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Abstract 

The mechanism of earthquake energy input to building structures is clarified by 

considering the surface ground amplification and soil-structure interaction.  The earthquake 

input energies to superstructures, soil-foundation systems and total swaying-rocking system 

are obtained by taking the corresponding appropriate free bodies into account and defining 

the energy transfer functions.  It has been made clear that, when the ground surface motion is 

white, the input energy to the swaying-rocking model is constant regardless of the soil 

property (input energy constant property).  The upper bound of earthquake input energy to the 

swaying-rocking model is derived for the model including the surface ground amplification 

by taking full advantage of the above-mentioned input energy constant property and 

introducing the envelope function for the transfer function of the surface ground 

amplification.  Extension of the theory to a general earthquake ground motion model at the 

engineering bedrock is also made by taking full advantage of the above-mentioned input 

energy constant property. 
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1. Introduction 

In the history of seismic resistant design of building structures, the earthquake input 

energy has been getting much interest together with deformation and acceleration.  While 

deformation and acceleration can predict and evaluate the performance of a structure mainly 

for serviceability, the energy can evaluate the performance of a structure mainly for safety.  

Especially energy is appropriate for describing the performance of structures of different sizes 

in a unified manner because energy is a global index different from deformation and 

acceleration as local indices.  Furthermore it has been understood well [1-3] that energy is 

suitable for soil-structure interaction problems because this problem can be expressed 

reasonably by considering the exchange of energy between structures and soil. 

Much work has been accumulated so far on the topics of earthquake input energy (for 

example, [4-15]).  However the earthquake input energy to soil-structure systems has not been 

thoroughly considered in literature.  This is because the behavior of a soil-structure system is 

quite complicated and its frequency-dependent characteristics are difficult to incorporate in 

the time-history analysis for computation of input energy.  In contrast to most of the previous 

works, the earthquake input energy is formulated here in the frequency domain [3, 16-21] to 

facilitate the derivation of bound of earthquake input energy which is useful for the design of 

building structures under uncertain soil conditions. 

In order to clarify the energy dissipation mechanism in the soil-structure interaction 

system, three kinds of input energy are defined, one to the overall soil-structure interaction 

system, one to the superstructure only and the other to the foundation-soil system.  The 

structures treated in this paper are restricted to elastic structures in order to make the 

formulation simple.  The difference between these three energies indicates the energy 

dissipated in the soil or that radiating into the ground.  It is demonstrated that the input energy 

expressions for the above-mentioned three systems or substructures can be of a compact form 

via the frequency integration of the product between the input component (Fourier amplitude 

spectrum) and the substructure model component (so-called energy transfer function).  With 

the help of this compact form, it will be made clear that, when the ground surface motion is 

white, the input energy to the swaying-rocking model is constant regardless of the soil 
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property (input energy constant property).  The upper bound of earthquake input energy to the 

swaying-rocking model is then derived for the model including the surface ground 

amplification by taking full advantage of the above-mentioned input energy constant property 

and introducing the envelope function for the transfer function of the surface ground 

amplification.  Extension of the theory to a general earthquake ground motion model at the 

engineering bedrock will also be made by taking full advantage of the above-mentioned input 

energy constant property. 

 

2. Earthquake input energy to overall SR model subjected to free-field ground motion 

Consider a one-story shear building model (mass m, stiffness k, damping coefficient 

c), as shown in Fig.1, supported by swaying and rocking springs ,H Rk k  and dashpots ,H Rc c .  

This model is called the SR (Swaying-Rocking) model.  Let 0 0, ,Rm I L  denote the foundation 

mass, its mass moment of inertia and the height of the structural mass from the base.  The 

moment of inertia of structural mass is RI .  This model is subjected to a horizontal 

acceleration ( )gu t  at the free-field ground surface.  Let ,S Ru θ  denote the foundation 

horizontal displacement and its angle of rotation.  The horizontal displacement of the super-

mass relative to the foundation without rocking component is denoted by u. 

