continue to explore the use of MAS with the support of
geographical information systems (GIS) to evaluate urban freight policies like UDC and the possibility of combining another freight policy in Osaka City in a real network environment (Figure 1) with uncertainty like the network travel time.

Network Uncertainty

Many studies were done on the reliability of road network. Reliability of transportation systems can be categorized into connection reliability, capacity reliability and travel time reliability\(^9\). The travel time reliability is a probability of the total travel time that is less than a pre-determined threshold. Reliability for post-seismic supply chain was studied by Peng et al.\(^9\) where they introduced variations in transportation times during disaster based on the estimation by the United States Bureau of Public Roads, 1964. Although reliability and vulnerability are related, reliability focuses more on connectivity and probability whereas vulnerability is about network weakness and consequences of failure. Some game theoretic approaches have been used to deter-
Recent Trends in Modelling Freight Movement

Recent researches have attempted to model truck movements like the tour-based microsimulation by Hunt and Stefan12, a decision support systems named City Logistics Analysis and Simulation Support Systems (CLASS)13 that considered shopping demand models and urban restocking models by Nuzzolo et al.13 and freight trip generation based on land use proposed by Holguin-Veras et al.14. The complexity of freight generation due to the multiple economic agents is shown in Figure 2.

Attributing to past findings that considered the uncertainty of travel times15 and the use of updated travel information from intelligent transport systems16, which
can help to contribute to a more environmentally friendly urban living, the proposed modelling framework for a tour-based urban freight multi-agent model that considers the network uncertainty is shown in Figure 3. The proposed model is expected to be beneficial for short-term to medium-term freight policies evaluation as shown in Table 1.

Conclusion

Modelling freight movement has always been challenging due to the complexity of multiple economic agents involved. On top of that, events like man-made and natural disasters are evolving more often. As more data becomes available in addition to the cooperation from these agents to provide key information for modelling, the evaluation of urban freight policies will become more effective in the future and lead to not only a sustainable but resilient urban environment.

Figure 3 Proposed framework for tour-based urban freight multi-agent model with network uncertainty
References

