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Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake
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We have identified areas of soil liquefaction by the analysis of surface changes caused by the 2011 Tohoku
earthquake, using synthetic aperture radar (SAR) interferometry in the Kanto region of Japan. Changes in surface
scattering properties were evaluated using phase-corrected coherence, computed from the reflective intensity
(amplitude) of SAR data. Often, the loss of coherence (decorrelation) is simply considered to represent areas
damaged from the disaster. However, temporal decorrelation could also be induced by ordinal surface cover
change in addition to disaster damage. Therefore, we use a coherence change threshold to discriminate significant
decorrelation caused by soil liquefaction from that produced by ordinal surface cover changes. Moreover, local
surface displacements are estimated using phase information from the SAR data. Our results compare favorably
with those from surveys of sand boils and aerial photography, showing that surface changes derived from SAR
data are associated with soil liquefaction. Our results demonstrate that soil liquefaction occurred mainly near the
waterfront along Tokyo Bay and the Tone River, and ground subsidence was widely distributed.
Key words: Soil liquefaction, SAR interferometry, interferometric coherence, temporal decorrelation, change
detection, the 2011 Tohoku earthquake.

1. Introduction
The 2011 Tohoku earthquake (Mw 9.0) occurred north-

east of the Japan Trench on 11 March with a rupture area
as large as 500 × 200 km (Ozawa et al., 2011), and was
the fourth largest earthquake in the instrumental record.
It was followed by numerous large aftershocks along that
trench. In the Kanto region including Tokyo, about 350
km from the mainshock, seismic intensities of 5-lower to
6-lower were recorded (Fig. 1(a)) (Hoshiba et al., 2011).
There were large areas of soil liquefaction, especially along
Tokyo Bay and the Tone River, causing extensive damage to
residential buildings and infrastructure (Bhattacharya et al.,
2011; Yasuda and Harada, 2011; Senna et al., 2012). Ac-
cording to the geomorphologic classification of the Kanto
region (Wakamatsu et al., 2005), areas around Tokyo Bay
are mainly covered by filled land. Back marsh and natural
levees are widely distributed along the upper Tone River,
and delta and coastal lowland extend from the middle to the
lower part of the river (Fig. 1(c)).

Soil liquefaction is usually investigated by field recon-
naissance and aerial photography. Here, we successfully
apply synthetic aperture radar (SAR) interferometry (In-
SAR), derived from satellite data, to identify and map soil
liquefaction. Satellite-based remote sensing methods hold
promise for providing broad and dense information on the
Earth’s surface (Massonnet and Feigl, 1998; Bürgmann et
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al., 2000; Simons and Rosen, 2007) and have shown a po-
tential advantage for investigating soil liquefaction (Atzori
et al., 2012). To our knowledge, this study is the first ap-
plication of InSAR analysis to mapping soil liquefaction
caused by the 2011 Tohoku earthquake.

Soil liquefaction can cause decorrelation because the
ground surface becomes wetter and structures may be tilted.
We derive such changes of ground surface properties and
thereby identify soil liquefaction areas by quantifying the
degree of decorrelation, using phase-corrected coherence
information based on SAR amplitude data. Previous stud-
ies have considered decorrelation as a geophysical phe-
nomenon and integrated it with field surveys, for instance
in mapping surface ruptures and estimating areas of ma-
jor building damage caused by earthquakes (Simons et al.,
2002; Fielding et al., 2005).

We also estimated surface displacement using InSAR,
which can produce a surface displacement map over wide
areas using phase information from paired satellite observa-
tions, without the need for ground-based observations. In-
SAR analysis has been successfully applied to understand-
ing synoptic surface displacement caused by the 2011 earth-
quake (Kobayashi et al., 2011; Feng et al., 2012). These
studies mainly focus on deformation over a few to several
tens of kilometers. Here, the focus is on the detection of
small-scale surface displacement produced by soil liquefac-
tion, using InSAR analysis.
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Fig. 1. (a) The study area (black rectangle) overlaid on the Japan Meteorological Agency seismic intensity of the 2011 earthquake (based on Hoshiba et
al., 2011). (b) The topography of the Kanto region and the analyzed scene. Two rectangles located on the waterfront along Tokyo Bay and the Tone
River covered by the SAR data, with ascending and descending orbits. Main branch of the Tone River is shown by a black line. (c) A geomorphologic
classification map of the Kanto region with about a 1-km mesh (based on Wakamatsu et al., 2005).