The equations of motion of the model may be expressed as 
 

gu+ + = −Mu Cu Ku Mr     (1) 
 

where 
 

0

2
0R R

m m Lm

m m m Lm

Lm Lm L m I I

 
 

= + 
 + + 

M ,   

 

( )H Rdiag k k k=K , 
 

( )H Rdiag c c c=C （structural damping and soil damping） 
 

( )T
S Ru u θ=u , ( )0 1 0

T=r   (2a-e) 
 

Let us introduce the absolute horizontal displacement y of the super-mass as 
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S Ry u u Lθ= + +  (3) 
 

Considering the free-body diagram as shown in Fig.2, the earthquake input energy to 

the SR model under the free-field horizontal ground acceleration gu  may be expressed as 
 

( ){ }0
A
I H S H S gE k u c u u dt∞= − +     (4) 

 

This is the work done by the boundary force on the boundary displacement.  The force 

equilibrium of the free body in Fig.2 provides 
 

( ){ } ( ) ( )0H S H S S g gk u c u m u u m y u− + = + + +       (5) 
 

Substitution of Eq.(5) into Eq.(4) leads to 
 

( ) ( ){ }00
A
I S g g gE m u u m y u u dt∞= + + +       (6) 

 

Premultiplication of Tu  on Eq.(1) and integration of the resulting equation from time=0 to 0t  

lead to 
 

{ }0 0
T T

gdt u dt∞ ∞+ + = − u Mu Cu Ku u Mr       (7) 
 

Integration by parts of the right-hand side of Eq.(7) and its rearrangement by use of  

0(0) ( ) 0g gu u t= =   provide 
 

( ) ( ){ }00 0 00

T T T
g g g S g g gu dt u u dt m u u m y u u dt

∞∞ ∞ ∞ − = − + = + + +   u Mr u Mr u Mr            (8) 
 

From Eqs.(6) and (8), the earthquake input energy to the SR model may be expressed finally 

as  
 

0
A T
I gE u dt∞= − u Mr    (9) 

 

It is known that, in linear elastic structures, the earthquake input energy can also be 

expressed in the frequency domain [10, 17-21].  Let , , , ,S R gU U Y UΘ  denote the Fourier 

transforms of , , , ,S R gu u y uθ  and , , ,S R YH H H H  denote the transfer functions of , , ,S Ru u yθ  

to gu  as follows. 
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/ ( ), / ( ), / ( ), / ( )g S g S R g R g YU U H U U H U H Y U Hω ω ω ω= = Θ = =      (10a-d) 
 

Extension of the upper and lower integration limits in Eq.(6) into ,∞ −∞  using the property of 

gu  as 0gu =  for 0t <  and application of Fourier transformation with expressions of Eq.(10) 

lead to 
 

( ) ( ){ }
( ) ( ){ }

i
0

22 2
00

1

2
1 1

     Re 1 1

A t
I S g g g

S Y g

E m U U m Y U u e dtd

m H m H U d
i

ω ω
π

ω ω ω
π ω

∞ ∞
−∞ −∞

∞

= + + + 

 = − + −   

    


  (11) 

 

In this paper, *( )  denotes the complex conjugate, Re[ ]  indicates the real part of a 

complex number and i  denotes the imaginary unit.  The frequency-domain expression in 

Eq.(11) may also be possible with the matrix expression of Eq.(9).   
 

2i
0

1 1
Re

2
A T t T
I g gE u e dtd i U dω ω ω ω

π π
∞ ∞ ∞
−∞ −∞

  = − = −      
U Mr H Mr    (12) 

 
where 
 

{ }T
S RH H H=H   (13) 

 

Eqs.(11) and (12) can be expressed in a compact form as 
 

( ) 2

0
A
I A gE F U dω ω∞=     (14) 

 
where ( )AF ω  is called the energy transfer function of the SR model and is expressed by 
 

( ) ( ) ( ){ }2 2
0

1 1
Re 1 1A S YF m H m H

i
ω ω ω

π ω
 = − + −  

        (15a) 

 

( ) 1
Re T

AF iω ω
π

 = −  H Mr   (15b) 

 

