TITLE:
THEMIS observation of chorus elements without a gap at half the gyrofrequency

AUTHOR(S):
Kurita, S.; Katoh, Y.; Omura, Y.; Angelopoulos, V.; Cully, C. M.; Le Contel, O.; Misawa, H.

CITATION:

ISSUE DATE:
2012-11

URL:
http://hdl.handle.net/2433/193717

RIGHT:
©2012. American Geophysical Union.
THEMIS observation of chorus elements without a gap at half the gyrofrequency

S. Kurita, Y. Katoh, Y. Omura, V. Angelopoulos, C. M. Cully, O. Le Contel, and H. Misawa

Received 28 June 2012; revised 8 September 2012; accepted 11 October 2012; published 30 November 2012.

1. Introduction

[2] In the Earth’s inner magnetosphere, whistler mode chorus emissions are observed mostly on the dawn and day side and are enhanced during geomagnetically disturbed periods [Tsurutani and Smith, 1974; Meredith et al., 2001]. Chorus emissions are narrow band emissions observed in the typical frequency range of 0.2 to 0.8 \(\Omega_e \) with a gap at 0.5 \(\Omega_e \), where \(\Omega_e \) is the electron gyrofrequency \(\Omega_e \) at the magnetic equator. Emissions below and above 0.5 \(\Omega_e \) are called the lower-band and upper-band chorus emissions, respectively. Based on the duct propagation characteristics of whistler mode waves, Bell et al. [2009] showed that the gap at 0.5 \(\Omega_e \) can be formed if the lower- and upper-band chorus waves are generated within the enhanced and depleted plasma density region.

respectively. Results of in situ observation [Santolik et al., 2003; Li et al., 2011] revealed that the wave normal angles of the lower-band chorus emissions are typically field-aligned in the equatorial region and become large on the dayside of the region away from the equator. On the other hand, upper-band chorus emissions have weaker wave magnetic amplitude and larger wave normal angle compared with the lower-band chorus emissions, and are observed in a confined region close to the magnetic equator [Li et al., 2011]. Because of the difference, the generation processes of the upper-band and lower-band chorus emissions have sometimes been discussed separately.

[3] As the generation mechanism of chorus, effects of nonlinear wave-particle interactions have been discussed by considering a coherent wave element propagating along the magnetic field line [Omura et al., 1991]. Recently, Omura et al. [2008] have proposed a nonlinear wave growth theory for the generation process of rising tone chorus emissions. Based on the theory, a frequency sweep rate of a rising tone chorus element depends on the wave amplitude of an individual wave packet. On the other hand, Trakhtengerts [1995] and Trakhtengerts et al. [2004] proposed the Backward Wave Oscillator (BWO) model as a generation model of chorus emissions. BWO model proposed that frequency sweep rates depend on background plasma parameters such as plasma density and magnetic field strength. The validity of the relationship proposed by Omura et al. [2008] was confirmed by comparing with simulation results [Hikishima et al., 2009; Katoh and Omura, 2011] and was also demonstrated by observation [Cully et al., 2011]. The dependence of the frequency sweep rate predicted by BWO model was compared...
with the observations by Cluster [Macůšová et al., 2010] and THEMIS [Tao et al., 2012].

[4] Omura et al. [2009] have suggested that a rising tone chorus element is generated in the region close to the magnetic equator through the nonlinear wave growth mechanism in the purely field aligned direction, and that the gap at 0.5 \(\Omega_{ce} \) is formed by a nonlinear wave damping during its propagation away from the equator with a slightly oblique wave normal angle, resulting in the separation of chorus emissions into the upper-band and lower-band chorus emissions. Chorus emissions without a gap at 0.5 \(\Omega_{ce} \) are expected to be observed in the source region based on the nonlinear wave growth/damping mechanisms. Burtis and Helliwell [1976] have reported the presence of the chorus emissions without a gap at 0.5 \(\Omega_{ce} \) in the region close to the magnetic equator based on the OGO-3 observations. It is interesting to analyze the properties of the chorus emissions without a gap at 0.5 \(\Omega_{ce} \) whether the observed properties are consistent with the theoretical predictions by the nonlinear wave growth theory or not.

