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A fundamental issue in neuroscience is to understand how neuronal circuits in the
cerebral cortex play their functional roles through their characteristic firing activity.
Several characteristics of spontaneous and sensory-evoked cortical activity have been
reproduced by Infomax learning of neural networks in computational studies. There are,
however, still few models of the underlying learning mechanisms that allow cortical
circuits to maximize information and produce the characteristics of spontaneous and
sensory-evoked cortical activity. In the present article, we derive a biologically plausible
learning rule for the maximization of information retained through time in dynamics
of simple recurrent neural networks. Applying the derived learning rule in a numerical
simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical
activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches,
spontaneous replays of learned firing sequences and orientation selectivity observed in
the primary visual cortex. We further discuss the similarity between the derived learning
rule and the spike timing-dependent plasticity of cortical neurons.
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avalanche, precise firing sequence, orientation selectivity, spike-timing-dependent plasticity

1. INTRODUCTION
The cerebral cortex in mammalian brains plays a central role
in higher-order functions such as perception, recognition, plan-
ning, and execution of goal-directed behaviors, learning and
memory. However, it remains to be understood how these func-
tions are realized through the activity of cortical neurons. Many
experiments have been conducted to investigate the underly-
ing computations in cortical circuits, and some of them have
revealed the presence of characteristic activity profiles of cor-
tical neurons. In parallel with these experimental observations,
computational models have been proposed, reproducing such
characteristic activities by simulating the models.

For example, simple and complex cells in the primary visual
cortex (V1) of mammalian brains were found to show selec-
tive responses to visual stimuli of specific orientations (Hubel
and Wiesel, 1959). The response properties of simple cells can
be understood as feedforward computations acquired accord-
ing to some learning principle such as the Infomax principle
(Linsker, 1988; Bell and Sejnowski, 1997), the sparse coding
principle (Olshausen and Field, 1997; Barlow, 2001) and inde-
pendent component analysis (ICA) (for a review, see Hyvärinen
et al., 2001b). The response properties of complex cells have been
reproduced by extending these models of simple cells hierarchi-
cally (Hyvärinen et al., 2001a; Karklin and Lewicki, 2005). Based
on these guiding learning principles, several authors have con-
structed biologically plausible learning algorithms in feedforward
neural networks that reproduce the response properties of visual
neurons including orientation selectivity (Deco and Parra, 1997;

Okajima, 2001; Savin et al., 2010; Zylberberg et al., 2011; Tanaka
et al., 2012). Hence, Infomax learning has been proposed as one
of the candidate learning principles in V1.

Real cortical circuits consist not only of feedforward con-
nections but also of recurrent connections (for a review, see
Douglas and Martin, 2007; Kaneko, 2013). In particular, spon-
taneous activity in the cerebral cortex is thought to be produced
by the recurrent connections in the cortical circuits. Repetition
of precise firing sequences has been observed in the spontaneous
activity of cortical neurons in slice cultures (Ikegaya et al., 2004).
Furthermore, task-related sequential firing of cortical neurons in
behaving animals and its repetition in the sleeping (Skaggs and
McNaughton, 1996; Lee and Wilson, 2002) and quietly awake
state (Yao et al., 2007) have been observed in vivo. As another
one of the characteristic firing profiles of the spontaneous cor-
tical activity, “neuronal avalanche” has also been reported; in
certain experimental conditions, the sizes of the bursts in spon-
taneous bursting activity in the cerebral cortex were shown to
obey a power law, and this phenomenon was named “neuronal
avalanche” (Beggs and Plenz, 2003).

Historically, the emergence of stereotypical sequential firing
activity was predicted in the theory of cell assembly (Hebb,
1949). Guided by this notion, previous studies have shown by
simulation that certain network structures of recurrent neu-
ral networks allow the emergence of repeats of precise firing
sequences and/or neuronal avalanches in the spontaneous activity
of the network models (Teramae and Fukai, 2007; Tanaka et al.,
2009; Teramae et al., 2012). Teramae et al. (2012) showed that
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sparsely distributed strong connections in a recurrent neural net-
work lead to apparently asynchronous and irregular spontaneous
activity with repeats of precise firing sequences, in accordance
with experimental findings (Renart et al., 2010). From the view-
point of learning, Izhikevich (2006) numerically demonstrated
that stereotypical firing sequences appear in a recurrent neu-
ral network self-organized by spike-timing-dependent plasticity
(STDP), although there is a criticism that his model requires
EPSPs of unrealistic sizes to reproduce the firing sequences.
Furthermore, Tanaka et al. (2009) recently revealed that the
characteristics of spontaneous cortical activity in addition to
orientation selectivity in V1 are acquired by self-organization
of recurrent neural networks according to Infomax learning
principle.

Although Tanaka et al. (2009) suggested Infomax learning as
the common learning principle for the characteristics of spon-
taneous cortical activity and orientation selectivity, they did not
show a biologically plausible learning rule for the Infomax learn-
ing. If the Infomax learning in Tanaka et al. (2009) is realized in
the cortical circuits, there must be a learning rule whose compo-
nents can possibly be computed through biophysical mechanisms
in individual neurons or synapses. However, Tanaka et al. (2009)
used a complicated learning algorithm which requires informa-
tion about firing statistics of the whole network such as inverses of
correlation matrices of firing activity. Neurons and synapses can-
not have an access to such global information, and thus it is still
unclear whether the Infomax learning formulated by Tanaka et al.
(2009) in the recurrent settings is biologically plausible. Other
types of biological realization of Infomax learning proposed so
far (Okajima, 2001; Chechik, 2003; Toyoizumi et al., 2005) do
not account for the emergence of spontaneous cortical dynamics.
Although several biological mechanisms have been considered for
the emergence of the dynamics observed in the cortex (Wörgötter
and Porr, 2005; Izhikevich, 2006), to our knowledge, no biolog-
ically plausible learning rule in a recurrent neural network has
been reported to account for the emergence of both orienta-
tion selectivity and the experimentally observed characteristics of
spontaneous cortical activity. This might be due to an inherent
difficulty in analytically deriving biologically plausible learning
rules in recurrent neural networks. However, to understand how
the cerebral cortex realizes its highly developed functions, it
is the critical first step to discern such a biologically plausible
learning rule.

In the present article, we construct a biologically plausible
rule for the Infomax learning in a recurrent neural network,
and show by numerical simulations that the learning rule repro-
duces repeats of precise firing sequences, neuronal avalanches,
spontaneous replays of learned firing sequences, and orientation
selectivity of simple cells. We further discuss the similarity of the
derived learning rule to the reward-modulated STDP proposed
by Florian (2007), and suggest several candidate neural substrates
for its biological realization in cortical circuits.

2. RESULTS
2.1. A BIOLOGICALLY PLAUSIBLE LEARNING RULE FOR THE

RECURRENT INFOMAX
In the present study, we consider discrete-time stochastic dynam-
ics of recurrent neural networks similar to those of the preceding

study (Tanaka et al., 2009). The recurrent neural network xt ∈
{0, 1}N consists of N simple binary neuron models xt

i with neuron
index i and time index t, each of which takes one of the two states,
1 (fire) or 0 (quiescent). Each neuron receives an input st

i from
all the other neurons as st

i =
∑

j �= i wijx
t
j − hi at time t, and it

fires at the next time step with a probability of p
(

xt+ 1
i = 1|xt

)
=

pmaxσ
(
st
i

)
. Here, we have denoted the logistic function as σ

(
st
i

) =
1/
{

1+ exp
(−st

i

)}
, and parametrized the maximal probability of

firing transmission with pmax. The model parameters {wij}1≤ j≤N

and hi represent the synaptic weights and the firing threshold
of the postsynaptic neuron i, respectively, and are updated by
the learning rule derived below. These settings may be under-
stood as a discrete approximation of continuous-time neuronal
dynamics (see Methods). Following the model settings in the
previous studies of biologically plausible learning rules in neu-
ral networks (Savin et al., 2010; Zylberberg et al., 2011; Frémaux
et al., 2013), we allow each neuron to make both of excitatory
and inhibitory synapses. For the precise modeling of interactions
between excitatory and inhibitory neurons, we must consider var-
ious experimental findings, such as the existence of many different
kinds of inhibitory neurons (Markram et al., 2004) and excitatory
axo-axonic synapses on axons of inhibitory neurons (Ren et al.,
2007). Although such precise modeling is apparently intractable
and beyond the scope of the current study, we can consider possi-
ble biological realization of our idealized neurons with excitatory
and inhibitory synapses, for example, by replacing a single neu-
ron with a pair of excitatory and inhibitory neurons which have
the same responsiveness (see Discussion for the details). Thus,
the usage of such idealized neurons does not critically affect the
biological plausibility.