3.  Earthquake input energy to substructures in SR model 

3.1 Earthquake input energy to superstructure 

Consider the free-body diagram for the superstructure as shown in Fig.3.  The 

earthquake input energy to the superstructure can be expressed as 
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( ){ }( ) ( )0 0
S
I S g g R R RE ku cu u u dt mL y u I dtθ θ∞ ∞  = − + + + + +   

       (16) 

 

Application of Fourier inverse transformation and Fourier transformation to Eq.(16) and use 

of Eq.(10) provide 
 

( )

( ){ }

2

0

22 2
0

1 1
Re

1
Re 1

S
I S g

Y R R R g

E k i c H i H U d
i

i mL H I H H U d

ω ω ω
π ω

ω ω ω ω
π

∞ ∗

∞ ∗

  = + +     

 + − +   




  (17) 

 

Eq.(17) can be expressed compactly as 
 

( ) 2

0
S
I S gE F U dω ω∞=     (18) 

 

where  
 

( ) ( ) ( ){ }2 21 1
Re 1S S Y R R RF k i c H i H i mL H I H H

i
ω ω ω ω ω ω

π ω
∗ ∗  = + + + − +    

 (19) 

 

3.2 Earthquake input energy to foundation-soil system 

Consider the free-body diagram for the foundation-soil system as shown in Fig.4.  The 

earthquake input energy to the foundation-soil system can be expressed as 
 

( ){ } ( )( ) ( )0 0 0
F
I H S H S g S g g R R RE k u c u u dt ku cu u u dt mL y u I dtθ θ∞ ∞ ∞  = − + + + + − + +    

          

 (20)  
From Eqs.(4), (16), (20), the following relation holds among the earthquake input energies to 

the substructures and the overall system. 
 

F A S
I I IE E E= −   (21) 

 

By substituting Eqs.(11) and (17) into Eq.(21), the earthquake input energy to the foundation-

soil system can also be expressed in the frequency domain as 
 

( ) ( )

( )

( ){ }

22 2
00

2

0

22 2
0

1 1
Re 1 1

1 1
         Re

1
         Re 1

F
I S Y g

S g

Y R R R g

E m H m H U d
i

k i c H i H U d
i

i mL H I H H U d

ω ω ω
π ω

ω ω ω
π ω

ω ω ω ω
π

∞

∞ ∗

∞ ∗

  = − + −    
  − + +     

 − − +   







  (22) 
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Eq.(22) can be expressed compactly as 
 

( ) 2

0
F
I F gE F U dω ω∞=     (23) 

 

where  
 

( )

( ) ( ){ }
( )

( ){ }

2 2
0

2 2

1
1 1

1 1
Re

1

S Y

F S

Y R R R

m H m H
i

F k i c H i H
i

i mL H I H H

ω ω
ω

ω ω ω
π ω

ω ω ω

∗

∗

 − + − 
 

  = − + +    
 − − +
  

  (24) 

 

4. Property of earthquake input energy to overall SR model subjected to white-noise-like 

free-field input 

Consider the earthquake input energy to the overall SR model subjected to a white-

noise-like free-field input with ( )gU ω =1.  This quantity is called the ‘scaled earthquake 

input energy’ for the free-field input and can be evaluated by 
 

( )0
1

2
F
SR A iJ F d mω ω∞= =   (25) 

 

The summation is extended to the superstructure masses and the foundation mass.  Eq.(25) 

can be proved by taking into account that a white-noise-like free-field input with ( )gU ω =1 

is equivalent to the impulsive loading with the initial velocity of 1 in time domain [21]. 

 

5. Earthquake input energy to overall SR model subjected to engineering bedrock input 

Consider a uniform surface ground on uniform engineering bedrock.  If we deal with 

the ground motion propagation from the earthquake bedrock (around 1km-2km) to the 

engineering bedrock, two or three dimensional treatment may be appropriate.  However, the 

present paper deals with the input from the engineering bedrock.  It is well known that the 

earthquake ground motion input can be treated in most cases as a vertical propagating one 

after the propagation in multiple layers due to the Snell’s law.  Furthermore, because the main 

purpose of this paper is to provide a new method for evaluating the upper bound of input 
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energy to a building structure on a surface ground, a simple but fundamental situation is 

assumed.  Once the transfer function between a position at underground and the free-field 

ground surface is provided, a similar method can be developed without difficulty. 