Fig. 2. Epochs of the SAR data used in this study. We used four SAR data pairs (I1–I4). Two pairs (preseismic pair I1; coseismic pair I3) include the
waterfront along Tokyo Bay, and the other two pairs (preseismic pair I2; coseismic pair I4) include the waterfront along midstream and downstream
of the Tone River. All data pairs (I1–I4) are used to estimate the change in the surface scattering property using the phase-corrected coherence,
while two coseismic pairs (I3, I4) are used to estimate the local surface displacement associated with the soil liquefaction. A pink star represents the
occurrence of the 2011 Tohoku earthquake.

2. Method
2.1 Interferometric processing

We obtained single-look complex (SLC) data after pre-
processing SAR data from a Level-1.0 product. The SAR
data were acquired by the Phased Array Type L-band SAR
(PALSAR) instrument aboard the Japanese Advanced Land
Observing Satellite (Table 1; Figs. 1(b) and 2). SLC data is
composed of a regular grid with complex values (C), which
is decomposed into amplitude and phase information:

C = A exp(iφ), (1)

where A and φ represent amplitude and phase, respectively.
Interferometric processing uses two SLC datasets, called
master and slave. After repositioning and resampling each
slave pixel to its corresponding master, we apply the fol-
lowing equation at each pixel:

C1C∗
2 = A1 A2 exp(i(φ1 − φ2)), (2)

where C1 and C2 represent master and slave SLC data,
and * indicates complex conjugation. Equation (2) yields
amplitude (A1, A2) and phase (φ1, φ2) information that
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Table 1. Interferogram and SAR data used. Master and slave indicate the period of SAR data for performing SAR interferometry. Displacement from
master to slave is estimated via InSAR analysis. Off-nadir and Bperp show representative values of the off-nadir angle and perpendicular component
of baseline, respectively.

Type ID Master Slave Cycles Direction Off-nadir Bperp Covered area

Preseismic I1 20110104 20110219 1 cycle Ascending 34.3◦ 709 m Tokyo Bay

Preseismic I2 20101005 20101120 1 cycle Descending 34.3◦ 593 m Tone River

Coseismic I3 20110219 20110406 1 cycle Ascending 34.3◦ 394 m Tokyo Bay

Coseismic I4 20101120 20110407 3 cycles Descending 34.3◦ 914 m Tone River

describe the relationship between the SAR data in the pair.
We sought to detect the distribution of soil liquefaction

using the change in coherence of amplitude A, and to es-
timate the ground displacement in the InSAR analysis us-
ing phase information φ. Data processing was done using
GAMMA software (Wegmüller and Werner, 1997). By av-
eraging three pixels in the range direction, and five in the
azimuthal direction, with multi-look processing, per-pixel
resolution of the interferogram corresponds to a 14 × 16-m
polygon in slant-range and azimuthal direction.
2.2 Damage area detection using decorrelation

The SAR system transmits microwaves and receives
backscatter signal from illuminated surfaces. Generally,
various scatterers (e.g., bare soil, buildings or crops) ex-
ist within each SAR data pixel. Reflective intensity (am-
plitude) and phase in a pixel is measured as the result of
coherent summation of all returns from individual scatter-
ers. When scatterers change between observations, the sum
of scatter returns varies, which leads to decorrelation. To
quantify decorrelation, we calculated the phase-corrected
coherence γ (Hagberg et al., 1995; Guarnieri and Prati,
1997):

γ =

∣∣∣∑N
n=1 C (n)

1 C∗(n)

2 exp
(
−i

(
φ

(n)

1 − φ
(n)

2

))∣∣∣√∑N
n=1

∣∣∣C (n)

1

∣∣∣2 ∑N
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∣∣∣C (n)

2

∣∣∣2
, (3)

where C (n)