[5] In the present study we analyzed the properties of rising tone chorus elements without a gap at half the gyro-frequency observed by the THEMIS spacecraft in the region close to the magnetic equator. The frequency sweep rates of the chorus emissions were compared with the prediction by the nonlinear wave growth theory [Omura et al., 2008]. The optimum conditions for triggering a rising tone chorus element proposed by Omura and Nunn [2011] were also examined through comparison with the observed properties of the chorus emissions.

2. THEMIS Observation

[6] In the present study we use data from the THEMIS mission [Angelopoulos, 2008]; the Electric Field Instrument (EFI) [Bonnell et al., 2008], the Search-Coil Magnetometer (SCM) [Le Contel et al., 2008; Roux et al., 2008], the Fluxgate Magnetometer (FGM) [Auster et al., 2008], and the Electro-Static Analyzer (ESA) [McFadden et al., 2008]. The EFI and SCM waveforms sampled at 8192 Hz were analyzed in this study. We first converted the waveform data of SCM and EFI into the magnetic field-aligned coordinates by referring to the FGM measurements to compute the wave normal angle and the Poynting vector of chorus emissions. The wave normal angle is computed by analyzing three components of the wave magnetic field using the method of Samson and Olson [1980], which has an inherent ambiguity of 180 degrees in the wave normal angle direction. Since the wave normal direction has a component in the direction of the energy flow, the ambiguity can be removed by introducing the Poynting vector \(\mathbf{S} \). The Poynting vector \(\mathbf{S} \) in the frequency domain is calculated directly using \(\mathbf{S}(f) = \text{Re}\{\mathbf{E}(f) \times \mathbf{B} \times (f)/2\Omega_{lo}\} \), where \(\mathbf{E}(f) \)
Electron pitch angle distribution observed by THEMIS D estimated from the T96 magnetic field [Tsyganenko, 1995, 1996] is ~700 km northward from the magnetic equator. In Figure 1a we find a band of weak whistler mode waves just below 1000 Hz and discrete chorus elements with rising tones in the frequency range from 1000 to 2500 Hz without a distinct gap of wave amplitude at half the gyrofrequency (1540 Hz, denoted by the dotted line).

Figure 2 shows pitch angle distributions of energetic electrons measured during the event. We find anisotropic distributions in the energy range below and above ~10 keV, while ~10 keV electrons show isotropic distributions. From the cyclotron resonance condition, we evaluated that the minimum resonant energies of whistler mode waves in the frequency range from 0.3 to 0.5 \(\Omega_e \) are in the range from 4 keV to 20 keV, while the minimum resonance energy of whistler mode waves around 1000 Hz is ~20 keV. In the computation of the resonance condition, we assumed the total plasma density of 1.7 cm\(^{-3}\) and the gyrofrequency of 3080 Hz based on the observation. These estimations suggest that the isotropic distributions of ~10 keV electrons are the result of the pitch angle scattering through the resonant interaction with the chorus emissions, while the anisotropic distributions in the energy range above 20 keV can be a signature of free energy sources of the whistler mode waves that trigger the rising tone chorus elements.

In Figure 1b, we show the wave normal angle of components having the magnetic wave spectral intensity larger than \(10^{-5} \) nT\(^2\)/Hz. In the present study, we focus on five chorus elements as labeled in Figure 1b. The chorus elements propagate typically in the field-aligned direction in the entire frequency range. In Figure 1c, the Poynting vector parallel to the ambient magnetic field is shown. It is found that the selected chorus elements propagate southward although THEMIS D was located in the northern hemisphere. Using the Cluster multispacecraft observations, Santolik et al. [2004] reported that the central position of the chorus source region flaps at timescales of minute within 1000–2000 km of the geomagnetic equator. In Figure 1a we find a band of weak chorus elements with rising tones in the frequency range from 1000 to 2500 Hz without a distinct gap of wave amplitude at half the gyrofrequency (1540 Hz, denoted by the dotted line).