Originally, Infomax learning was defined as the maximization
of mutual information between two groups of neural elements
(Linsker, 1988; Bell and Sejnowski, 1997), and many extensions
have been considered (Kay and Phillips, 2010). The mutual infor-
mation was defined according to information theory (Cover and
Thomas, 2012). In Tanaka et al. (2009), assuming the convergence
of distributions of firing activity xt to stationary distributions
ps
(
xt
)
, the authors proposed to define recurrent Infomax as the

maximization of mutual information between the firing activities
at two successive time steps, under the constraint that the mean
firing rates of neurons must be a fixed small value p0 � 1:

max
wij,hi

I
[
xt; xt− 1] = ∑

xt ,xt− 1

ps
(
xt, xt− 1) log

p
(
xt |xt− 1

)
ps (xt)

,

sub. to E
[
xt

i

] = p0 � 1. (1)

Since the brain needs to retain information about its past activ-
ity, the above definition of the recurrent Infomax learning is
straightforward.

Tanaka and colleagues did not discuss, however, plausible
mechanisms for the recurrent Infomax learning in the brain.
Thus, we derive a biologically plausible learning rule, which pre-
dicts possible mechanisms for the recurrent Infomax learning
in real cortical circuits. Since it is thought to be impossible for
a neural network to directly compute the mutual information
itself, some approximation is needed. Thus, we are going to
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derive the learning rule from the following approximate objective
function:

A =
∑

i

log I
[
xt

i ; xt− 1]
︸ ︷︷ ︸

A1

− κ
∑
i< j

(〈
xt

i xt
j

〉
∞ −

〈
xt

i

〉
∞

〈
xt

j

〉
∞

)
︸ ︷︷ ︸

A2

− η

2

∑
i

(〈
xt

i

〉
∞ − p0

)2

︸ ︷︷ ︸
A3

− ζ
2

∑
i

〈(
st
i − s0

)2〉
∞︸ ︷︷ ︸

A4

. (2)

Here, the angle brackets with subscript∞ represent the long-time
averages of their arguments. Throughout this paper, assuming
ergodicity, we identify long-time averages with corresponding
ensemble averages as

〈
xt 〉
∞ = lim

T→∞
1

T

T∑
t= 1

xt =
∑

xt

xtps
(
xt) .

The role of each term in Equation (2) is as follows (see Methods
for further details of the construction of the objective func-
tion A). Predictability term A1 =∑i log I

[
xt

i ; xt− 1
]

represents
how predictable the firing activity xt is from the firing activ-
ity at previous time steps xt− 1. In other words, this term forces
neurons to fire deterministically as far as possible, that is, to
fire with high probabilities near pmax in response to specific
inputs, and not to fire at all for the other inputs. This term
mathematically provides a lower bound of the mutual infor-
mation I

[
xt; xt− 1

]
if and only if the firing of each neuron xt

i
(1 ≤ i ≤ N) is independent. We, therefore, impose a penalty
based on the sum of the pairwise correlations, correlation term

A2 = κ∑i< j

(〈
xt

i xt
j

〉
∞ −

〈
xt

i

〉
∞

〈
xt

j

〉
∞

)
, so as to bound the firing

activity near the independent distribution. The correlation term
A2 is also interpreted as a penalty term for population sparse-
ness, noting that

∑
i< j xt

i xt
j = 1

2 mt
(
mt − 1

)
where mt =∑i xt

i .

Firing-rate term A3 = η
2

∑
i

(〈
xt

i

〉
∞ − p0

)2
is a penalty term for

controlling the average firing rates of all the neurons in the net-
work to be p0. Since st

i can be interpreted as an input current to the
neuron i at each time step (see Methods and Figure 8), its fluctua-
tion should be confined within a physiologically reasonable range.
We therefore impose an additional penalty for excessively large

fluctuation of st
i with fluctuation term A4 = ζ

2

∑
i〈
(
st
i − s0

)2〉∞.

The reference input strength s0 = log
(

p0
pmax − p0

)
is determined so

that neurons fire with a probability of p
(

xt+ 1
i = 1|st

i = s0

)
= p0

when the strength of the inputs to the neurons is s0. If excessively
large fluctuation of the inputs is allowed, a kind of singularity
appears in the dynamics and the approximation with the pairwise
correlations fails (see Methods and Figure 7).

Then, we construct a biologically plausible learning rule as a
stochastic gradient ascent algorithm for the objective function,
Equation (2):

wt
ij ← wt− 1

ij + ε τ
T

(
γ t

1 − γ t
2 − γ t

3 − γ t
4

) 〈
ψ t

i xt
j

〉
τ

− ε ζ
T

(
st
i − s0

)
xt

j , (3)

ht
i ← ht− 1

i − ε τ
T

(
γ t

1 − γ t
2 − γ t

3 − γ t
4

) 〈
ψ t

i

〉
τ

+ ε ζ
T

(
st
i − s0

)
, (4)

where

γ t
1 =

∑
i

1〈
log

p(xt
i |xt− 1)

Zt
i

〉
T

log
p
(
xt

i |xt− 1
)

Zt
i

,

γ t
2 = κ{

1

2
mt (mt − 1

)− (〈mt 〉
T − p0

)
mt},

γ t
3 = η

∑
i

(〈
pmaxσ

(
st
i

)〉
T − p0

)
xt

i ,

γ t
4 =

ζ

2

∑
i

(
st
i − s0

)2
,

Zt
i =

{ 〈pmaxσ
(
st
i

)〉T , if xt
i = 1,

1− 〈pmaxσ
(
st
i

)〉T , if xt
i = 0,

ψ t
i =

⎧⎪⎨⎪⎩
1− σ (st

i

)
, if xt+ 1

i = 1,

− pmaxσ(st
i)(1− σ(st

i))
1− pmaxσ(st

i)
, if xt+ 1

i = 0,

mt =
∑

i

xt
i .

We remove the singularity at
〈
log{p (xt

i |xt− 1
)
/Zt

i }
〉
T = 0 by

replacing it with δ = 1.0× 10−3 if
〈
log
{

p
(
xt

i |xt− 1
)
/Zt

i

}〉
T ≤

δ. The angle brackets with subscript τ and T are calculated
recursively at each time step as, for example,

〈
mt 〉

T =
1

T
mt− 1 +

(
1− 1

T

) 〈
mt− 1〉

T .

Then,
〈
mt
〉
T =

∑∞
u= 0

1
T

(
1− 1

T

)u
mt− u− 1 is interpreted as a

leaky integration of the past amounts mt− u−1, (u ≥ 0) with a
leak constant T. As T →∞ and the process under consideration
is stationary, 〈mt〉T approaches the stationary average of mt .

In the above learning rule, we notice that all terms except γ t
k

on the right-hand sides of Equations (3) and (4) can be com-
puted by the postsynaptic neuron i based on its own activity
and local interactions with the other neurons. Thus, these terms
are biologically plausible. It should be particularly noted that

the temporal integration such as
〈
ψ t

i xt
j

〉
τ

can be realized locally

at each synapse or each neuron, possibly with very large leak
constants τ and T (phosphorylation or gene expression may be
considered). In the limit of τ →∞ and T/τ →∞, the stochas-
tic approximation of the gradient ascent is exact. In addition
to these local processes, it suffices for the biological plausibil-
ity of the overall learning rule to assume the existence of neural
substrates corresponding to the global signals γ t

k (1 ≤ k ≤ 4).
We are able to consider a scenario for such neural substrates
as follows. For γ t

1 , γ t
3 , and γ t

4 , we consider a rapidly diffusing
substrate emitted by each neuron (nitric oxide, neuropeptides,
lipid metabolites, endcannabinoids, and so on), the sum of whose
amount is γ t

1 − γ t
3 − γ t

4 , since γ t
k (k = 1, 3, 4) are sums of locally

computable quantities over the neuronal population. For γ t
2 , we
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need to consider another substrate, since it is a non-linear func-
tion of population activity mt and its temporal integration 〈mt〉T .
As a candidate neural substrate, we can consider interneurons that
are able to monitor the overall activity mt of the network and to
return a non-linear feedback to pyramidal neurons. As shown
in Figure 1, the action of these two types of neural substrates
is to amplify the leaky integration of the past local quantities
ψ t− u

i xt− u
j and ψ t− u

i (u ≥ 1) by their magnitudes γ t
k . Each neu-

ron i realizes this amplification through its intracellular signaling
pathway, receiving the neural substrates corresponding to γ t

k . We
will discuss further detailed scenarios and their plausibility in
the Discussion section. In addition, the derivation of this type of
a stochastic gradient ascent method is mathematically the same
as that for reward-modulated STDP, a neural implementation of
reinforcement learning (Florian, 2007; Frémaux et al., 2013) (see
Discussion).

