
Evaluation of interlayer interfacial stiffness and layer wave
velocity of multilayered structures by ultrasonic spectroscopy

Yosuke Ishii and Shiro Biwaa)

Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8540, Japan

(Received 10 January 2014; revised 1 May 2014; accepted 10 May 2014)

An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer

longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the character-

istics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered struc-

ture with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the

longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of

local maxima and minima of the spectrum provided that all interfaces and layers have the same

properties. The effectiveness of the proposed procedure is investigated from the perspective of the

sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed

procedure is also investigated when the stiffness of each interface is subjected to small random fluc-

tuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply

carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the

longitudinal wave velocity of plies in the thickness direction evaluated from the experimental

reflection spectrum are shown to be consistent with simple theoretical estimations.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4881920]

PACS number(s): 43.35.Zc, 43.40.Le, 43.35.Cg [GH] Pages: 183–191

I. INTRODUCTION

With increasing application of multilayered structures in

various technological fields, it has become a necessity to es-

tablish effective techniques of nondestructive evaluation for

their property characterization and damage assessment.

Since ultrasonic waves have a high potential for such a pur-

pose, it is important to understand the wave propagation

characteristics in multilayered structures.1,2 As a tool for the

nondestructive inspection, mainly two types of ultrasonic

features, the reflection/transmission characteristics of bulk

waves or velocity/attenuation of guided waves, are usually

considered, and a variety of theoretical approaches for such

wave propagation behavior have been developed by many

researchers.3,4

It is well known that mechanical performance of layered

structures can be critically degraded by interfacial imperfec-

tions between adjacent layers. Such imperfections include

partial bonds, kissing bonds, thin adhesive layers, and so on.

For example, in the case of fiber-reinforced composite lami-

nates utilized widely in aerospace engineering, there exist

resin-rich regions with a few microns thickness between

each layer. For this reason, it is crucial to establish an ultra-

sonic evaluation method for the soundness of interlayer

interfaces in order to ensure reliability as well as safety of

layered structures.

When performing theoretical or numerical analysis of

the wave propagation in a layered structure with imperfect

interlayer interfaces, the wave interaction with these interfa-

ces can be described by spring boundary conditions:5–11 The

stresses are continuous while discontinuities are allowed in

the displacements across the interface. The resulting dis-

placement jumps are related to the stresses by the propor-

tionality constants called the interfacial stiffnesses. The

interfaces are therefore characterized by their normal and

shear stiffnesses. In other words, the interfacial soundness

can be evaluated by identifying these parameters.

Several procedures for the evaluation of interfacial stiff-

nesses have been proposed. For a single spring-type interface

between two solids, the interfacial stiffnesses can be eval-

uated by the amplitude reflection or transmission coefficients

of bulk ultrasonic waves,12–15 or the wave velocity and

attenuation along the interface.16–18 Stiffness characteriza-

tion of a spring-type joint interface of two plates by utilizing

Lamb waves has been also studied recently.19 For double

interfaces between a layer and two solids, Lavrentyev and

Rokhlin20 proposed a technique to identify the interfacial

stiffnesses from the ultrasonic reflection spectrum, and

Singher et al.21 studied the characteristics of guided waves

propagating along the interfaces to evaluate the tangential

interfacial stiffness. For layered structures, Leiderman

et al.22,23 proposed a technique to reconstruct the interfacial

stiffness distribution due to localized adhesion flaws, and an

ultrasonic characterization procedure to detect the interfacial

weakness using the adaptive filtering method was also pro-

posed by Jian et al.24 Recently, Ishii and Biwa25 proposed a

stiffness evaluation procedure for a multilayered structure by

using local extremal frequencies of the amplitude reflection

spectrum, which is effective in obtaining a representative

value of interfacial stiffness for the whole structure.

In many practical situations, not only the interfacial stiff-

ness but also bulk properties of layers are often unknown;

hence, it is desirable to evaluate them simultaneously. Baltazar
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et al.26 identified the bulk properties of an intermediate layer

of a three-layered structure as well as their interfacial stiff-

nesses by the ultrasonic reflection spectra at two incident

angles (normal and oblique). For the case of more general mul-

tilayered structures with imperfect interfaces, however, such

evaluations have not been reported to the authors’ knowledge.