1 and C (n)

2 indicate complex signals in each pixel
and (φ

(n)

1 − φ
(n)

2 ) is the phase difference between master
and slave. N is the number of adjacent pixels used to com-
pute coherence as a spatial average, usually called the win-
dow size. This size should be large enough to estimate
coherence, because of computing the expectation as spa-
tial averages over a number of pixels in an interferometric
pair (Touzi et al., 1999; Zebker and Chen, 2005). How-
ever, spatial resolution decreases with window size. To es-
timate coherence, we chose N = 7 × 7, corresponding to
an area roughly 98 × 112 m. This is almost the same as
the number used by Fielding et al. (2005). Generally, co-
herence including both amplitude and phase is used in In-
SAR analysis. However, this coherence is influenced by
phase variation not only from a change of noise in the sig-
nal, but also from systematic phase variation caused by to-
pographic, atmospheric, or deformation gradients. To quan-
tify and classify changes of surface properties attributable to
liquefaction, we used phase-corrected coherence calculated
based on amplitude. Amplitude in an SAR pixel represents
backscatter intensity at a surface location. This intensity is
affected by water content and surface roughness, given the

same incidence angle, polarization, and radar wavelength.
Hence, sand boils on the surface or buildings tilted by soil
liquefaction alter amplitude relationships among adjacent
pixels, generating decorrelation.

Although these surface changes are a source of decor-
relation resulting from the earthquake, such decorrelation
includes other effects that must be taken into account. Co-
herence comprises contributions from three effects (Zebker
and Villasenor, 1992):

γ = γN γG γT , (4)

where γN represents noise in the radar system and process-
ing approach, γG is geometric coherence proportional to the
perpendicular component of the baseline, and γT is the in-
fluence of temporal backscatter change, e.g. from surface
cover change or vegetation.

Because soil liquefaction appears as a decrease in γT , we
need to extract γT from the total coherence. Therefore, we
made a coherence difference map. This used the result of
subtracting the coherence of preseismic data pairs (dataset
I1 covers Tokyo Bay and I2 covers Tone River; Table 1 and
Fig. 2) from that of coseismic pairs, acquired before and
after the earthquake (dataset I3 covers Tokyo Bay and I4
covers Tone River; Table 1 and Fig. 2):

γdiff = γ c − γ p = γN γG
(
γ c

T − γ
p

T

)
, (5)

where γ c and γ p are the coherence of the coseismic pair
and preseismic pair, respectively.

This procedure is based on the assumption that compo-
nents γN and γG are identical, or nearly identical, in both
preseismic and coseismic pairs, for the following reasons.
Since SAR data are obtained by the same sensor (PAL-
SAR), γN is identical. Supposing observation in a flat area
and an uniform scatterers distribution within a pixel, γG

of the datasets used can be calculated from the value of
perpendicular baselines and critical baseline of PALSAR
(about 23000 m). As a result, we obtained γG values 0.97
for I1, 0.97 for I2, 0.98 for I3, and 0.96 for I4. These results
show that the effect of γG is almost identical.

Although soil liquefaction decreases γT , so does ordinal
surface cover change and vegetation. To obtain a significant
change of γT caused only by the earthquake, we determined
a coherence change threshold from the average and standard
deviation of ordinal change in temporal coherence (Eq. (6)).
This estimation was made using datasets acquired before
the earthquake, between 2006 and 2011 (Table 2):

γ thre
diff = γ ave

diff − kγ std
diff, (6)

where γ thre
diff is the threshold of significant coherence differ-

ence caused by the earthquake at a pixel, and γ ave
diff and γ std

diff
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Table 2. SAR datasets used to estimate general trends of temporal coherence change before earthquake.