In the following sections, we will show the results of numer-
ical simulations of the above learning rule, in which we start
from a network with weak random connections taken from a uni-
form distribution wij ∼ [−0.1, 0.1] representing synapses in the
early developmental stage just after synaptic formation is made,
and with hi = log{(pmax − p0)/p0}. With these initial values, the
neurons fire almost independently with probability p0. Then, we

FIGURE 1 | Schematic illustration of the learning rule. For simplicity, we

illustrate only the relation between
〈
ψ t

i xt
j

〉
τ
, γ t

k and wt
ij , omitting the other

components of the learning rule. On the first two lines, spikes of the i-th
and the j-th neurons are depicted. On the third line,

〈
ψ t

i xt
j

〉
τ

decays with

time constant τ , and is modulated by the interactions between the spiking
activity of the i-th and the j-th neurons. When the firing of the presynaptic
j-th neuron precedes the firing of the postsynaptic i-th neuron,

〈
ψ t

i xt
j

〉
τ

increases (red line). If the postsynaptic neuron fails to fire,
〈
ψ t

i xt
j

〉
τ

decreases (blue line). The change of the synaptic weight wij at time t0 is

proportional to the product of the amount of global signal γ t0
k and

〈
ψ

t0
i xt0

j

〉
τ

as depicted on the fifth line.

update wij and hi according to the learning rule, Equations (3)
and (4). We make sure that the results in the following sections
are robustly reproduced, with different series of random numbers
used in the determination of initial model parameters and in the
simulation. We show the learning parameters used for each simu-
lation at the end of the corresponding figure legend. We show the
learning parameters in the objective function Equation (2) with
the scaled parameters cκ , cη, and cζ so that we can see their mag-
nitudes independently of the system size and the average firing
rate (see Methods for further details).

κ = 2

(N − 1)cκp2
0

, η = 1

c2
ηp4

0

, ζ = 1

c2
ζ

. (5)

To check whether the mutual information is actually maximized,
we calculate an approximate measure of the mutual information,

Îgauss = log2 |Ĉ| −
1

2
log2 |D̂|. (6)

Here, Ĉ and D̂ are empirical covariance matrices of xt and xt ⊗
xt− 1, respectively (see Methods). This estimate Îgauss approxi-
mates the mutual information by regarding the firing distribution
ps
(
xt
)

and ps
(
xt, xt− 1

)
as Gaussian distributions. It was shown

in the numerical experiment in the previous study (Tanaka et al.,
2009) that these values provide a good approximation of the exact
values of the mutual information.

2.2. REPRODUCTION OF REPEATED FIRING SEQUENCES AND
NEURONAL AVALANCHES

In this section, we reproduce repeats of precise firing sequences
and neuronal avalanches similar to those observed in experimen-
tal studies (Beggs and Plenz, 2003; Ikegaya et al., 2004), which
have been suggested as a consequence of the maximization of
information retention in previous studies (Tanaka et al., 2009;
Chen et al., 2010).

We apply the learning rule to a spontaneously firing recur-
rent neural network xt consisting of fifty neurons that does not
receive external inputs. Then, we observe two typical behaviors
of the model after learning, depending on the model parameters:
maximal transmission probability pmax and average firing rate p0.

After learning with larger values of pmax and p0, we observe a
variety of repeated firing sequences in apparently asynchronous
and irregular firing activity of the model. According to the the-
ory in the previous study (Tanaka et al., 2009), the relationship
between the repeated precise sequences and the mutual informa-
tion is understood as follows. Following the definition and the
notation of entropy and conditional entropy in information the-
ory (Cover and Thomas, 2012), the mutual information can be
decomposed as

I
[
xt; xt− 1] = H

[
xt]−H

[
xt |xt− 1] . (7)

In the above equation, the first term of the right-hand side rep-
resents the abundance of firing patterns and the second term
represents the predictability of firing activity xt from xt− 1. Thus,
repeats of many long sequences of firing patterns are expected to
emerge after the maximization of the mutual information. Here,
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we have defined a firing pattern as a specific configuration of
firing activity xt ∈ {0, 1}N , and a sequence of firing patterns of
length L as a specific configuration of a series of firing patterns{

xt, xt− 1, · · · xt− L+ 1
} ∈ {0, 1}NL (illustrated in Figure 2A).

In the numerical simulation, by counting the number of firing
patterns and sequences during a particular 50000 steps, we find
that the numbers of repeated sequences of length 3, 5, and 10 after
learning are far larger than those before learning, while the variety
of firing patterns after learning is kept high (Figure 2B). During
the course of learning, we have checked that the estimate of the
mutual information, Equation (6), monotonically increases and
tends to saturate (Figure 2C). In addition, we have checked after
learning that the average firing rate of each neuron is controlled
to be p0, and that most of the pairwise correlations are con-
trolled to be small, as shown in the histograms in Figures 2D,E.
We show typical raster plots of 250 time steps before (Figure 2F)
and after (Figure 2G) learning, along with matrices of the synap-
tic weights before (Figure 2H) and after (Figure 2I) learning.
No sequence of length 3 repeats within Figure 2F, while four
different repeated sequences of length 3 represented by colored
triangles are found within Figure 2G, indicating the abundance
of repeated sequences after learning. In contrast, the abundance
of repeated patterns represented by colored circles are compara-
ble between Figures 2F,G. These results are consistent with the
theoretical consideration based on Equation (7) that a rich vari-
ety of repeated sequences should occur after the maximization of
the mutual information, suggesting that our model has learned
successfully.

In spite of the abundance of repeated firing sequences, the
firing activity after learning is apparently asynchronous and irreg-
ular (Figure 2G) as observed in the real cortical activity (Renart
et al., 2010). Examining the underlying connectivity, we find that
the initial small random connections shown in Figure 2H grow
into the sparsely distributed strong excitatory and inhibitory con-
nections shown in Figure 2I. In order to quantify the asynchrony
and the irregularity, we calculate autocorrelograms Figure 2J
and coefficients of variation (CV) of inter-spike intervals (ISIs)
Figure 2K for each neuron after learning. In the autocorrelo-
grams, we find almost no autocorrelation for the majority (36/50)
of the neurons (the upper graph in Figure 2J), and rapidly
damped periodicity for the other neurons (the lower graph in
Figure 2J). We find, however, that all of the CV values (Figure 2K)
are greater than 1.0 (the value for a Poissonian spike train) indi-
cating that there is no global periodicity of the network and the
overall firing activity is irregular. In parallel with our results, a
preceding study demonstrated that randomly connected neural
networks with sparsely distributed strong synapses display asyn-
chronous and irregular firing activity in which many precise firing
sequences are embedded (Teramae et al., 2012). To compare the
network after learning with networks with random connections
of sparsely distributed strong synapses, we examine the activities
of the network after learning and one hundred networks whose
synaptic weights are shuffled sets of the original network after
learning. Then, the number of repeated sequences in the origi-
nal network is largest among the shuffled networks (Figure 2L)
at the same time as its estimated mutual information is maxi-
mal (Figure 2M). Although we are not able to further characterize

the statistical properties of the connectivity after learning because
of limitations on the system size, the above result suggests
that the network structure after learning is more finely tuned
for efficient information transmission based on precise firing
sequences than random networks with sparsely distributed strong
connections.

After learning with smaller values of pmax and p0, the firing
activity of the model is similar to neuronal avalanche. Following
the previous theoretical and experimental studies of neuronal
avalanche (Beggs and Plenz, 2003; Tanaka et al., 2009), we define
a single burst as a cluster of firing partitioned by empty time
steps without firing and its size as the number of spikes in
that cluster (illustrated in Figure 3A). By plotting burst size s
against the occurrence p(s) of bursts of that size on the log-
log scale, we find that p(s) obeys a power law with a universal
exponent around −3/2 for different parameters pmax = 0.4, 0.2
and different system sizes N = 50, 100, 200 after learning while
p(s) before learning decreases rapidly as s increases (Figure 3B).
During the process of learning, we have checked that the estimate
of the mutual information, Equation (6), monotonically increases
(Figure 3C), suggesting that the mutual information is success-
fully maximized. We show typical raster plots before (Figure 3D)
and after (Figure 3E) learning. Representing different bursts in
different colors, we observe that the initial random firing activity
(Figure 3D) has become apparently bursty activity after learning
(Figure 3E). Examining the underlying connectivity, we find that
the initial small random connections in Figure 3F grow into the
sparsely distributed strong excitatory and inhibitory connections
shown in Figure 3G. In Figure 3G, most neurons feed two or
three strong excitatory inputs to other neurons, probably reflect-

ing the following requirement. E
[∑

i xt
i |
∑

i xt− 1
i = n

]
= n is

necessary for the emergence of neuronal avalanches, when the fir-
ing activity {xt

i }1≤ i≤N is controlled to be almost independent by
the correlation term A2 (Zapperi et al., 1995). Then, a single fir-
ing in the network needs to evoke a single firing on average at the

next time step. Given that pmax = 0.4, and that p
(

xt+ 1
i = 1|xt

)
must be pmax or 0 for the maximization of the predictability term
A1, each neuron needs to feed strong connections to 1/0.4 = 2.5
target neurons on average. Although these results are robustly
observed for a wide range of model parameters, the power law
is slightly distorted for higher maximal firing probabilities (the
green plot for pmax = 0.8 in Figure 3H). When pmax is set to be
near 1.0, the size distribution p(s) seems to have small multi-
ple peaks (the blue plot for pmax = 0.95 in Figure 3H). A typical
raster plot of 200 time steps after learning with this range of
parameters (pmax = 0.95) is shown in Figure 3I. In the figure, as
many as twelve repeated firing sequences of length 3 (for the def-
inition of repeated firing sequences, see Figure 2A) are observed.
These repeated firing sequences occupy a large fraction of the fir-
ing activity in the figure, indicating the emergence of a rich variety
of stereotypical firing sequences.