In this paper, the above-mentioned procedure by Ishii

and Biwa25 is extended to establish a new method to evalu-

ate the layer properties, in particular the longitudinal wave

velocity in the thickness direction (direction normal to the

layers), as well as the interlayer interfacial normal stiffness

of a multilayered plate-like structure by the ultrasonic spec-

troscopy. The proposed method aims at obtaining representa-

tive values for the layer wave velocity and the interfacial

stiffness of a multilayered structure when all layers and

interfaces have nearly equal properties.

This paper is structured as follows. In Sec. II, the theo-

retical expression of the reflection spectrum for a multilay-

ered structure with spring-type interfaces derived in Ref. 25

is rewritten in terms of newly defined non-dimensional pa-

rameters, and the dependence of the reflection spectrum on

these parameters is clarified. This results in the proposal of

an identification procedure for the interlayer interfacial nor-

mal stiffness and the layer longitudinal wave velocity in the

thickness direction by making use of the local extremal fre-

quencies of the spectrum (Sec. III A). Some considerations

are made in Sec. III B in regard to the feasibility and the

effectiveness of the proposed procedure. As a demonstrative

example, the ply longitudinal wave velocity in the thickness

direction and the interfacial normal stiffness of a carbon-

fiber-reinforced composite laminate are evaluated from the

experimental reflection spectrum in Sec. IV. The conclusion

of this study is summarized in Sec. V.

II. THEORETICAL BACKGROUND

Consider a multilayered structure consisting of N equal

elastic layers of density q, longitudinal wave velocity c, and

thickness h, with (N�1) spring-type interlayer interfaces of

the stiffness KN as shown in Fig. 1. The structure is embed-

ded between two semi-infinite media of density q0 and longi-

tudinal wave velocity c0 with perfect acoustical coupling:

both stresses and displacements are continuous across the

boundaries at x¼X0 and x¼XN.

If the longitudinal harmonic wave with unit amplitude

exp(ik0x-ixt) impinges perpendicularly on the structure from

x<X0, the reflected wave Rexp(�ik0x�ixt) for x<X0 and

the transmitted wave Texp(ik0x�ixt) for x>XN are gener-

ated (Fig. 1). Here x (¼ 2pf) is the angular frequency,

k0¼x/c0 is the wave number in the semi-infinite media,

and R and T are the reflection and transmission coefficients,

respectively. In the previous study,25 the characteristics of

the reflection coefficient R were investigated theoretically

by the transfer-matrix method27–30 combined with Bloch’s

theorem,31,32 and it was shown that when the frequency lies

in the passbands of the corresponding infinite periodic

structure, i.e., when the Bloch phase b is real, R can be

written as

R ¼ L3

L1 þ iL2

exp 2ik0X0ð Þ; (1a)

L1 ¼ 2jf �sin N � 1ð Þb
� �

þ f2 þ 1
� �

sin Nbð Þsin cf �ð Þ;
(1b)

L2 ¼ 2f sin Nbð Þcos cf �ð Þ � sin N � 1ð Þb
� �� �

; (1c)

L3 ¼ 2jf �sin N � 1ð Þb
� �

� f2 � 1
� �

sin Nbð Þsin cf �ð Þ;
(1d)

where non-dimensional interfacial compliance j, non-

dimensional slowness in the layer c, acoustic impedance

ratio f, non-dimensional frequency f*, and the Bloch phase b
are respectively given by

j ¼ qcpf0

KN

; c ¼ 2phf0

c
; f ¼ qc

q0c0

; f � ¼ f

f0

; (2a)

cos b ¼ cos cf �ð Þ � jf �sin cf �ð Þ; (2b)

where f0 is an arbitrary normalization factor. In the pass-

bands, L3 in Eq. (1d) is real and can be written as

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
sin Nbþ uð Þ; (3)

where A, B, and u are given by

A ¼ 2jf � cos b� f2 � 1
� �

sin cf �ð Þ; B ¼ �2jf � sin b;

(4a)

cos u ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2
p ; sin u ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p : (4b)

Equations (1) and (3) indicate that the reflection coefficient

R vanishes when

Nbþ u ¼ mp; (5)

where m is an integer. The frequencies of zeros of the

reflection coefficient are hence determined by the non-

dimensional parameters N, j, c, and f, and so is the number

of these zeros in each passband.