Let 1 1 1 1, , ,SV Gρ β  and 1h  denote the mass density, the shear wave velocity, the shear 

modulus, the damping ratio and the depth of the surface ground.  The mass density and shear 

wave velocity of the engineering bedrock are denoted by 2ρ  and 2SV .  The absolute value of 

the transfer function of the free-field surface ground motion 12E  to the outcropping 

engineering bedrock surface ground motion 22E  can be expressed [22, 23] by 
 

1

2 2 2
2 1 1 1 1

2 1
( )

2 cos sin
G

E
H

E k h k h
ω

α
= =

+
 (26) 

 

where 
 

1 1
1 1 1

1 1S

h
k h h

G V

ρ ω ω= = ,  1 1 2 2( / ( ))S SV Vα ρ ρ=  (27a, b) 

 

For the damped case, 1 1k h  in Eq.(26) can be expressed by 
 

1 1
1 1 1 1 1 1 1 1 1

1 1

, (1 2 i) , /S
S

h
k h h G G V G

G V

ρ ω ω β ρ+ + +
+ += = = + =  (28a-c) 

 

With the help of Eq.(26), the free-field surface ground acceleration ( )gU ω  in the frequency 

domain may be related to the outcropping engineering bedrock surface ground acceleration 

0 ( )gU ω  through 
 

0( ) ( ) ( )g G gU H Uω ω ω=   (29) 
 

Substitution of Eq.(29) into Eq.(14) leads to 
 

( ) 22
00 ( ) ( )A

I A G gE F H U dω ω ω ω∞=    (30) 
 

Define the following quantity. 
 

( ) 2
0 ( )SR A GJ F H dω ω ω∞=   (31) 

 

SRJ  in Eq.(31) indicates the earthquake input energy to the overall SR model subjected to a 



 9

white-noise-like engineering bedrock input with 0 ( )gU ω =1.  The quantity is called later the 

‘scaled earthquake input energy’ for the engineering bedrock input.  It should be noted that, 

while one-layer surface ground has been treated in this section for simple presentation of 

( )GH ω , the general form of ( )GH ω  for multi-layered ground [22, 23] can be used in the 

following sections without difficulty.  Furthermore extension of the theory developed in the 

following section to a more general earthquake ground motion model with varied Fourier 

spectrum will be presented in Section 8. 

 

6. Upper bound of earthquake input energy to overall SR model subjected to white-

noise-like engineering bedrock input 

6.1 Case of undamped surface ground amplification 

Uncertainties exist in the surface ground amplification due to geometrical and 

geotechnical irregularity and non-uniformity.  It is therefore meaningful to discuss the upper 

bound of the earthquake input energy to the SR model.   

Consider the bounds of the scaled earthquake input energy for the engineering bedrock 

input defined by Eq.(31).  Since the energy transfer function ( )AF ω  in Eq.(31) is usually 

positive, it is sufficient to discuss the envelope function of 
2

( )GH ω .   

Consider first the undamped case for the free-field ground amplification.  Fig.5 shows 

an example of the energy transfer function ( )AF ω  and an example of the function 
2

( )GH ω .  

Let U
SRJ , L

SRJ  and ˆ
SRJ  denote the upper bound, lower bound and proposed upper bound using 

a narrower bound of amplification (see Fig.5).  Furthermore let bU  and bL  denote the upper 

bound and lower bound of the squared transfer function of the surface ground (see Fig.5).  