2.3. REPRODUCTION OF EVOKED FIRING SEQUENCES AND THEIR
SPONTANEOUS REPLAYS

In the previous section, we have demonstrated that the present
learning rule reproduces repeated sequences in spontaneously
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FIGURE 2 | Cell-assembly-like repeated sequences of firing patterns are

reproduced by applying the learning rule to a spontaneously firing

recurrent neural network. (A) A schematic illustration of the definition of

firing patterns and of sequences of firing patterns. Each color represents a
unique firing pattern xt ∈ {0,1}N . A repeated sequence of firing patterns of

(Continued)
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FIGURE 2 | Continued

length 3
{
xt , xt − 1, xt − 2} ∈ {0,1}3N is also illustrated. (B) Comparison of

the numbers of firing patterns and repeated sequences (repeated more
than twice) of length 2, 3, 5, and 10 before and after learning, counted for
a particular 50000 time steps in the simulation. (C) The approximate
measure of the mutual information Îgauss is calculated during the course of
learning. (D) A histogram of mean firing rates of the neurons in the
network after learning. (E) A histogram of pairwise correlations between
all the pairs of neurons in the network after learning. (F,G) Typical raster
plots before (F) and after (G) learning in which repeated sequences are
represented as triangles of different colors, repeated patterns as filled
circles of different colors, and other spikes as black dots, according to the
definition illustrated in (A). (H,I) Connection weight matrices of the network

before (H) and after (I) learning in which rows correspond to connections
to single postsynaptic neurons while columns correspond to connections
from single presynaptic neurons. (J) Typical two examples from the
autocorrelograms calculated from the activity of each neuron in the
network after learning. Thirty-six of the neurons show no autocorrelation
as seen in the upper figure, while fourteen show damped periodicity as
seen in the lower figure. (K) A histogram of CV values calculated from the
activity of each neuron in the network after learning. (L,M) Comparison of
Îgauss (L) and the numbers of sequences of length 3 (counted for a
particular 50000 time steps) (M) of the network after learning (arrows)
with those of one hundred shuffled networks (histograms). The following
parameters have been used in this simulation: ε = 0.006, cη = 1.5, cκ =
1.0, cζ = 3.0, p0 = 0.05, pmax = 0.95, N = 50, τ = 15, T = 50000.

firing neural networks. In experimental studies, similarities
between firing sequences in spontaneous activity and firing
sequences in sensory-evoked activity have been reported (Skaggs
and McNaughton, 1996; Lee and Wilson, 2002; Yao et al., 2007).
To investigate the relationship between firing sequences in these
two types of activity, we further numerically examine the Infomax
learning of a neural network driven by external inputs. We pre-
pare a recurrent neural network (RN) consisting of fifty neurons
(the 1st–50th neurons), all of which receive feedforward inputs
from three external neurons (the 51st–53rd neurons (EXT)).
Sensory inputs are modeled by the firing activity of these three
external neurons. As represented by the squares in the diagram
of Figure 4A, the external neurons fire in a fixed sequence that
starts at a random timing with inter-episode intervals uniformly
taken from fifty to one hundred time steps. Within the fixed
sequences, the 51st neuron fires at the first time step of the
sequence, the 53rd neuron at the third time step, and the 52nd
neuron at the fifth time step, respectively. Given the fixed tim-
ing within the sequences, the external neurons fire stochastically
and independently with a probability of 1/2, representing the
variability of the environment. As a consequence, the recur-
rent network receives 23 − 1 = 7 kinds of slightly different input
sequences with equal probabilities. Denoting the neurons in the
recurrent network as xt

RN ∈ {0, 1}50 and the external input neu-
rons as xt

EXT ∈ {0, 1}3, we maximize the mutual information

I
[

xt
RN; xt− 1

RN , xt− 1
EXT

]
. Although I

[
xt

RN, xt
EXT; xt− 1

RN , xt− 1
EXT

]
should

be maximized according to the definition of the Infomax learning
on recurrent networks, the present learning rule cannot directly
maximize this latter mutual information. However, the above
two types of mutual information are almost equal if depen-
dence between xt

EXT and xt− 1
EXT is small. Hence, we have ignored

the small dependence of xt
EXT on xt− u

EXT (1 ≤ u ≤ 4), maximiz-

ing the former information I
[

xt
RN; xt− 1

RN , xt− 1
EXT

]
. Then, for the

updates of both the recurrent connections and the feedforward
connections from the external neurons in Equations (3) and (4),
the index i runs through the neuron indices of RN, while the
index j runs through those of both RN and EXT. Initially, we
set three particular connections from the external neurons to
be a large value (w1,51,w2,52,w3,53 = 100) for the modeling of
an established pathway of sensory signals, and the other con-
nections to be small values (randomly taken from [−0.1, 0.1]).
Then, we update both the recurrent and feedforward connections
according to the present learning rule.

After learning, we observe that the network apparently displays
several stereotypical firing sequences in response to the input
sequences. Since these firing sequences are thought to be orga-
nized by sparsely distributed strong connections similarly to the
cases in the previous sections, we analyze the connectivity matrix
in detail. We pick up sequence-related neurons activated by
poly-synaptic transmission due to strong excitatory connections
(wij > 8.0) until the sixth transmission from the firing of the 51st
neuron, and construct a weight matrix of the connectivity among
the picked-up neurons (Figure 4B). In this weight matrix, we find
sequential activation and inhibition due to the strong connec-
tions (Figure 4C) that are thought to underlie the input-evoked
stereotypical firing sequences (colored triangles in Figure 4D). To
be more precise, we find that three chains of strong excitatory
transmission originate from either one of the three external neu-
rons and have crosstalk with each other via strong excitatory and
inhibitory transmission. Each of the seven combinations of input
firing consequently activates a distinct part of the transmission
cascade in Figure 4C, and results in a similar but distinct firing
sequence indicated by different colors of triangles in Figure 4D.
For example, when all the three external neurons fire, the
evoked firing sequence is [51] → [1] → [53, 44] → [3, 36] →
[52, 23] → [2, 50] → [1, 43] (dark brown triangles) in the order
of time passage while some neurons fail to fire occasionally.
This is similar to but different from the sequence activated by
the combination of the 51st and 52nd neurons, [51] → [1] →
[44] → [30, 36] → [52, 38] → [2, 45] → [14, 40] (light yellow
triangles). Furthermore, such sequences are repeatedly activated
in spontaneous firing between the input episodes as indicated
by the arrows of different colors in Figure 4D. Thus, the present
learning rule has reproduced replays of sensory-evoked firing
sequences.

2.4. REPRODUCTION OF SIMPLE-CELL-LIKE RECEPTIVE FIELD
PROPERTIES

It is well known that Infomax learning is mathematically equiv-
alent to independent component analysis (ICA) in the limit of
small noise, and results in the extraction of filters similar to ori-
entation selectivity of simple cells in V1 when it is applied to
the analysis of natural images (Bell and Sejnowski, 1995, 1997).
In this section, we examine numerically whether the present
learning rule also achieves such feature extraction. As described
in Figure 5A, a 12 × 12 pixel patch yt taken in the independently
and identically distributed (i.i.d.) manner from low-pass filtered,
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FIGURE 3 | Neuronal avalanches are reproduced by applying the

learning rule to spontaneously firing recurrent neural networks. (A) A
schematic illustration of the definition of bursts and their sizes. A burst of
size 7 that lasts for 3 time steps is illustrated in the figure. (B) Log-log
plots of burst size s against the occurrence of bursts of that size p(s)
before (brown) and after learning (red for pmax = 0.4 and N = 50, green for
pmax = 0.2 and N = 50, blue for pmax = 0.2 and N = 100, and magenta for
pmax = 0.2 and N = 200). The size distributions after learning fall on the
straight line of slope around −3/2 (the black line). (C) The approximate
measure of the mutual information Îgauss is calculated during the course of
learning. (D,E) Typical raster plots before (D) and after (E) learning in
which spikes belonging to different bursts are displayed in different colors.
(F,G) Connection weight matrices of the network before (F) and after (G)

learning in which rows correspond to connections to single postsynaptic

neurons while columns correspond to connections from single presynaptic
neurons. (H) Log-log plots of burst size s against the occurrence of bursts
of that size p(s) for higher pmax( = 0.8, 0.95) along with the plot for
pmax = 0.4. (I) A typical raster plot after learning with pmax = 0.95. Colored
triangles and circles indicates repeated firing sequences of length 3 and
repeated firing patterns, respectively, as in Figure 2G. Repetition of as
many as twelve firing sequences can be seen in the figure. The following
sets of learning parameters have been used in this simulation:
ε = 0.02, cη = 10.0, cκ = 30.0, cζ = 3.0, p0 = 0.01, pmax =
0.2, 0.4, 0.8, N = 50, τ = 10, T = 50000; ε = 0.01, cη = 20.0, cκ =
60.0, cζ = 4.0, p0 = 0.005, pmax = 0.2, N = 100, τ = 15, T = 50000;
ε = 0.006, cη = 40.0, cκ = 100.0, cζ = 6.0, p0 = 0.0025, pmax =
0.2, N = 200, τ = 20, T = 50000; ε = 0.005, cη = 3.0, cκ = 1.0, cζ =
10.0, p0 = 0.01, pmax = 0.95, N = 50, τ = 20, T = 50000.
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FIGURE 4 | Sensory-evoked firing sequences and their spontaneous