Figure 2 shows the variation of the amplitude reflec-

tion coefficient jRj with the non-dimensional frequency

f*for different j, c, and f with a fixed N¼ 16. The ampli-

tude spectra of the corresponding infinite periodic
FIG. 1. An N-layered structure with spring-type interlayer interfaces embed-

ded between two semi-infinite media.
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structures are also shown in Fig. 2 for comparison, where

jRj becomes either zero (passbands) or unity (stop bands).

Originally, the terms of pass and stop band can be defined

for infinite periodic structures. In what follows, these terms

are also used for finite structures; namely, the term pass

(stop) band refers to the band of frequency which belongs

to the pass (stop) band of the corresponding infinite peri-

odic structure.

It is noted that the use of non-dimensional parameters in

the formulation has an advantage that it enables us to study

the influence of each parameter on the spectrum in a univer-

sal manner. It is found in Fig. 2 that the non-dimensional pa-

rameters j, c, and f have effects to change the width of the

frequency range corresponding to the stop bands [compare

Figs. 2(a) and 2(b)], to expand the spectrum with respect to

the frequency axis [compare Figs. 2(c) and 2(d)], and to

change the magnitude of |R| in the passbands [compare Figs.

2(b) and 2(c)], respectively. It is also seen that as mentioned

above, each spectrum in Fig. 2 has a certain number of zeros

in each passband. This is governed by the number of layers

N as shown in the previous paper.25

III. EVALUATION OF INTERLAYER INTERFACIAL
STIFFNESS AND LAYER WAVE VELOCITY

A. Outline of the evaluation procedure

In the preceding section, it has been shown that the am-

plitude reflection coefficient |R| for a multilayered structure

takes zeros at certain discrete frequencies determined by the

number of layers N and the non-dimensional parameters j, c,

and f. In other words, the latter three parameters can possi-

bly be evaluated inversely by measuring these frequencies,

provided that N is known and that all layers and interfaces

respectively have the same properties.

It is recognized from Fig. 2 that the amplitude reflection

coefficient |R| takes local maxima and minima (including ze-

ros) in the passbands, whose frequencies fe
* are also deter-

mined by N, j, c, and f. These points are easier to obtain

from the experimental reflection spectrum compared to the

exact zeros. The variations of these points with j, c, and f
for a fixed N¼ 16 are shown in Figs. 3, 4, and 5, respec-

tively. Clear dependence of the extremal frequencies on j
(except in the small j range) and c can be observed, which

will make the precise determination of j and c possible. On

the other hand, it is seen in Fig. 5 that these frequencies are

mostly insensitive to f. This can be explained by the charac-

teristic of f mentioned in the foregoing section; f has an

effect to mainly change the magnitude of the reflection coef-

ficient |R| in the passbands. This weak dependence on f
implies that it will be difficult to precisely evaluate f by the

extremal frequencies.

Dimensional parameters of practical interest, i.e., the

interlayer interfacial stiffness KN, the wave velocity in the

layers c, and the density of the layers q, can be given in

terms of the non-dimensional parameters j, c, and f as

KN ¼ pq0c0f0

f
j
; c ¼ 2phf0

c
; q ¼ q0c0

2phf0
cf; (6)

where the other dimensional parameters, the layer thickness

h, the density q0 and wave velocity c0 of the semi-infinite

FIG. 2. (Color online) The amplitude reflection spectra of a multilayered

structure for N¼ 16, (a) j¼ 0.03, c¼ 0.3, and f¼ 3, (b) j¼ 0.06, c¼ 0.3,

and f¼ 3, (c) j¼ 0.06, c¼ 0.3, and f¼ 2, and (d) j¼ 0.06, c¼ 0.5, and

f¼ 2, together with the reflection spectrum of the corresponding infinite per-

iodic structures.