U
SRJ , L

SRJ  and ˆ
SRJ  can be derived as follows: 

 
1

2
U
SR b iJ U m=    (32a) 

 
1

2
L
SR b iJ L m=    (32b) 
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( ) { } ( )

( ) { } ( )

( ) ( ){ }
( ){ }

2 2
0

2
0

2
0 0

2
0

( ) ( )

       ( )

       = ( )

1 ˆ       = ( )
2

U

U

U

U

U

U

SR A b b G A G

A b b G A b

b A A b G

b i A b G SR

J F U U H d F H d

F U U H d F U d

U F d F U H d

U m F U H d J

ω
ω

ω
ω

ω

ω

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω

∞

∞

∞

 = − − +  
 ≤ − − +  

− − 

− − = 

 (32c) 

 

In Eq.(32c), Uω  denotes the upper limit of circular frequency for computation shown in 

Fig.5.  The validity of inequality in Eq.(32c) can be proven by the property of ( )AF ω  as a 

positive function.  The positivity of ( )AF ω  can be shown from the fact that, if some parts of 

( )AF ω  are negative, it contradicts the positivity of the energy consumption (total input 

energy) in the SR model subjected to an infinitely long sinusoidal ground motion expressed 

by a Dirac delta function at the corresponding frequency.  Eq.(32c) enables the evaluation of 

the upper bound of the scaled earthquake input energy without infinite integration by taking 

full advantage of Eq.(25). 

Consider three soil types 1-3 as shown in Fig.6.  The shear wave velocities SV  of the 

surface ground for these three soil types 1-3 are set as 200(m/s), 133(m/s) and 100(m/s).  The 

thickness of the surface ground is 20(m).  These shear wave velocities correspond to the 

natural period of 0.4, 0.6, 0.8(s).  The shear wave velocity of the engineering bedrock is 

400(m/s).  The mass density of the engineering bedrock is assumed to be the same as that of 

the surface ground for simplicity. 

The superstructure is modeled as a five-story shear building model and each floor 

mass is 51,200(kg).  The equal story height is 3.5(m).  The superstructure is transformed into 

a single-degree-of-freedom model by assuming a triangular lowest mode for a fixed-base 

model.  The determined parameters are shown in Table 1. 

The swaying and rocking stiffnesses and damping coefficients are computed by the 

following simple formulae [24]. 
 

3

2 4

(6.77 / (1.97 )) , (2.52 / (1.00 ))

(6.21/ (2.54 )) , (0.136 / (1.13 ))

H R

H S R S

k Gr k Gr

c V r c V r

ν ν

ν ρ ν ρ

= − = −

= − = −
 (33a-d) 

 

The mass density of the surface ground is 31.8 10ρ = ×  and that of the engineering bedrock is 
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assumed to be the same for simplicity.  The mass densities of hard ground and soft ground are 

not so different actually and a slight variation of mass density does not affect the response 

result so much.  The shear modulus of the surface ground is given by 2
SG Vρ= .  Poisson’s 

ratio of the surface ground is 0.35ν = .  The radius of the foundation is 4(m)r = .  Although a 

set of simple frequency-independent coefficients is used here, more complicated frequency-

dependent coefficients can be employed without difficulty owing to the frequency formulation 

in this paper. 

Fig.7 shows U
SRJ , L

SRJ , ˆ
SRJ  and the actual one with respect to the ratio of the 

fundamental natural circular frequency 1ω  of the superstructure to the fundamental natural 

circular frequency Gω  of the surface ground for three soil types 1-3.  200(rad/s) was adopted 

as Uω  in Eq.(32c) and 5000(rad/s) was employed as the upper circular frequency for 

computation in Eq.(31).  It can be observed that, as the surface ground becomes softer, the 

degree of overestimation by U
SRJ  becomes larger due to the increase of the impedance ratio.  

However the proposed upper bound of the scaled earthquake input energy ˆ
SRJ  provides 

reasonably acceptable upper bound of the actual one in a wide range of 1 / Gω ω .  Fig.8 

indicates the convergence of ˆ
SRJ  (Eq.(32c)) with respect to Uω  and the actual one (Eq.(31)) 

with respect to the upper circular frequency for two cases 1 / 1,5Gω ω =  in soil type 1.  The 

actual one in Fig.8 was computed by using 200(rad/s) as the upper circular frequency in 

Eq.(31) different from that in Fig.7.  It can be found that, while Uω =2000(rad/s) is preferable 

from the convergence point of view, Uω =200(rad/s) may be used from the viewpoint of 

computational efficiency within acceptable accuracy. 
 