replays are reproduced by applying the learning rule to recurrent neural

networks with external inputs. (A) A schematic illustration of the learning
of external input sequences. Filled symbols represent the firing of a neuron
(vertical axis) at a certain time step (horizontal axis). Once in 50–100 time
steps, at the beginning of an input episode, external input neurons fire
stochastically in a fixed sequence (dark green squares when fired and empty
squares when not fired). In the recurrent network, neurons respond to these
inputs (brown triangles). (B) A matrix of connection weights between
sequence-related neurons. We picked up the sequence-related neurons until
the sixth poly-synaptic transmission via strong excitation (wij > 8.0) from the

firing of the 51st external input neurons. (C) A diagram of sequential firing
transmission found in the weight matrix in (B). By putting t = 0 at the first
time step of an external input sequence, possible strong excitation and
inhibition are drawn until t = 6. (D) Typical raster plots after learning. Colored
triangles are the firing of those neurons picked up in (B). Each combination of
spikes of external input neurons activates a similar but distinct firing
sequence indicated by triangles of a different color. Spontaneous replays of
partial sequences of the evoked activity are also repeatedly observed
(indicated by arrows). The following parameters have been used in this
simulation: ε = 0.01, cη = 2.0, cκ = 3.0, cζ = 10.0, p0 = 0.02, pmax =
0.98, N = 50, τ = 15, T = 50000.

gray-scaled and whitened natural images (Olshausen and Field,
1997) is used as an input at each time step. Similar preprocessing
of input images is thought to be done in the retina and the lat-
eral geniculate nucleus (LGN) before the processing in V1 (Atick,
1992). Following Tanaka et al. (2009), as a model of LGN, we pre-
pare a pair of ON and OFF neurons, xt

i,ON and xt
i,OFF, for each

pixel yt
i (1 ≤ i ≤ 144), which fire with the following probabili-

ties proportional to positive and negative intensities of the pixel,
respectively:

⎧⎨⎩ p
(

xt
i,ON = 1|yt

)
= min

{
ξyt

i , 1
}

p
(

xt
i,OFF = 1|yt

)
= 0

for yt
i ≥ 0,

⎧⎨⎩ p
(

xt
i,ON = 1|yt

)
= 0

p
(

xt
i,OFF = 1|yt

)
= min

{−ξyt
i , 1
} for yt

i ≤ 0.

The constant ξ is set to be 1.65 so that the mean firing rate pinput

of ON- and OFF-neurons is around 0.15. Each of those input

neurons feeds synaptic inputs to all the neurons xt
i,RN (1 ≤ i ≤

100) in the recurrent network (RN).
Then, we apply the present learning rule to this

model for the maximization of I
[
xt; xt− 1

]
, denoting

(xt)′ =
{(

xt
LGN

)′
,
(
xt

RN

)′}
and

(
xt

LGN

)′ = {(xt
ON

)′
,
(
xt

OFF

)′}
(the prime symbols represent transposition of vectors). We
further obtain I

[
xt; xt− 1

] = I
[
xt

RN; xt− 1
]

because of the inde-
pendence between xt

LGN and xt
RN, as well as the independence

between xt
LGN and xt− 1

LGN (recall that xt
LGN is generated in an

i.i.d. manner from the natural images at each time step). Thus,
we maximize I

[
xt

RN; xt− 1
]

instead of I
[
xt; xt− 1

]
, calculating

γ t
k with respect to only xt

RN in Equations (3) and (4). For the
updates of both the recurrent connections and the feedforward
connections from LGN in Equations (3) and (4), the index i runs
through the neuron indices of RN, while the index j runs through
those of both RN and LGN.

As shown in Figure 5B, Îgauss increases monotonically and
tends to saturate during the course of learning, suggesting that
the mutual information is successfully maximized. After learning,
we calculate reverse correlations by taking spike-triggered average
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FIGURE 5 | Feature extraction from natural images by the present

learning rule. (A) Randomly taken 12× 12-pixel patches from gray-scaled,
low-pass filtered and whitened natural images are used as inputs to a
recurrent neural network through ON and OFF cells. (B) Îgauss is calculated
during the course of learning. (C) STAs of input images are displayed as
10× 10 small image patches in a gray-scale (1: black, 255: white),

representing the receptive field properties of the neurons in the recurrent
network after learning. Each small patch corresponds to an STA due to the
firing of a neuron in the recurrent network. (D) The connection weight matrix
after learning is displayed on a color scale. The following parameters have
been used in this simulation: ε = 0.02, cη = 250.0, cκ = 150.0, cζ =
1000.0, p0 = 0.0015, pmax = 0.95, N = 100, τ = 5, T = 50000.

(STA) of stimulus images (see Methods and Ringach and Shapley,
2004 for details), in order to examine the response properties of
the RN neurons. As shown in STAs of Figure 5C, simple-cell-
like orientation selectivity is reproduced in the simulation with a
low firing rate (p0 = 0.0015) of the neurons in the recurrent net-
work and a relatively high firing rate (pinput = 0.15) of the input
neurons. The neurons acquire selectivity to edge-shaped (Gabor-
function-like) contrasts of various positions, sizes, phases, fre-
quencies, and orientations as observed in macaque V1 (Ringach,
2002). As shown in the weight matrix in Figure 5D, the synap-
tic weights of the recurrent connections after learning are almost
zero, probably reflecting the i.i.d. presentation of the input
images. In conclusion, our biologically plausible learning rule
reproduces orientation selectivity of simple cells in V1 in a sim-
ilar way to the previous Infomax algorithms on feedforward and
recurrent neural networks (Bell and Sejnowski, 1997; Tanaka
et al., 2009).

3. DISCUSSION
In this paper, we have constructed a biologically plausible rule
for the recurrent Infomax learning proposed in Tanaka et al.
(2009), and reproduced the following several firing profiles of
cortical neurons: (1) cell-assembly-like repeats of precise firing

sequences, (2) neuronal avalanches, (3) replays of sensory-
evoked firing sequences, and (4) orientation selectivity of simple
cells in V1.

3.1. BIOLOGICALLY PLAUSIBLE LEARNING RULE AND ITS SIMILARITY
TO STDP

In the preceding study (Tanaka et al., 2009), the learning algo-
rithm for the recurrent Infomax was biologically implausible,
which might be due to a common difficulty in considering bio-
logical realization of learning algorithms in recurrent neural
networks. Actually, until recently, most learning rules proposed
as biologically plausible have been limited mainly to feedforward
neural networks (Savin et al., 2010; Zylberberg et al., 2011; Tanaka
et al., 2012). In the present study, we have constructed a learn-
ing rule for the recurrent Infomax, according to which weight
changes are computed by each postsynaptic neuron through
its local interactions with other neurons and modulation by
global signals γ t

k (1 ≤ k ≤ 4). Although the present learning rule
requires the global signals γ t

k , we presume neural substrates for
these global signals as follows. We first note that γ t

1 − γ t
3 − γ t

4
is a simple population sum of non-linearly transformed activ-
ities of single neurons. On the other hand, γ t

2 is a non-linear
function of the population activity mt =∑i xt

i and its temporal
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integration 〈mt〉T . Thus, we should consider two different neural
substrates.

For the calculation of γ t
1 − γ t

3 − γ t
4 , before the summation

over the neuronal population is taken, a complicated non-linear
function of neural activity xt

i and st
i must be computed by each

of the neurons. It would be reasonable to assume that such
complicated computations are realized through intracellular pro-
cesses. Then, as a neural substrate for the simple summation
of these intracellularly computed quantities over the neuronal
population, we are able to assume a rapidly diffusing substance
(for example, nitric oxide, neuropeptides, lipid metabolites, end-
cannabinoids, and so on) emitted by each neuron with an amount
proportional to the intracellularly computed quantity. As a con-
sequence of its rapid diffusion, its concentration in the neuronal
circuit represents the population sum, that is, γ t

1 − γ t
3 − γ t

4 . The

multiplication of
〈
ψ t

i xt
j

〉
τ

by γ t
1 − γ t

3 − γ t
4 may then be realized

through the modulation of intracellular signaling in the target
neuron i by the rapidly diffusing substance. On the other hand,
for the calculation of γ t

2 , the population activity mt and its tem-
poral integration 〈mt〉T need to be non-linearly transformed.
We suggest interneurons, for example, as a neural substrate for
this transformation. Some class of interneurons receives massive
inputs from surrounding excitatory neurons and returns feedback
to them (Markram et al., 2004). Thus, these interneurons may
possibly compute the non-linear function of mt and 〈mt〉T in γ t

2 ,

and then amplify
〈
ψ t

i xt
j

〉
τ

via intracellular signaling in the target

neuron i by acting on the metabotropic receptors.
Hence, as we have discussed, all the processes included in

Equations (3) and (4) of the present learning rule are biologically
plausible in principle. It is worth noting that the above computa-
tional discussion may provides a novel perspective on the roles
played by many kinds of neurotransmitters and neuromodula-
tors and many types of inhibitory interneurons. Since the present
learning rule has successfully reproduced several characteristic
firing profiles of cortical neurons, we suggest the importance of
experimental investigation in the candidate neural substrates for
the present learning rule.