Master Slave Cycles Bperp Covered area

20060808 20060923 1 cycle 576 m Tokyo Bay

20071227 20080211 1 cycle 945 m Tokyo Bay

20080211 20080328 1 cycle 96 m Tokyo Bay

20081113 20081229 1 cycle 22 m Tokyo Bay

20081229 20090213 1 cycle 740 m Tokyo Bay

20100216 20100403 1 cycle 144 m Tokyo Bay

20110104 20110219 1 cycle 709 m Tokyo Bay

20080329 20080514 1 cycle 146 m Tone River

20080629 20080814 1 cycle 1507 m Tone River

20090817 20091002 1 cycle 236 m Tone River

20091002 20091117 1 cycle 237 m Tone River

20100520 20100705 1 cycle 139 m Tone River

20100705 20100820 1 cycle 173 m Tone River

20101005 20101120 1 cycle 593 m Tone River

20071228 20080514 3 cycles 616 m Tone River

20090517 20091002 3 cycles 654 m Tone River

20091002 20100102 3 cycles 587 m Tone River

Fig. 3. Differential interferograms representing the regional trend of the surface displacement caused by the 2011 Tohoku earthquake, in each line of
sight (LOS) direction. (a) A differential interferogram calculated from the coseismic pair I3 in Table 1 and Fig. 2. (b) A differential interferogram
calculated from the coseismic pair I4 in Table 1 and Fig. 2. (c) and (d) are the enlarged areas represented by the insets (dashed lines) in (a) and (b),
in which the local phase disturbance is evident.

are the average and standard deviation of coherence differ-
ence calculated by preseismic datasets (Table 2). k is a co-
efficient that represents a weighting factor for standard de-
viation. Suppose that the coherence difference at each pixel
obeys a normal distribution (random surface cover change),
we assumed that the coherence difference beyond 3-sigma
(k = 3) represents significant surface change due to lique-
faction.

2.3 InSAR analysis
From interferometric phase information, InSAR analysis

enables us to obtain surface displacements. We used the
coseismic pair datasets I3 (Tokyo Bay) and I4 (Tone River)
in this analysis.

To remove the effect of the difference in satellite po-
sitions for the two acquisitions of a pair, we used 50-m
mesh digital elevation models provided by the Geospatial



K. ISHITSUKA et al.: LIQUEFACTION AREAS OF THE 2011 TOHOKU EARTHQUAKE 1271

Fig. 4. (a) Coherence maps from the preseismic pair, covering Tokyo Bay (I1 in Table 1), (b) the coseismic pair, covering Tokyo Bay (I3 in Table 1),
(c) the preseismic pair, covering the Tone River (I2 in Table 1), (d) the coseismic pair, covering the Tone River (I4 in Table 1).

Information Authority of Japan. To retain the high reso-
lution of the data, we used an adaptive filter whose per-
formance magnitude depends on coherence (Baran et al.,
2003). Then, from phase information over the coherence
threshold (0.30), we carefully conducted a phase unwrap-
ping procedure using a branch-cut algorithm (Goldstein et
al., 1988). A variety of displacement scales may be in-
duced by soil liquefaction, and some spatially-small dis-
placements may be filtered out or be eliminated by the
coherence threshold. This filtering and unwrapping effect
gives a spatially-continuous displacement, which is diffi-
cult to obtain from a field survey only. Finally, we ob-
tained a differential interferogram that represents the total
surface displacement caused by the 2011 earthquake along
the line of sight (LOS) direction (Fig. 3). To display the lo-
cal ground subsidence associated with soil liquefaction, we
removed the long-wave ground displacement caused by the
earthquake via the application of a best-fit quadratic func-
tion.

3. Results and Discussion
3.1 Temporal decorrelation

Coherence maps (Fig. 4 and I1, I2, I3 and I4 in Fig. 6)
show coherence reduction from three effects (Eq. (4)) be-
tween each pair. In the coherence difference maps of
Fig. 5(a, b), zero values indicate areas where the coherence
did not change between preseismic and coseismic pairs (that
is, coherence in both interferograms was either high or low).
Negative values indicate areas where coherence decreased
in the coseismic pair (I3 or I4) relative to the preseismic pair
(I1 or I2). Positive values indicate areas where coherence
of the preseismic pair was lower than that of the coseismic
pair. Negative values are distributed over the ground with
artificial fill along Tokyo Bay (Fig. 5(a)), and near the banks
of the Tone River (Fig. 5(b)). These observations suggest
that physical properties of the ground surface, such as wa-
ter content or surface roughness, were changed by the earth-
quake in these areas. Although negative values in the coher-
ence difference map are possibly associated with the earth-
quake, we must discriminate scatter change caused by the
2011 earthquake from other temporal effects (e.g., ordinal
change in surface cover or decorrelation from vegetation).
Therefore, we estimated the coherence change threshold at
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Fig. 5. Difference maps of the phase-corrected coherence (i.e., the coherence difference maps) between (a) I1 and I3 (covering the waterfront along
Tokyo Bay), and (b) I2 and I4 (covering the waterfront along the midstream and downstream of the Tone River).