6.2 Case of damped surface ground amplification 

Consider second the damped case for the free-field ground amplification.  The 

damping of the surface ground is set to 0.05.  For simplicity the damping of the engineering 

bedrock is assumed to be the same as that of the surface ground.  The soil damping ratio 

depends on the experienced shear strain amplitude and a well-known SHAKE program can be 

used.  However, since the main purpose of this paper is to provide a new method for 

evaluating the upper bound of input energy to a building structure on a surface ground, a 
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simple case of soil damping ratio 0.05 is assumed.  The case of uncertain surface ground 

damping will be discussed later in this section. 

Fig.9 shows an example of the energy transfer function ( )AF ω  and an example of the 

function 
2

( )GH ω .  Let U
SRJ  and ˆ

SRJ  denote the upper bound and the proposed upper bound 

using a narrower bound of amplification (see Fig.9).  Furthermore let bU  denote the upper 

bound of the squared transfer function of the surface ground (see Fig.9).  U
SRJ  and ˆ

SRJ  can be 

derived as Eq.(32a) and Eq.(32c).  As in the case of undamped surface ground amplification, 

Eq.(32c) enables the evaluation of the upper bound of the scaled earthquake input energy 

without infinite integration by taking full advantage of Eq.(25). 

Fig.10 shows ( )AF ω  and 
2

( )GH ω  for the superstructure with the fundamental 

natural period of 0.525(s) and the damping ratio 0.02 for three soil types 1-3.  Fig.11 

illustrates ˆ
SRJ  and the actual one with respect to the ratio of the fundamental natural circular 

frequency 1ω  of the superstructure to the fundamental natural circular frequency Gω  of the 

surface ground for three soil types 1-3.  200(rad/s) was adopted as Uω  in Eq.(32c) and 

5000(rad/s) was employed as the upper circular frequency for computation in Eq.(31).  It can 

be observed that, even if the surface ground property changes, the proposed upper bound of 

the scaled earthquake input energy ˆ
SRJ  provides reasonably acceptable upper bound of the 

actual one in a wide range of 1 / Gω ω .  Fig.12 indicates the convergence of ˆ
SRJ  (Eq.(32c)) 

with respect to Uω  and the actual one (Eq.(31)) with respect to the upper circular frequency 

for two cases 1 / 1,5Gω ω =  in soil type 1.  The actual one in Fig.12 was computed by using 

200(rad/s) as the upper circular frequency in Eq.(31) different from that in Fig.11.  It can be 

found that, while Uω =2000(rad/s) is preferable from the convergence point of view, 

Uω =200(rad/s) may be used from the viewpoint of computational efficiency within 

acceptable accuracy. 

Fig.13 illustrates some examples of envelope functions of ( )GH ω  for uncertain shear 

wave velocity and damping ratio of surface ground.  The nominal values are shear wave 

velocity=200(m/s) and damping ratio=0.05.  Fig.13(a) is plotted for uncertain shear wave 

velocity (0.8-1.2 of nominal value), Fig.13(b) is for uncertain damping ratio (0.8-1.2 of 

nominal value) and Fig.13(c) is for uncertain combinations of shear wave velocity (0.8-1.2 of 
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nominal value) and damping ratio (0.8-1.2 of nominal value).  Once an envelope function 

squared 
2

( )GH ω  is specified and its upper bound bU  is determined, these can be used as 

2
( )GH ω  and bU  in Eq.(32a) and Eq.(32c).  Then U

SRJ  and ˆ
SRJ  in Eq.(32a) and Eq.(32c) can 

be utilized as the upper bound and the proposed narrower upper bound for uncertain shear 

wave velocity and damping ratio of surface ground. 

 

7. Earthquake input energy to substructures in SR model subjected to white-noise-like 

engineering bedrock input 

Fig.14 shows the scaled earthquake input energies for engineering bedrock input to the 

overall SR model SRJ , the superstructure SJ  and the foundation-soil system FJ  with respect 

to 1 / Gω ω  for the case of undamped surface soil amplification.  These quantities are given by   
 

( ) 2
0 ( )SR A GJ F H dω ω ω∞=   (34a) 

( ) 2
0 ( )S S GJ F H dω ω ω∞=   (34b) 

( ) 2
0 ( )F F GJ F H dω ω ω∞=   (34c) 

 

As explained in Eq.(31), SRJ , SJ  and FJ  in Eq.(34a-c) indicate the earthquake input 

energies to the overall SR model, the superstructure and the foundation-soil system, 

respectively, subjected to a white-noise-like engineering bedrock input with 0 ( )gU ω =1.  The 

upper frequency for computation of Eq.(31) is 5000(rad/s) in this case.  It can be observed 

that, as the superstructure becomes stiffer ( 1 / Gω ω  becomes larger), the scaled earthquake 

input energy concentrates to the foundation-soil system. 