We further note similarities between the local quantity ψ t
i xt

j in
the present learning rule and synaptic changes according to clas-
sical STDP (Bi and Poo, 1998). For γ t

k > 0, ψ t− u
i xt− u

j (u ≥ 1)
in the present learning rule represents the potentiation of synap-
tic weights at time t when the firing of the presynaptic neuron
at time t − u precedes the firing of the postsynaptic neuron at
time t − u+ 1 (the red lines in Figure 1). On the other hand,
when the postsynaptic neuron fails to fire after the firing of
the presynaptic neuron, the synapse is depressed (the blue lines
in Figure 1). When synaptic changes according to 〈ψ t

i xt
j 〉τ with

γ t
k > 0 are measured in the same setting as classical STDP (Bi and

Poo, 1998), the synaptic changes would fall on a function of rel-
ative spike timing similar to that of classical STDP. Therefore, we
suggest STDP as a candidate neural substrate for the computa-
tion of ψ t

i xt
j . In addition, the present learning rule has the same

mathematical structure as the reward-modulated STDP recently
developed for the neural implementation of policy-gradient algo-
rithms in reinforcement learning (Florian, 2007; Frémaux et al.,
2013). From this viewpoint, ψ t

i xt
j and γ t

k in the present learning

rule corresponds to STDP and reward/temporal-difference (TD)
error signals, respectively. The reward-modulated STDP was con-
structed using continuous-time neuron models, and we reason-
ably expect that the present learning rule can be extended to a
learning rule for continuous time models by a similar derivation.
In the present study, however, we have taken advantage of the
mathematical clarity and computational tractability of discrete-
time models. We additionally note that, even if we derive an
extension to a continuous time model, there will remain arbitrari-
ness in the determination of �t of the corresponding objective
function I[xt; xt−�t]. In other words, a kind of coarse-graining
that determines the time scale of encoding�t will be essential.

As discussed above, the present learning rule is biologically
plausible in principle, but it is necessary to note the following
points to consider further correspondences between the present
model and real cortical circuits. Firstly, in our model, single neu-
rons can make both excitatory and inhibitory synapses, violating
Dale’s law. In order to settle this issue, we may consider the
highly non-random connectivity among excitatory and inhibitory
neurons in the cerebral cortex. The cerebral cortex has colum-
nar structures, in which neurons with similar responsiveness are
aligned in vertical strips. Thus, it would be reasonable to expect
that there is a pair of excitatory and inhibitory neurons with
the same responsiveness. For example, we assume that there is a
local strong constraint of the internal variable st

i to be the same
value between the pair. Then, this pair plays the same role as
the idealized single neuron in our model. Secondly, our discus-
sion is limited to learning in local microcircuits, not to learning
in wider brain regions such as the whole cerebral cortex, as we
have assumed locally diffusing or cellular substrates for the cal-
culation of the global signals γ t

k . This contrasts with dopamine
as a global signal for the modulation of STDP in reinforcement
learning (Florian, 2007; Frémaux et al., 2013). In the latter case,
we can assume that dopamine is released at the same time in
very wide brain regions. In the future extension of our model,
on the analogy of the case of dopamine, we may consider similar
monoaminergic mechanisms for the integration of local micro-
circuits. Thirdly, the present learning rule is not in the form of
the association of firing pairs in the case of negative ψ t

i xt
j , which

is different from the concept of classical STDP. This discrepancy
is also common to the reward-modulated STDP (Florian, 2007),
but a heuristic approximation has been proposed for the expla-
nation of the associative LTD part of classical STDP in Florian
(2007). In contrast, we have not incorporated such heuristics
into the present rule so as to clearly reproduce the firing pro-
files of cortical neurons. Considering that the present learning
rule has successfully reproduced the firing profiles observed in
real cortical circuits, and that classical STDP was measured in
rather artificial experimental conditions, we suggest the impor-
tance of experimental investigation for the precise form of the
plasticity in physiological conditions. In this context, several dif-
ferent forms of STDP have recently been reported (Caporale and
Dan, 2008). Actually, non-associative synaptic changes similar
to negative ψ t

i xt
j in the present learning rule have recently been

reported in the neural system of the electric fish (Han et al.,
2000). It should further be noted that STDP is only one aspect of
more complicated intracellular processes including intracellular
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calcium dynamics, and some researchers have explored models of
these processes behind STDP (Bienenstock et al., 1982; Shouval
et al., 2002; Toyoizumi et al., 2005). We intend to consider the
consistency between the plasticity of real cortical neurons and
analytically derived learning rules in future studies.

3.2. REPRODUCTION OF REPEATED FIRING SEQUENCES AND
NEURONAL AVALANCHES

There have been many computational studies on sequential fir-
ing transmission, such as precise firing sequences and neuronal
avalanches, since the age of the theory of cell assembly and
synfire-chain (Hebb, 1949; Abeles, 1991). Several studies have
demonstrated that certain specialized network structures allow
reliable sequential firing transmission (Diesmann et al., 1999;
Teramae and Fukai, 2007; Teramae et al., 2012). From the view-
point of learning, an author has numerically demonstrated that
stereotypical sequences of firing are generated by STDP in recur-
rent neural networks and represent memory of input stimulation
(Izhikevich, 2006). Several issues, however, have remained to be
settled, concerning the instability of the firing sequences under
the reorganization according to their learning rule and the lack of
theoretical interpretability of STDP. The instability and the lack of
interpretability of STDP in this context has been recognized, and a
great effort has been made on the study of neural mechanisms for
the stabilization of spontaneous activity self-organized by STDP
(Fiete et al., 2010; Gilson and Fukai, 2011). Our approach solves
this problem by realizing stable self-organization of spontaneous
activity through the modulation of STDP by the global signals
in the present learning rule, if we admit that STDP is the neural
substrate for ψ t

i xt
j in Equation (3).

In the self-organization of spontaneous activity, the present
learning rule has reproduced neuronal avalanches for small p0 and
pmax values, and repeats of precise firing sequences for larger pmax

values. A computational study has recently reported that recur-
rent neural networks with sparsely distributed strong connections
display apparently asynchronous and irregular firing activity con-
sisting of precise sequential firing transmission (Teramae et al.,
2012). Such a network structure is supported by recent exper-
imental results that magnitudes of synaptic potentials in the
cerebral cortex have a skewed distribution, and only a small frac-
tion of the synapses evokes very large excitatory postsynaptic
potentials (Feldmeyer et al., 2002; Song et al., 2005). There is more
supporting evidence that the firing activity of cortical neurons
in behaving animals is apparently asynchronous and irregular
(Renart et al., 2010). The present results are consistent with all
of these previous computational and experimental results, since
the firing activity with many repeated sequences in the present
study is apparently asynchronous and irregular, and the under-
lying network structure consists of sparsely distributed strong
connections. Thus, the present learning rule provides a candidate
learning mechanism for the previous experimental results.

3.3. REPRODUCTION OF REPLAYS OF SENSORY-EVOKED FIRING
SEQUENCES

We have further applied the learning rule not only to sponta-
neously firing neural networks but also to neural networks with
external inputs. We have observed that stochastically varying

external inputs reliably evoked stereotypical firing sequences in
the recurrent network after learning. In the evoked activity,
stochastic variation of external inputs was encoded into the acti-
vation of distinct parts of a common network structure. Such
encoding of similar but distinct external inputs into a common
network structure is thought to be more efficient than encoding
them into different network structures. Such an efficient encod-
ing would be preferable for limited resources in animal brains and
under environmental uncertainty in the real world. Furthermore,
we have found that the evoked sequences were replayed spon-
taneously. These results suggest that the present learning rule is
a candidate learning mechanism for the emergence of sensory-
evoked firing sequences and its replays in the sleeping state or
in the quietly awake state (Skaggs and McNaughton, 1996; Lee
and Wilson, 2002; Yao et al., 2007). Since sleep is considered
to play a role in the consolidation of memory (Stickgold and
Walker, 2005), the present learning rule might provide a clue to
the underlying mechanisms of memory consolidation in future
studies.

3.4. REPRODUCTION OF ORIENTATION SELECTIVITY IN V1
For feedforward neural networks, several biologically plausible
learning rules have been proposed to explain the emergence of
orientation selectivity in V1 (Zylberberg et al., 2011; Tanaka et al.,
2012). These learning rules are, however, not applicable to the
dynamics of recurrent neural networks. Several computational
studies have proposed STDP as a learning mechanism for inde-
pendent component analysis (ICA) in the brain, and accounted
for the emergence of orientation selectivity (Savin et al., 2010;
Gilson et al., 2012). However, the demonstration of the perfor-
mance of their learning rules has been limited to the extraction
of relatively small numbers (up to 10) of features. In the con-
text of unsupervised learning by means of STDP, Nessler et al.
(2013) theoretically showed that STDP provides a mechanism for
Bayesian computation and demonstrated unsupervised cluster-
ing with their learning rule, but their theory did not explain the
emergence of orientation selectivity.