FIG. 3. (Color online) The extremal frequencies in the 1st and 2nd pass-

bands of the amplitude reflection spectrum as a function of j with fixed

c¼ 0.3, f¼ 3, and N¼ 16.
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media, and the normalization factor f0, are assumed to be

known in advance. As mentioned above, however, the pre-

cise determination of f will be difficult. In order to circum-

vent this problem, f is rewritten in terms of c and a newly

introduced non-dimensional parameter v as

f ¼ v
c
; v ¼ 2pqhf0

q0c0

: (7)

Under the assumption that v is known in advance, i.e., q is

also known in addition to h, q0, c0, and f0, the sought-for pa-

rameters KN and c are given in terms of j and c as

KN ¼
v
jc

pq0c0f0; c ¼ 2phf0

c
: (8)

Since the number of dimensional parameters to be evaluated

is reduced in comparison with Eq. (6), precise determination

of KN as well as c is possible due to the absence of f in the

equation.

The procedure to evaluate the interlayer interfacial stiff-

ness KN and the layer wave velocity c is put forward as fol-

lows. The ultrasonic reflection spectrum for a multilayered

structure is first measured experimentally with a broadband

incident wave and the extremal frequencies fi
exp (i¼ 1, 2,…,

m) are extracted from spectral analysis. The set of j and c is

then identified as the optimal point which minimizes the

evaluation function J (j, c) defined as

J j; cð Þ ¼
1

m

Xm

i¼1

fi
exp � fi

theor j; cð Þ
fi

exp

" #2

; (9)

where m is the number of extrema considered and fi
theor(j, c)

are the theoretical extremal frequencies as functions of j and

c with known N and v, which are extracted from the numeri-

cally calculated spectrum by Eq. (1) with a sufficiently small

frequency increment (Df*¼ 1� 10�4). Finally, KN and c are

obtained by Eq. (8) with the identified j and c and known v,

h, q0, c0, and f0.

B. Feasibility of the proposed procedure

1. Effects of viscoelasticity of layers

It should be remembered that the above discussions

have been made with the assumption that each layer is elas-

tic. In the case of layered structures made of polymeric mate-

rials, however, each layer has certain viscoelastic nature at

ultrasonic frequencies. It is therefore imperative to examine

if the proposed procedure is still feasible in the presence of

the viscoelasticity.

In the previous study,25 the variation of the extremal fre-

quencies of the reflection spectrum with the interfacial stiff-

ness KN was investigated for the cases where the layers are

elastic and where the layers are viscoelastic. Since the proce-

dure proposed in this study incorporates not only KN but also

the layer wave velocity c, the variations of the reflection

spectrum with non-dimensional parameters j and c were

examined in a similar fashion. As a result, it was found that

local extremal frequencies in the first passband rarely depend

on whether the layers are elastic or viscoelastic. On the other

hand, as mentioned in Ref. 25, the disappearance of some

extremal points due to the introduction of viscoelasticity was

observed in the second passband at high j and c ranges;

nevertheless the existing extremal frequencies still agreed

well with those without viscoelasticity. Consequently, it has

been concluded that the proposed evaluation procedure can

be applied, even if the layers possess unknown viscoelastic

nature.

2. Number of extrema used for evaluation

It is seen in Figs. 3 and 4 that the variations of the

extremal frequencies of the amplitude reflection spectrum

with j and c are both monotonic in the first passband, imply-

ing that a trade-off between j and c will occur if the

extremal points only in the first passband are used for the

evaluation. As an example, the amplitude reflection spectra

FIG. 4. (Color online) The extremal frequencies in the 1st and 2nd pass-

bands of the amplitude reflection spectrum as a function of c with fixed

j¼ 0.03, f¼ 3, and N¼ 16.

FIG. 5. (Color online) The extremal frequencies in the 1st and 2nd pass-

bands of the amplitude reflection spectrum as a function of f with fixed

j¼ 0.03, c¼ 0.3, and N¼ 16.
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for some sets of j and c with fixed N¼ 16 and v¼ 0.84 are

shown in Fig. 6, where in spite of different values of j and c,

their extremal frequencies in the first passband are almost

identical. It is hence necessary to use the extremal points in

not only the first but also the second passband for unique

determination of j and c.