Figure 1b shows the wave normal angle of components having the magnetic wave spectral intensity larger than \(10^{-5} \) nT\(^2\)/Hz. In the present study, we focus on five chorus elements as labeled in Figure 1b. The chorus elements propagate typically in the field-aligned direction in the entire frequency range. In Figure 1c, the Poynting vector parallel to the ambient magnetic field is shown. It is found that the selected chorus elements propagate southward although THEMIS D was located in the northern hemisphere. Using the Cluster multispacecraft observations, Santolik et al. [2004] reported that the central position of the chorus source region flaps at timescales of minute within 1000–2000 km of the geomagnetic equator. Thus, the observed Poynting vector direction can be explained by the flapping motion of the central position of the chorus source region.

This idea is validated by the observation by THEMIS D two minutes after the event in Figure 1, which is shown in Figure 3. The data shown in Figure 3 was obtained at a radial distance of 6.16 \(R_E \), at a magnetic local time of 5.64 hours, and at a magnetic latitude of 2.53 degrees. During this time interval, chorus emissions similar to those in Figure 1 are observed and the Poynting vector direction of the chorus elements changes from northward to southward. It is strongly suggested that the central position of the chorus source region flapped and crossed the location of THEMIS D around the time interval. Based on the result of Santolik et al. [2004], the distance from the spacecraft location to the chorus source is small enough to assume the observation was made within the source region. Since the spacecraft position close to the central position of the chorus source, the propagation effects on the waves are not significant.

The frequency profile, wave normal angle, and propagation direction of the chorus emissions are consistent with the properties of rising tone chorus elements near the source region expected from the nonlinear wave growth theory.
The frequency sweep rates and the frequency profiles of the labeled chorus elements are studied in the next section. We do not analyze the properties of the chorus elements shown in Figure 3 because the overlap of the elements in time makes it difficult to pick up the properties of each individual chorus element.

3. Comparison With the Nonlinear Wave Growth Theory

3.1. Frequency Sweep Rates

First, we study the frequency sweep rate of the observed chorus elements. Using the relativistic second-order resonance condition for a whistler mode wave with a varying frequency, Omura et al. [2008] showed that the sweep rate of the wave frequency ω is described as

$$\frac{\partial \omega}{\partial t} = \frac{0.4 \gamma V_{||0}}{c \gamma \xi} \left(1 - \frac{V_g}{V_R} \right) \frac{B^2}{B_0^2} \Omega_{pe} \Omega. \tag{1}$$

where $\gamma = (1 + \xi^2)^{-1}$, $\xi^2 = \omega_0^2 - \omega^2$, Ω_{pe} is the electron plasma frequency, $\gamma = \left[1 - \left(\frac{v^2 + v^2}{c^2} \right)^{-1/2} \right]$, $v_||$ and v_\perp are parallel and perpendicular velocity components of an electron, c is the speed of light, $V_{||0}$ is the average value of $v_||$ of energetic electrons, V_R is the resonance velocity, V_g is the group velocity, B_R is the amplitude of the wave magnetic field, and B_0 is the background magnetic field intensity. Equation (1) shows that the frequency sweep rate of a chorus element depends on the amplitude of the wave magnetic field near the magnetic equator. We estimated the frequency sweep rate by equation (1) and compared with the observation.