The present Infomax learning rule has an STDP-like compo-
nent as discussed in the previous section, and Infomax learning
is considered to be almost equivalent to ICA in many situa-
tions. Although the previous studies of STDP-based learning rules
(Savin et al., 2010; Gilson et al., 2012) have suggested that STDP
provides a learning mechanism for ICA, the present learning
rule has clearly outperformed their STDP-based learning rules by
reproducing one hundred simple-cell-like receptive fields of vari-
ous orientations, phases, positions, and sizes, compared with the
up-to-ten receptive fields reproduced in the previous studies. The
difference of the present learning rule from the other STDP-based
learning rules for ICA or clustering (Savin et al., 2010; Gilson
et al., 2012; Nessler et al., 2013) is the correlation term A2 in
Equation (2), which has been introduced for the active decorrela-
tion of firing activity. Thus, it is expected that A2 has played a role
in further penalizing residual dependence between neuronal fir-
ing, suggesting that a mechanism for active decorrelation such as
A2 in addition to STDP is effective for ICA. It is noticeable that A2

also represents population sparseness, since it is a long-time aver-
age of the square of population activity. This provides an intuitive
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explanation of the reason for which learning according to both
the Infomax and sparse coding principles leads to the extraction
of similar features from natural images (Bell and Sejnowski, 1997;
Olshausen and Field, 1997).

4. METHODS
4.1. CONSTRUCTION OF THE APPROXIMATE OBJECTIVE FUNCTION
In this section, we construct the objective function, Equation
(2), that approximates Equation (1), and then derive the learn-
ing rule, Equations (3) and (4). First, the mutual information is
decomposed as

I
[
xt; xt− 1] = H

[
xt]−H

[
xt |xt− 1]

= H
[
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i

H
[
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i
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[
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i

]−∑
i
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i

I
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i |xt]
= Ã1 (8)

The second equality is due to the conditional independence of
the dynamics. The third equality holds and the mutual infor-
mation is decomposed if and only if

{
xt

i

}
1≤ i≤N are inde-

pendent. Then, we approximate the mutual information with
Ã1 of Equation (8) by subtracting a penalty term so as to
bound the firing distribution near the independent distribu-
tion. Given that p0 � 1 and positive second-order correlations〈
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, the sum of second-

order correlations as a penalty term. We further subtract the

firing-rate term A3 = η
2
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i
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i 〉∞ − p0

)2
for the constraint of

average firing rates to be p0, and the fluctuation term A4 =
ζ
2

∑
i

〈(
st
i − s0

)2〉
∞ for the confinement of fluctuation of inter-

nal variables st
i within a physiologically reasonable range. Hence,

we obtain an objective function Ã1 − A2 − A3 − A4. In prelim-
inary simulations, however, we have found that the derivatives
of this objective function are very small over a wide range of
parameters where Ã1 is relatively small, and that learning does
not actually proceed (data not shown). We therefore take the
logarithm of I

[
xt

i |xt− 1
]

in Ã1 in order to accelerate learning.

It provides a lower bound of Ã1, since log 1
N

∑
i I
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1
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i log I
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(Jensen inequality). Maximization of this
lower bound implies maximization of Ã1 if I

[
xt

i ; xt− 1
]

are equal
for 1 ≤ i ≤ N, which is almost the case in the present simulation.
In this way, we obtain and restate the objective function (Equation
(2)):
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It might also be naturally considered to use A′1 in the following
equation for the acceleration of learning, taking the logarithm
outside the sum of neuron-wise information terms, rather than
using the lower bound A1.

A′ = N log
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In this case, we can also derive a learning rule which is biologically
plausible in the same sense as Equations (3) and (4), by replacing
γ t

1 with

γ
′,t
1 =

1∑
i
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In the two learning processes according to either of A1 or
A′1, the values of the sum of neuron-wise information terms∑

i I
[
xt

i ; xt− 1
]

are almost equal during the course of learning
(Figure 6A). In simulations with A′1, the network actually learns
to reproduce almost the same results as in the main text of
this paper. For example, the same power law as in Figure 3B
is reproduced after learning according to the objective func-
tion A′ (Figure 6B). The learning rule derived from A′, how-
ever, requires three different neural substrates for the global
signals. Inspecting γ ′,t1 , we notice that it is necessary to divide
a global term

∑
i log p

(
xt

i ; xt− 1
)
/Zt

i by another global term∑
i

〈
log p

(
xt

i |xt− 1
)
/Zt

i

〉
T . Hence, we cannot decompose γ ′,t1 into

neuron-wise terms, and must consider two different neural sub-
strates for this term. We considered that the assumption of more
global signals reduces biological plausibility. Thus, we do not
adopt A′1 in the present study.

In a preliminary simulation, we observed that the correla-
tion term A2 and the firing-rate term A3 successfully decorre-
late neuronal activity and control mean firing rates to be p0

(see Figures 2D,E). Without the fluctuation term A4, we found
that the learning proceeds successfully in the early stages (the
raster plot in Figure 7A2), but overly strong positive and nega-
tive synaptic weights form nearly periodic firing patterns at later
stages (the raster plots in Figures 7B2,C2). In this nearly periodic
pattern of firing, the first term of Equation (8), the entropy term,
would be small and thus the mutual information would not be
maximized. The origin of this failure is attributed to the fact that
the negative and higher-order correlations are no longer negli-
gible in this nearly periodic firing pattern caused by the strong
positive and negative connections. In fact, the many negative pair-
wise correlations near −p2

0 balance the large positive pairwise

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 143 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hayakawa et al. Biologically plausible recurrent Infomax learning

FIGURE 6 | (A) Time evolution of the sum of the neuron-wise information
terms

∑
i I[xt

i ; xt −1] during the course of learning according to the
objective function with the lower bound A1, Equation (9) (the red curve),
and the modified objective function obtained by replacing A1 with A′1,
Equation (10) (the blue curve). (B) The results in Figure 3B are reproduced
after learning with the modified objective function and the same learning

parameters as in Figure 3B. Log-log plots of size of bursts s against the
occurrence of bursts of that size p(s) before (brown) and after learning (red
for pmax = 0.4 and N = 50, green for pmax = 0.2 and N = 50, blue for
pmax = 0.2 and N = 100, and magenta for pmax = 0.2 and N = 200). The
size distributions after learning fall on the straight line of slope around
−3/2 (the black line).

correlations in A2 as shown in the histograms of correlations in
Figures 7B1,C1, thus violating the assumption on which we have
constructed A2. In contrast, we have found that the objective
function with the fluctuation term A4 stably decorrelates firing
activity (histograms of correlations in Figures 7D1–F1 and raster
plots in Figures 7D2–F2).

In addition, we represent the coefficients of the penalty terms
in Equation (9) with the scaled parameters. Assuming that pos-
itive second-order correlations and deviations of average firing
rates from p0 are O(p2

0), we obtain A2 ∝ p4
0 and A3 ∝ p2

0. From
the numbers of terms in the summations with respect to i, j in
Equation (9), we obtain that A1 ∝ N, A2 ∝ N, A3 ∝ N2, and
A4 ∝ N. Thus, we have determined the scale as:

κ = 2

(N − 1)cκp2
0

, η = 1

c2
ηp4

0

, ζ = 1

c2
ζ

. (12)

4.2. DERIVATION OF THE BIOLOGICALLY PLAUSIBLE LEARNING RULE
Before deriving the learning rule, Equations (3) and (4), we
first consider the maximization of a general objective function
〈γ t〉∞ with respect to model parameters wij and hi. Here, γ t is
an arbitrary function of firing patterns xt and xt− 1, and model
parameters, wij and hi. More precisely, our aim is to calculate gra-
dients of the following objective function for the gradient ascent
method: 〈

γ t 〉
∞ =

∑
{xt− 1,xt}

ps
(
xt− 1) p

(
xt |xt− 1) γ t .