It should be noted that when calculating the evaluation

function J in Eq. (9), it is required to identify the theoretical

extremal point fi
theor (j, c) corresponding to one measured by

the experiment fi
exp. It is seen in Figs. 3 and 4 that the number

of extremal points in the first passband is constant regardless

of j and c, making the correspondence of fi
theor (j, c) to fi

exp

straightforward. In contrast, such a number does change for

the second passband due to the presence of branch-offs seen

in Figs. 3 and 4. As a result, such correspondence is not clear

for the extrema in the second passband; hence, a searching

process of fi
theor (j, c) corresponding to fi

exp is required for

each j and c. In the examples shown below, all of their possi-

ble correspondences are taken into account and one of them is

chosen so that the resulting evaluation function is minimized.

3. Sensitivity of the proposed procedure

To investigate the effectiveness of the proposed evalua-

tion procedure, the sensitivity of the extremal frequencies of

the amplitude reflection spectrum to the non-dimensional pa-

rameters is considered following the manner employed by

Lavrentyev and Rokhlin.33 Regarding each extremal fre-

quency of the reflection spectrum fe
* as a function of a pa-

rameter p (j or c), the relative errors in p and fe
*, ep¼ dp/p

and ef �e ¼ dfe
*/fe

*, are related by

ep ¼
ef �e

Xf �e ;p
; (10)

where Xf �e ;p represents the sensitivity of fe
* to p, defined as

Xf �e ;p ¼
p

f �e

@f �e
@p

: (11)

Equation (10) shows that the higher the sensitivity is, the

smaller the influence of the error in the extremal frequencies

on the determination of p is, i.e., p can be identified more

robustly. Although the sensitivity in Eq. (11) can be in prin-

ciple obtained from Eq. (1), it requires cumbersome calcula-

tions; hence, the sensitivity of the zero-reflection frequencies

of the spectrum fz
*, i.e., Xf �z ;p, is considered here, which is

easier to obtain from Eq. (1d). Their explicit expressions are

given in the Appendix.

The sensitivity of fz
* to j and c is illustrated in Figs. 7

and 8, respectively, for various j and c with fixed N¼ 16

and v¼ 0.84. Note that although only the zero-reflection fre-

quencies are dealt with here, it is reasonable to expect that

the sensitivity of the other extremal frequencies (local max-

ima and minima) of the reflection spectrum is more or less

on the solid lines drawn in the figures. It is found in Figs. 7

and 8 that as j increases or c decreases, the sensitivity to j
becomes higher and that to c becomes smaller, indicating

that the larger j (c) and the smaller c (j) make the evaluation

of j (c) more sensitive and that of c (j) less sensitive. As an

example, the evaluation functions for two cases are depicted

in Fig. 9 [Fig. 9(a) is for large jo and small co and Fig. 9(b)

FIG. 6. The amplitude reflection spectra of a multilayered structure for

N¼ 16 and v¼ 0.84, (a) j¼ 0.03 and c¼ 0.25, (b) j¼ 0.05 and c¼ 0.22,

and (c) j¼ 0.07 and c¼ 0.19.

FIG. 7. The sensitivity of the zero-reflection frequencies of the spectrum to

j for N¼ 16 and v¼ 0.84, (a) c¼ 0.1, 0.2, 0.3, and 0.4 with a fixed j¼ 0.03

and (b) j¼ 0.02, 0.03, 0.04, and 0.05 with a fixed c¼ 0.3.
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for small jo and large co, where the subscript “o” denotes the

actual value]. It is recognized that the optimal j in Fig. 9(a)

is determined more robustly due to its higher sensitivity than

that in Fig. 9(b). Furthermore, in spite of the lower sensitiv-

ity to c than that in Fig. 9(b), the optimal c in Fig. 9(a) is still

determined with relatively high robustness. This is because

even if the sensitivity to c decreases, its magnitude is still

sufficiently large in comparison with that to j (see the verti-

cal axes of Figs. 7 and 8).