For comparison of the theory and observation, we studied the instantaneous frequencies of chorus elements by using the zero crossings of one of the perpendicular components of the wave magnetic field. Figures 4a–4c show the time histories of the instantaneous frequencies of the elements 1, 3, and 5 shown in Figure 1b. The instantaneous frequencies of the chorus elements gradually increase in time. In each panel of Figure 4, we also show line segments with the tilt corresponding to the theoretically estimated frequency sweep rate by equation (1) at each time period (0.16 s). In evaluating equation (1), we assumed the plasma density of 1.7 cm$^{-3}$ and the typical kinetic energy of energetic electrons of 20 keV based on the spacecraft floating potential measurements and the ESA observations, respectively. The theoretically estimated frequency sweep rates are basically consistent with the observed frequency variations of elements 1 to 4 (elements 2 and 4 are not shown). In element 5, however, we find that the theoretical sweep rates tend to be larger than the observed sweep rates. According to the nonlinear wave growth theory, the frequency sweep rate of each chorus element is determined in the region close to the magnetic equator. In the region away from the source, the wave amplitude of a chorus element is nonlinearly intensified during its propagation. This effect would result in the deviation of the theoretically estimated
sweep rate from the observation. Since element 5 has the largest wave amplitude among the five elements, it is possible that element 5 is a chorus element generated relatively away from THEMIS D and it is nonlinearly amplified through its propagation, resulting in the deviation of the estimated sweep rate from the observation.

3.2. Threshold and Optimum Wave Amplitudes

[14] Omura and Nunn [2011] studied the optimum wave amplitudes for generation of a rising tone chorus element. The optimum wave amplitude Ω_{opt} is derived from the consideration of the nonlinear transition time T_N, corresponding to the timescale of the formation process of the electromagnetic electron hole. The optimum wave amplitude Ω_{opt} normalized by Ω_{eo}, $\Omega_{\text{opt}} = \Omega_{\text{opt}}/\Omega_{\text{eo}}$, is given by

$$\hat{\Omega}_{\text{opt}} = 0.81\pi^{-5/2} Q \frac{s_1 V_R}{s_0 U_{\|}} \left(\frac{\omega_{ph} V_{L0}/\gamma}{\gamma} \right)^2 \exp \left(-\frac{\gamma^2 V_R^2}{2U_{\|}} \right),$$

where Q represents the depth of the electromagnetic electron hole in the velocity phase space, τ is the ratio of T_N to the nonlinear trapping period $T_R = 2\pi/\omega_{tr}$, ω_{tr} is the trapping frequency [Omura et al., 2008], $s_0 = V_{L0}/c$, $s_1 = \gamma (1 - V_R/V_R)^2$, $\tilde{V}_R = V_R/c$, $\tilde{\omega}_R = \omega_R/c$, $\tilde{\omega}_{ph} = \omega_{ph}/\Omega_{\text{eo}}$, $\tilde{U}_{\|} = U_{\|}/c = \gamma V_{\|}/c$, $\tilde{\omega}_{ph} = \omega_{ph}/\Omega_{\text{eo}}$, $\tilde{V}_{L0} = V_{L0}/c$, and $\tilde{V}_R = V_R/c$. V_R, V_{L0}, N_h, and N_{eo} are thermal velocity of energetic electrons parallel to the ambient magnetic field, number density of hot and cold electrons, respectively. The optimum wave amplitude was compared with the simulation results and found that the $\tau = 0.25$–1.0 shows good agreement between the theory and simulation [Omura and Nunn, 2011; Hikishima and Omura, 2012]. The threshold of the wave amplitude for the nonlinear wave growth of chorus emissions has been theoretically derived by Omura et al. [2009]. The equation of the threshold $B_{w,th}$ is given by $B_{w,th}/B_0 = \hat{\Omega}_{\text{th}}$, where

$$\hat{\Omega}_{\text{th}} = \frac{100\pi^2 \gamma^2 \xi}{\tilde{\omega}_{ph}^2 \tilde{V}_{L0}^2 x^2} \left(\frac{\tilde{\omega}_{ph} \tilde{U}_{\|}}{\tilde{\omega}_{ph} \tilde{V}_{L0}} \right)^2 \exp \left(-\frac{\gamma^2 V_R^2}{2U_{\|}} \right),$$

$\tilde{a} = ac^2/\Omega_{\text{eo}}^2$, and a is specified by the L value and the Earth’s radius R_E as $a = 4.5(LR_E)^2$.