In the above equation, the summation has been taken over all pos-
sible firing patterns for xt− 1 and xt in {0, 1}2N . When we try to
take gradients of the above quantity, we find that differentiation
of the stationary distribution ps
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xt− 1

)
is apparently intractable

while differentiation of the other components is easily computed.
We notice, however, that we do not need to differentiate the
stationary distribution ps(xt) explicitly, assuming that the firing
distribution p(xt) converges to a unique stationary distribution as

time passes, and that the stationary distribution is a smooth func-
tion of the model parameters, wij and hi. On these assumptions,
small changes of ps
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xt− τ ) for τ � 1 in the objective function

eventually vanish at t and t − 1, and thus the terms including
the derivatives of ps
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xt− τ ) are negligible (see also Baxter and

Bartlett, 1999). Then, we can compute the gradients as follows:
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We obtain the following derivative with respect to hi in a
similar way:
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FIGURE 7 | (A1–C2) A simulation of learning in a spontaneously firing
network without the fluctuation term A4. Histograms of pairwise
correlations 〈xi xj 〉T /{p0(1− p0)} (i �= j) (A1–C1) and raster plots
(A2–C2) at different time steps during learning (the 5× 108, 1× 109,
and 2× 109-th steps, respectively) are shown. The learning coefficient
cζ is set to be 10000.0 so that the fluctuation term A4 does not
take effect. (D1–F2) A simulation of learning in a spontaneously
firing network under the effects of the fluctuation term A4.
Histograms of pairwise correlations 〈xi xj 〉T /{p0(1− p0)} (i �= j) (D1–F1)

and raster plots (D2–F2) at different time steps during learning (the
5× 108, 1× 109, and 2× 109-th steps, respectively) are shown. The
learning coefficient cζ is set to be 3.0, the same value as that
used in the simulation in Figure 2. In (A1–C1) and (D1–F1), the
arrows indicate the value of correlation between the independent
firing of xt

i and xt
j . For the simulation in this figure, the same

learning coefficients as those used in Figure 2 are used except cζ :
ε = 0.006, cη = 1.5, cκ = 1.0, cζ = 3.0, or 10000.0, p0 =
0.05, pmax = 0.95, N = 50, τ = 15, T = 50000.
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Calculating the gradients of the objective function, Equation
(2), by repeatedly applying the above formula, Equations (13)
and (14), we obtain a gradient ascent algorithm wij → wij +
ε ∂
∂wij

A, hi → hi + ε ∂
∂hi

A, where
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The last terms in Equations (15) and (16) are due to the explicit
dependence of γ̃ t

4 on wij and hi, and correspond to the sec-
ond terms in Equations (13) and (14). Since γ̃ t

2 and γ̃ t
3 do not

depend explicitly on wij and hi, the corresponding terms are zero.
Although γ̃ t

1 depends on wij and hi explicitly, the corresponding
terms turn out to vanish as follows:〈
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Here, xt
\i represents a vector consisting of the components of xt

except the i-th component. At this stage, the gradient ascent algo-
rithm, Equations (15) and (16), is not temporarily local while it

is composed of synaptically local quantities modulated by bio-
logically plausible global signals. There is, however, a natural
approximation by a temporarily local learning rule that exploits
the following relation. Notations for exponents and time indices
can be clearly discriminated and should not be confounded in
the below. For an arbitrary real-valued process qt and τ > 1, we
define 〈qt〉τ as in the Results section:

〈qt〉τ = 1

τ
qt− 1 +

(
1− 1

τ

)
〈qt− 1〉τ , and

〈qt〉τ = 0 (t ≤ 0). (17)

Then
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τ

)u

qt− u− 1.

Here, we put qt = 0 for t < 0. If the process under considera-
tion is stationary, 〈qt〉τ approaches the long-time average of qt as
τ →∞ and t/τ →∞. Similarly, assuming that γ t

k has little cor-

relation with ψ t− τ
i for sufficiently large τ � 1, and that T � τ ,

we have
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τ
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Exploiting these relations, Equations (17) and (18), instead of
explicitly handling time averages, we obtain an approximation
of the gradients in Equations (15) and (16) which is calculated
in a temporarily local manner. Then, applying the usual stochas-
tic approximation theory (Robbins and Monro, 1951), we obtain
the temporarily local learning rule, Equations (3) and (4). Since
our goal is to study biologically plausible learning rules and not
to obtain rigorous convergence, we have not adjusted the value
of ε depending on t in the simulations. For a fixed small ε,
however, the learning has essentially stopped, probably at a local
maximum.

4.3. AUTOCORRELOGRAMS AND COEFFICIENTS OF VARIATION
We calculated autocorrelograms and CVs of ISIs in Figures 2J,K.
For this calculation, we used firing activity for a particular T0 =
50000 steps (T1 ≤ t ≤ T1 + T0) after learning. From this spike
train, the autocorrelogram C(ρ) with lag ρ for the i-th neuron is
calculated as

C(ρ) = 1

T0 − ρ
T1 +T0∑

t=T1 + ρ
xt

i xt− ρ
i .

The CVs of ISIs of the i-th neuron is calculated from the collection
of ISIs {lu}1≤ u≤U in the same T0 steps as

SD(lu)/mean(lu),

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 143 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hayakawa et al. Biologically plausible recurrent Infomax learning

where

mean(lu) = 1

U

∑
u

lu, SD(lu) =
√

1

U

∑
u

(lu −mean(lu))2.

4.4. IMAGE PREPARATION IN THE LEARNING OF NATURAL IMAGES
The original and preprocessed images are the same as those used
in the seminal paper (Olshausen and Field, 1997). The origi-
nal images are ten 512× 512 images of natural surroundings in
the American northwest. Gray-scaled images are zero-centered,
whitened and low-pass-filtered using a filter with the frequency
response

L(f ) = f exp
(−(f /fc)4) ,

where the cut-off frequency is fc = 200 cycles per picture.
Whitening and zero-centering are due to the high-pass filtering
property of f , while exp

(−(f /fc)4
)

eliminates artifacts of higher
frequency than rectangular sampling (see Atick, 1992 for further
details). The images and the Matlab program codes are provided
at the webpage by Olshausen (2012).

4.5. AN APPROXIMATE MEASURE OF THE MUTUAL INFORMATION
Following the preceding study (Tanaka et al., 2009), we
define an approximate measure of the mutual information
Igauss = log |C| − 1

2 log |D|. C and D are covariance matrices of
xt and xt ⊗ xt− 1, respectively. Particularly, C is a N × N matrix

defined as Cij =
〈
xt

i xt
j

〉
∞ −

〈
xt

i

〉
∞

〈
xt

j

〉
∞ for 1 ≤ i, j ≤ N, while

D is a 2N × 2N matrix defined as Dij =
〈
xt

i xt
j

〉
∞ −

〈
xt

i

〉
∞
〈
xt

j

〉
∞,

Di,j+N =
〈
xt

i xt− 1
j

〉
∞ −

〈
xt

i

〉
∞

〈
xt− 1

j

〉
∞, Di+N,j =〈

xt− 1
i xt

j

〉
∞ −

〈
xt− 1

i

〉
∞

〈
xt

j

〉
∞ and Di+N,j+N =

〈
xt− 1

i xt− 1
j

〉
∞ −〈

xt− 1
i

〉
∞

〈
xt− 1

j

〉
∞ for 1 ≤ i, j ≤ N. If both of the firing distribu-

tion of xt and the joint distribution of xt and xt− 1 have Gaussian
probability densities, the mutual information I

[
xt; xt− 1

]
is

equal to Igauss. In the numerical simulation, we have calculated
a finite-time approximation Îgauss by replacing the terms like

〈xt
i xt

j 〉∞ with corresponding finite-time averages like
〈
xt

i xt
j

〉
T

.

4.6. CALCULATION OF SPIKE TRIGGERED AVERAGES OF INPUT IMAGES
In the learning of input images, we calculated reverse correla-
tions by taking spike-triggered average of input images presented
at the previous time step of neuronal firing, as in the examina-
tion of receptive fields in physiological experiments (Ringach and
Shapley, 2004). Concretely, the spike-triggered average of input

images with respect to neuron i is calculated as y(i)
STA,j = 〈yt− 1

j xt
i 〉T

for 1 ≤ i ≤ N and 1 ≤ j ≤ 144. Then, we linearly rescale y(i)
STA,j

into y∗,(i)
STA,j for each i so that the mean over the pixel components

is 128 as y∗,(i)
mean = 1

144

∑
j y∗,(i)

STA,j = 128, and that the maximal devi-

ation from the mean is 127 as maxj |y∗,(i)
STA,j − y∗,(i)

mean| = 127. We

have plotted the rescaled average y∗,(i)
STA,j as a 12× 12 pixel patch

in a gray scale ranging from 1 (black) through 255 (white) in
Figure 5B.

FIGURE 8 | Dependence of firing frequencies of an integrate-and-fire

model on magnitudes of constant input currents falls on a sigmoid

curve. Saturating frequencies depend on the length of the refractory period
tref as indicated by the differently-colored curves [red: tref = 1 (ms), green:
tref = 2 (ms), blue: tref = 3 (ms)].

4.7. INTERPRETATION OF THE INTERNAL VARIABLE AS AN INPUT
CURRENT

We have defined our dynamics as p
(

xt+1
i = 1|st

i

)
=

pmax/
{

1+ exp
(−st

i

)}
. The internal variable st

i can be inter-
preted as an input current to the neuron i. To show this, we
simulate an integrate-and-fire neuron model with constant input
currents. We solve the following continuous-time dynamics of
membrane potential V by the Euler-Maruyama method with a
step size�t = 0.01 (ms):

τmdV = (− V + Vrest + I)dt + Ddξ.

V ← Vrest if V > θ

In the above equation, we have added Wiener noise ξ with a con-
stant coefficient D = 3. The membrane constant is τm = 15 (ms).
If V exceeds the threshold potential θ = −50 (mV), we reset the
membrane potential to the resting potential Vrest = −70 (mV)
and hold it for a refractory period tref = 1, 2, or 3 (ms). We apply
input currents I = −200 ∼ 600 (mV) to this model, describing
the input current in units of mV on the assumption that the input
resistance is a dimensionless quantity equal to unity. Then, we
find that the dependence of the firing frequency f (cycle/ms) of
the neuron model on the applied current I falls on a sigmoid
curve as shown in Figure 8. We further observe that the maximal
firing probability depends on the length of the refractory period
(Figure 8).
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