Fig.15 illustrates the scaled earthquake input energies for engineering bedrock input to 

the overall SR model, the superstructure and the foundation-soil system with respect to 

1 / Gω ω  for the case of damped surface ground amplification.  The damping ratio of 0.05 has 

been adopted.  The same tendency as in the undamped case can be observed. 

 

8. Extension to general ground motion input at engineering bedrock surface 

Consider a general ground motion input at the engineering bedrock surface the Fourier 
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amplitude of which is shown in Fig.16.  Assume that the upper bound of the squared Fourier 

amplitude 
2

0( )gU ω  is given by the following form. 
 

( )2
0( ) ( )

U

g C VU R Rω ω= +  (35a) 

 
( ) (0 )

( )
0  ( )

V I
V

I

R
R

ω ω ω
ω

ω ω
≤ ≤

=  ≤
 (35b) 

 

This model implies that most earthquake ground motions at the engineering bedrock surface 

have a predominant frequency in rather lower frequency range and the components at higher 

frequencies are bounded by a constant value. 

The first upper bound of the earthquake input energy to the SR model under the 

engineering bedrock horizontal ground acceleration 0gu  may be expressed as 
 

( ) ( )2
2

00
ˆ ( ) ( )

UA
I A G gE F H U dω ω ω ω∞=    (36) 

 

This bound can be proved by ( )2 2

0 0( ) ( )
U

g gU Uω ω≤   and the property of ( )AF ω  as a 

positive function.  As shown above, the following relation holds. 
 

( )0
1

2
F
SR A iJ F d mω ω∞= =   (37) 

 

By taking advantage of Eq.(37), the second upper bound of the earthquake input energy to the 

SR model under the engineering bedrock horizontal ground acceleration 0gu  may be derived 

as follows. 
 

( ) ( ){ }( )

( ) ( ) ( ){ }
( )

( )( ) ( )( )

2
0

2 2
0

0

2 2
0 0

ˆ ( ) ( )

     ( ) ( ) ( ) ( )

1
     ( )

2

        ( ) ( ) ( )

ˆ̂
     

I

U I

A
I A b b G C V

A b C b V b G C b G V

b C i b A V
i

C A b G A b G V

A
I

E F U U H R R d

F U R U R U H R U H R d

U R m U F R d

R F U H d F U H R d

E

ω

ω ω

ω ω ω ω

ω ω ω ω ω ω

ω ω ω

ω ω ω ω ω ω ω

∞

∞

= − − +

= + − − − −

≤ + 

− − − − 

=

 (38) 

 

The validity of this second upper bound can be proven by the property of ( )AF ω  as a positive 

function, as explained above, and the round-up of the squared surface soil transfer function 
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2
( )GH ω  to bU  in Uω ω≤  (i.e. ( )2

( ) 0b GU H ω− →  in Uω ω≤ ).  Eq.(38) shows that the 

upper bound of input energy can be computed without infinite integration. 

The numerical simulation of the theory on upper bound for a general earthquake 

ground motion model shown in this section will be presented in the future. 

Furthermore, only elastic structures have been treated for simple presentation of the 

theory.  Since the present method takes advantage of the energy transfer function approach 

which can be used for elastic structures, an equivalent linearization technique [25-27] may be 

promising for inelastic structures.  This formulation will also be presented in the future. 

 

9. Conclusions 

The conclusions may be summarized as follows: 

(1) When the ground surface motion is white-like (constant Fourier amplitude spectrum), the 

input energy to the swaying-rocking model is constant regardless of the soil property, i.e. 

input energy constant property.  This property can be proved by considering the physical 

meaning of the constant Fourier spectrum of the input ground surface motion in the time 

domain, i.e. the input of initial velocity at zero time. 