The proposed procedure is consequently capable of

evaluating j and c sensitively, except for the small j range.

However, small j, i.e., high interlayer interfacial stiffness

KN, implies that the interlayer interface can to a good

approximation be considered as a perfectly bonded interface;

therefore precise evaluation of j may be unnecessary.

4. Influence of fluctuations of interlayer interfacial
stiffness

It is expected that the material properties of actual mul-

tilayered structures, in particular the interlayer interfacial

stiffness, are not identical for the whole structure but have

some statistical fluctuations. Even in this situation, it is desir-

able that the proposed procedure gives some kind of repre-

sentative interfacial stiffness. The performance of the

proposed procedure in such situations is examined below. It

should be noted that this study deals with the case where all

interfaces still have close stiffnesses in the presence of fluc-

tuations; namely, the case where, for example, a specific

interface has a greatly different stiffness from the others is

not considered here.

To this aim, the amplitude reflection spectrum for a mul-

tilayered structure with random fluctuations of the interlayer

interfacial stiffness KN is calculated by the transfer-matrix

method. Figure 10(b) shows the computed reflection spec-

trum for one sample of the fluctuated j shown in Fig. 10(a)

with fixed N¼ 16, c¼ 0.283, and v¼ 0.84, where the value

of KN for each interlayer interface follows the Gaussian dis-

tribution with the mean value KN ¼ 0.30 MPa/nm and the

standard deviation rK¼ 0.05 MPa/nm, and j is calculated by

using the properties shown in Table I and the normalization

factor f0¼ 1.00 MHz. The reflection spectrum computed

without the fluctuation (KN¼ 0.30 MPa/nm for all interfaces)

is also shown in Fig. 10(b) for comparison. It is seen in Fig.

10(b) that due to the introduced fluctuation, the magnitude of

the reflection coefficient is remarkably disturbed from the

one without fluctuation; nevertheless, the presence of the

extremal points can be observed. Using these points, the

evaluation function is computed and illustrated in Fig. 11,

where the vertical and horizontal axes are normalized

by jo¼ 4.68� 10�2 and co¼ 0.283 (corresponding to KN

¼ 0.30 MPa/nm and c¼ 3.00 km/s), respectively. It is found

that although the fluctuation makes the optimum unclear in

comparison with the case without fluctuation in Fig. 11(b),

the minimum point can be still obtained at j/jo¼ 1.10

and c/co¼ 1.01 (corresponding to KN¼ 0.27 MPa/nm and

c¼ 2.97 km/s) in Fig. 11(a).

The above procedure is repeated for 1000 different

distributions of KN generated randomly for two types of

FIG. 8. The sensitivity of the zero-reflection frequencies of the spectrum to

c for N¼ 16 and v¼ 0.84, (a) c¼ 0.1, 0.2, 0.3, and 0.4 with a fixed j¼ 0.03

and (b) j¼ 0.02, 0.03, 0.04, and 0.05 with a fixed c¼ 0.3.

FIG. 9. The evaluation function for fixed N¼ 16 and v¼ 0.84 when the

actual non-dimensional parameters are (a) jo¼ 0.05 and co¼ 0.1 and (b)

jo¼ 0.02 and co¼ 0.4.
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standard deviations (one is for rK¼ 0.01 MPa/nm and the

other for rK¼ 0.05 MPa/nm) with fixed KN ¼ 0.30 MPa/nm,

N¼ 16, c¼ 0.283, and v¼ 0.84. The optimum point at each

trial is searched by using the Fletcher-Reeves conjugate gra-

dient method34 with the initial guess j/jo¼ c/co¼ 0.9. It is

noted that in Fig. 11(a) there are no local minima other than

the global minimum (optimum), implying that the minimiza-

tion process converges to the optimum as long as the initial

guess is chosen within the range shown in the figure. The

evaluated results are shown as histograms in Fig. 12. It is

found in Fig. 12 that although the dispersion of the identified

results is dependent on rK, the average interfacial stiffness

as well as the originally fixed wave velocity in the layers can

be obtained with reasonable accuracy by the present evalua-

tion procedure.