[15] In the generation mechanism of a rising tone chorus element, based on the nonlinear wave growth theory, a coherent wave element emerges from a band of incoherent whistler mode waves in the frequency range lower than the typical chorus emissions. Therefore we first examined equation (3) by assuming a range of parameters of energetic electrons referring to the initial wave amplitude of the observed chorus elements. Figure 5 shows the wave amplitudes of the chorus elements at...
different frequencies estimated from the local maximum values of the frequency spectra shown in Figure 1. The suitable threshold amplitude at 1000 Hz is obtained in a case that \(N_b = 4 \times 10^{-3} N_0 \) and \(T_e / T_\| = 1.5 \), where \(T_e \) and \(T_\| \) are perpendicular and parallel temperatures of energetic electrons, respectively. In the calculation of the threshold wave amplitudes, the \(Q = 0.5 \) is assumed [Omura and Nunn, 2011]. The estimated threshold of the wave amplitude by equation (3) is shown in Figure 5. We then estimated the optimum wave amplitude by equation (2) using the same parameters of energetic electrons. The estimated optimum wave amplitudes for different values of \(\tau \) are shown in Figure 5, and the frequency profile of \(\Omega_{e\infty} \) with \(\tau \sim 0.5 \) is consistent with the frequency profiles of the observed chorus elements. The number density of energetic electrons assumed in the theoretical computation is roughly consistent with the energetic electron flux from ESA showing that the number density of energetic electrons (\(>20 \) keV) is \(1.0 \times 10^{-7} \) relative to the total number density of electrons. These results reveal that the generation process of the observed chorus elements are well explained by the nonlinear wave growth theory.

4. Summary

[16] We analyzed the waveform data obtained from THEMIS and reported the rising tone chorus elements without a gap at half the gyrofrequency in the region close to the magnetic equator. We studied the properties of the observed chorus elements and showed that the observed frequency sweep rates are consistent with the estimates based on the nonlinear wave growth theory. In addition, we compared the frequency profiles of the chorus wave amplitudes with those of the optimum and threshold wave amplitudes for generating rising tone chorus emissions derived from the nonlinear wave growth theory. The results of the comparison show the reasonable agreement between the observed properties of chorus elements and the theoretical estimates, indicating that the triggering process of rising tone emissions with the optimum amplitudes is continually taking place in the generation process of a rising tone chorus element.

[17] Although our results suggest that the upper-band chorus and lower-band chorus are originally a single emission due to the nonlinear wave growth mechanism, the generation process of upper-band and lower-band chorus is still an open issue. Further investigations are required to understand the generation mechanisms such as nonlinear wave damping due to oblique propagation [Omura et al., 2009] and excitation in ducts of either enhanced or depleted cold plasma density [Bell et al., 2009]. We have found other periods of the THEMIS observation showing chorus elements without a gap at 0.5 \(\Omega_e \) in the region close to the magnetic equator. Detailed analyses on these events would yield important clues in understanding the generation mechanism of both upper-band and lower-band chorus emissions from the point of view of the nonlinear wave-particle interactions. We leave the analyses as a target of our future work.

[18] Acknowledgments. We would like to acknowledge NASA contract NAS5-02099 for use of data from the THEMIS Mission, J. Bonnell for use of EFI data, J. P. McFadden for use of ESA data, U. Auster for use of FGM data, and the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The French involvement (SCM instruments) on THEMIS are supported by CNES and CNRS-INSU. This work was supported by grant-in-aid 22684025, 23224011, 23340147 and the Global COE program “Global Education and Research Center for Earth and Planetary Dynamics” at Tohoku University of the Ministry of Education, Culture, Sports, Science and Technology in Japan. S. K. is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists.

[19] Robert Lysak thanks the reviewers for their assistance in evaluating the paper.

References