(2) A good estimation of the upper bound of earthquake input energy to the swaying-rocking 

model is derived for the model including the surface ground amplification by taking full 

advantage of the property stated in the above conclusion (1) and a narrower upper bound 

of the surface ground amplification (transfer function squared).  Numerical examples 

demonstrated that the proposed upper bound using the narrower upper bound of the 

surface ground amplification is a reasonable upper bound of the actual one for all soil 

types 1-3. 

(3) The procedure of deriving the upper bound of earthquake input energy to the swaying-

rocking model stated in conclusion (2) can be applied to the case with uncertain shear 

wave velocity and damping ratio of the surface ground. 

(4) Extension of the theory to a general earthquake ground motion model at the engineering 

bedrock has also been made by taking full advantage of the above-mentioned input energy 

constant property and another upper bound of input energy has been derived.  The validity 
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of that upper bound can be proven by using the property of the energy transfer function as 

a positive function and the round-up of the squared surface soil transfer function. 
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Table 1 Structural and foundation parameters 
 

 superstructure 

Fundamental natural period (fixed- base) 0.525s 

Fundamental natural circular frequency (fixed- base) 11.97rad/s 

Mass (equivalent mass for lowest mode) 2.09×105kg 

Mass height (equivalent height for lowest mode) 12.8m 

Foundation mass 1.54×105kg 

Damping ratio for superstructure 0.02 

Mass moment of inertia of superstructure 1.12×106kgm2 

Mass moment of inertia of foundation 0.819×106kgm2 
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Fig.1 Swaying-rocking model subjected to free-field ground motion 
 

( )gm y u− + 

R RI θ− 

H S H Sk u c u+ 

gu

R R R Rk cθ θ+ 

( )0 S gm u u− + 
0R RI θ− 

 
 

Fig.2 Free-body diagram for overall SR model 
 

ku cu+ 

( )g R RmL y u I θ− + −  
 

 
Fig.3 Free-body diagram for superstructure 

 

( )g R RmL y u I θ− + −  

H S H Sk u c u+ 

ku cu+ 

 
Fig.4 Free-body diagram for foundation-soil system 
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Narrower upper bound
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Fig.5 Energy transfer function of SR model and narrower upper bound of surface ground 

amplification (undamped case for surface-ground amplification) 
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Fig.6 Three soil types 
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Fig.7 Scaled earthquake input energy to SR model: actual one, upper bound, lower bound and 
proposed upper bound using narrower bound of amplification (undamped case for 

amplification) 
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Fig.8 Convergence of scaled earthquake input energy to SR model with respect to upper limit 

of circular frequency for computation (comparison of proposed upper bound with actual 
one in case of undamped surface-ground amplification: soil type 1) 
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Fig.9 Energy transfer function of SR model and narrower upper bound of surface ground 
amplification (damped case for surface-ground amplification) 
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Fig.10 Energy transfer function of SR model and transfer function squared of surface ground 
for three ground types (damped case for surface-ground amplification) 
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Fig.11 Scaled earthquake input energy to SR model: actual one and proposed upper bound 

using narrower bound of amplification (damped case for amplification) 
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Fig.12 Convergence of scaled earthquake input energy to SR model with respect to upper 

limit of circular frequency for computation (comparison of proposed upper bound with 
actual one in case of damped surface-ground amplification: soil type 1) 
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Fig.13 Envelope function of ( )GH ω  for uncertain shear wave velocity 

and damping ratio of surface ground 
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Fig.14 Scaled earthquake input energy to substructures in SR model subjected to white-noise-

like engineering bedrock input in case of undamped surface-ground amplification 
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Fig.15 Scaled earthquake input energy to substructures in SR model subjected to white-noise-

like engineering bedrock input in case of damped surface-ground amplification 
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Fig.16 Upper bound model of squared Fourier amplitude of ground motion at engineering 
bedrock and round-up of squared surface soil transfer function for computation of narrower 

upper bound of input energy 


