タイトル
Fat-Water Interface on Susceptibility-Weighted Imaging and Gradient-Echo Imaging: Comparison of Phantoms to Intracranial Lipomas

著者
Taha Mohamed M. Mehemed

引用
京都大学 (Kyoto University)

発行日
2014-11-25

URL
https://doi.org/10.14989/doctor.k18647

学位規則第9条第2項により要約公開

学位規則第9条第3項により公開

タイトル
京都大学

要約

学位規則第9条第2項により要約公開

著者
Taha Mohamed M. Mehemed

学位規則第9条第3項により公開
Fat-Water Interface on Susceptibility Weighted Imaging and Gradient Echo Imaging: Comparison of Phantoms to Intracranial Lipomas

Taha M. Mehemed MBBCh1, Akira Yamamoto MD, PhD1, Tomohisa Okada MD PhD1, Mitsunori Kanagaki MD PhD1, Yasutaka Fushimi MD PhD1, Takeshi Sawada MD1, Kaori Togashi MD PhD1.

\textsuperscript{1) Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyō-ku, Kyoto-shi, Kyoto 606-8507, Japan

Summary

Objective: In a clinical setting, lipoma can sometime show low signal intensity on SWI mimicking hemorrhage. The purpose of this study is to evaluate the fat-water interface chemical shift artifacts between SWI and T2*WI with a phantom study and evaluate the SWI images in lipoma cases.

Materials and Methods: SWI, magnitude, high-pass filtered phase and T2*WI images of a lard-water phantom were evaluated in the in-phase, out-of-phase and standard partially out-of phase TE settings used for clinical 3T MRI SWI (19.7ms, 20.9 ms and 20.0 ms respectively), to identify the most prominent fat-water interface low signal. SWI of 5 cases of CNS lipoma were retrospectively evaluated by two neuroradiologists.

Results: TE=19.7ms (in-phase) showed the minimum fat-water interface low signal in the phase-encode direction on magnitude, high-pass filtered phase and SWI images. TE=20.9ms (out-of-phase) image showed the maximum fat-water interface in the phase-encode direction on magnitude, high-pass filtered phase and SWI images. TE=20.0ms (partially out-of-phase) image showed more fat-water interface low signal on SWI than T2*WI especially in the phase-encode direction. All lipoma in the 5 patients showed high signal intensity with surrounding peripheral dark rim on SWI.

Conclusion: Fat-water interface is more prominent on standard TE setting used for clinical SWI (TE=20.0ms) than that of T2*WI and shows a characteristic surrounding peripheral low signal rim in lipoma. Knowing the fact of fat-water appearance on SWI is important to avoid misinterpreting intracranial lipomas as hemorrhages.