IV. APPLICATION TO CARBON-FIBER-REINFORCED
COMPOSITE LAMINATE

In the previous study,25 the interlayer interfacial stiff-

ness of a 16-layered cross-ply laminate of carbon-fiber-rein-

forced epoxy composite was evaluated with the assumption

that all of the acoustic properties of plies were known in

advance. In the present study, for the same sample, the ply

longitudinal wave velocity c is assumed to be unknown and

evaluated simultaneously with the interlayer interfacial nor-

mal stiffness KN, where the other parameters are assumed to

be known. These known parameters are given as in Table I

and the normalization factor f0 is set as 1.00 MHz, which

correspond to the non-dimensional parameter v¼ 0.84.

FIG. 10. (Color online) (a) The distribution of the fluctuated interlayer inter-

facial stiffness KN (j) through the stacking direction and (b) the computed

amplitude reflection spectrum with fixed N¼ 16, c¼ 0.283, and v¼ 0.84, to-

gether with the one without fluctuation of KN.

FIG. 11. The evaluation function computed for the spectra in Fig. 10(b),

where the vertical and horizontal axes are respectively normalized by

jo¼ 4.68� 10�2 and co¼ 0.283 (corresponding to KN ¼ 0.30 MPa/nm and

c¼ 3.00 km/s).

TABLE I. Material properties of the layer and the surrounding medium

(water).

Density of layer q 1.49� 103 kg/m3

Thickness of layer h 0.135 mm

Density of surrounding medium q0 0.998� 103 kg/m3

Longitudinal wave velocity in surrounding medium c0 1.50 km/s

FIG. 12. The histogram of the evaluated (a) KN and (b) c for two different

standard deviations of the fluctuation of KN with fixed KN ¼ 0.30 MPa/nm

and c¼ 3.00 km/s.
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It is noted that the inhomogeneity scale of the unidirec-

tional carbon-fiber-reinforced composites, i.e., the fiber di-

ameter and the interval of the fiber placement, is much

smaller than the wavelength of the practically used ultra-

sonic waves. In this case, each ply can be modeled as a ho-

mogeneous layer, and each resin-rich region between

neighboring plies as a spring interface. Furthermore, even if

the fiber directions of unidirectionally reinforced plies are

different such as in angle-ply, cross-ply, or quasi-isotropic

laminates, the acoustic properties in the stacking direction

are still identical for all plies. Therefore insofar as the nor-

mal incidence of the longitudinal wave is considered, the

composite laminate can be treated as the multilayered struc-

ture considered in Sec. II.

The experimental reflection spectrum of the above-

mentioned composite laminate is shown in Fig. 13 (see Ref.

25 for the procedure to obtain the spectrum). Although the

spectrum is only shown for a finite frequency range from 5

to 15 MHz due to the limited bandwidth of the measurement,

it contains local maxima and minima in the first as well as

second passbands (a comparatively high peak at around

10.5 MHz corresponds to the first stop band), which is suffi-

cient for unique determination of KN and c (Sec. III B 2).

Using 27 extremal points shown in Fig. 13, the evaluation

function Eq. (9) is calculated and shown in Fig. 14. It is

found in Fig. 14 that the optimal point can be obtained at

j¼ 1.10� 10�2 and c¼ 0.275. Substituting these values into

Eq. (8), the interlayer interfacial stiffness and the ply wave

velocity of the composite laminate are finally identified as

KN¼ 1.3 MPa/nm and c¼ 3.08 km/s. The evaluated interfa-

cial stiffness appears reasonable in comparison to a rough

estimation25 of KN based on the micrographic observation of

the sample and a simple relation12 KN¼ (keþ 2le)/he

(keþ 2le¼ 8.8 GPa: elastic constants of epoxy and he¼ 3 to

8 lm: thickness of resin-rich zone), which gives a range of

KN as 1.1 to 2.9 MPa/nm. The evaluated wave velocity is

also reasonable for unidirectional carbon-fiber-reinforced

plies, which indicates that the present method is applicable

for the situation where the layer wave velocity is unknown

beforehand, as long as all plies have almost the same veloc-

ity. Furthermore, the ply stiffness in the direction normal to

the plies is obtained as D¼qc2¼ 14.1 GPa which compares

favorably with an existing theoretical result.35

The obtained interfacial stiffness is slightly different

from the value KN¼ 1.6 MPa/nm determined with the a pri-
ori assumed ply wave velocity c¼ 3.06 km/s in the previous

study.25 Since it has been shown25 that the evaluated value

of KN is quite sensitive to the assumed value of c, the present

procedure is advantageous in that KN and c can be evaluated

simultaneously. Using the so-obtained KN and c, the theoreti-

cal amplitude reflection spectrum is computed by the

transfer-matrix method and shown in Fig. 13 together with

the experimental result. Although the magnitude of the

reflection coefficient of the experimental result does not

agree with the theoretical one due mainly to the viscoelastic

nature of the composite laminate sample, the oscillatory

characteristics against the frequency of the experimental

result are well reproduced by the theory.

V. CONCLUSION

Based on the characteristics of the amplitude reflection

spectrum for a multilayered plate-like structure with spring-

type interlayer interfaces, a procedure to identify the

interlayer interfacial normal stiffness as well as the layer lon-

gitudinal wave velocity from local maximum and minimum

frequencies of the reflection spectrum has been proposed.

The influence of the number of extrema to be used in the

evaluation has been discussed and it has been shown that in

addition to extremal frequencies in the first passband, those

in the second passband have to be included for unique deter-

mination of the interfacial stiffness and the layer wave veloc-

ity. The effectiveness of the proposed procedure has been

discussed from the perspective of the sensitivity of local

extremal frequencies of the amplitude reflection spectrum.

The proposed procedure has been shown to be feasible even

when the interlayer interfacial stiffness is randomly fluctu-

ated across the stacking direction. Using the proposed proce-

dure, the interlayer interfacial normal stiffness and the ply

longitudinal wave velocity of a carbon-fiber-reinforced com-

posite laminate have been evaluated from the experimental

reflection spectrum.
FIG. 13. (Color online) Experimental and theoretical amplitude reflection

spectra of the 16-layered composite laminate.

FIG. 14. The experimental evaluation function, where the optimal point

is obtained at j¼ 1.10� 10�2 and c¼ 0.275 (corresponding to KN

¼ 1.3 MPa/nm and c¼ 3.08 km/s).
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In this study, the evaluation has been performed for an

undamaged composite laminate. Applications to damaged

samples as well as the evaluation of other parameters such as

interfacial shear stiffness are left for the future study.
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APPENDIX: EXPRESSSION OF SENSITIVITY OF ZERO-
REFLECTION FREQUENCIES

From Eqs. (1d), (2b), and (7), the zero-reflection fre-

quencies of the amplitude reflection spectrum fz
* satisfy

Cb ¼ Ccf �z � jf �z Scf �z ; (A1)

2jc2f �z S N�1ð Þb � v2 � c2
� �

SNbScf �z ¼ 0; (A2)

where Sx� sin x and Cx� cos x. The differentiation of the

above equations with respect to j and c respectively leads to

the expressions of the sensitivity as

Xf �z ;j ¼
j
f �z

@f �z
@j
¼ K4

K1K2 þ K3

; (A3)

Xf �z ;c ¼
c
f �z

@f �z
@c
¼ K5

K1K2 þ K3

; (A4)

where

K1 ¼ 2jc2f �z ðN � 1ÞCðN�1Þb � Nðv2 � c2ÞCNbScf �z ;

(A5)

K2 ¼ f �z fðcþ jÞScf �z þ jcf �z Ccf �z g; (A6)

K3 ¼ ðv2 � c2ÞðScf �z � cf �z Ccf �z ÞSbSNb; (A7)

K4 ¼ �jf �z

	
2c2SbSðN�1Þb þ K1Scf �z



; (A8)

K5 ¼ fðv2 � c2Þcf �z Ccf �z � 2v2Scf �z gSbSNb

� cf �z ðScf �z þ jf �z Ccf �z ÞK1: (A9)
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