Fig. 6. Coherence maps of each dataset used for areas along (A) Tokyo Bay, and (B) the Tone River.
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Fig. 7. Land-cover classification derived from satellite optical data (based on Takahashi et al., 2010, 2012).

Fig. 8. (a) Averages and (b) standard deviations of coherence values, and (c) estimated threshold values of the coherence difference calculated from the
preseismic pair in the areas along Tokyo Bay. (d) Averages and (e) standard deviations of coherence values, and (f) estimated threshold values of the
coherence difference calculated from the preseismic pair in the areas along the Tone River.

each pixel using the average and standard deviation of the
coherence change caused by other temporal effects, which
appears in the coherence difference maps.

To reveal the effects of the temporal and spatial baseline
conditions of our analyzed area, we studied datasets before
the earthquake within a perpendicular baseline of 2000 m
(Table 2): one satellite-cycle between 2006 and 2011 cover-
ing waterfront areas along Tokyo Bay (seven datasets), and
one cycle (seven datasets) and three cycles (three datasets)
for the same period along the Tone River. Coherence maps
of each preseismic pair showed that most of the coherence
in the areas along Tokyo Bay was stable with time, while
the coherence along the Tone River was low and variable
(Fig. 6). This can be interpreted as a result of surface cover
in each area. Land-cover classification derived from opti-
cal satellite data (Takahashi et al., 2010, 2012) show ar-
eas along the bay to be urban, mainly covered by buildings
and asphalt roads. In contrast, areas along the Tone River
are classified as paddy, crops and other vegetation, where
backscatter signals tend to be unstable (Fig. 7). Ordinal
coherence change in paddy and crop areas along the river

were discovered in the analysis (Fig. 6(B)). Along the river,
three-cycle pair coherences are lower than those of one-
cycle pairs, because surface cover likely changes with the
duration of observation (Fig. 6(B)). Considering the phys-
ical reason for decorrelation in vegetated and agriculture
areas (i.e., surface cover change), it may be inferred that
there are annual trends of coherence reduction at each pixel.
However, since the observation data are limited, we used all
one-cycle and three-cycle pairs from areas along the Tone
River for further analysis.

Next, average and standard deviation of coherence differ-
ence values were calculated using all dataset combinations
for the Tokyo Bay area (21 total combinations), and one-
cycle pair and three-cycle pair combinations for the Tone
River area (21 total combinations) (Fig. 8(a, b, d, e)). Then,
according to Eq. (6), we calculated the coherence change
threshold at each pixel. We considered a coherence dif-
ference below the threshold as a significant decorrelation
caused by surface changes of the 2011 earthquake (Fig. 8(c,
f)). The processing indicated that the threshold in areas
along the bay is nearly zero, because the coherence is stable
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Fig. 9. Estimated liquefaction areas along (a1) Tokyo Bay and (b1) the Tone River. Observed liquefaction through field surveys conducted by KRDB
and JGS (2011) overlaid on the estimated liquefaction for the waterfronts along (a2) Tokyo Bay and (b2) the Tone River. Red and blue indicate
liquefaction and non-liquefaction areas, respectively, detected by field survey. Yellow and orange areas indicate the negative coherence areas below
the coherence reduction threshold value. Significant coherence reduction cannot be estimated in gray areas where coherence in preseismic pair is less
than the threshold value. Bold black lines indicate the Tone River.

Fig. 10. Local surface displacements after the removal of the regional displacement trend obtained from (a) I3 (covering the waterfront along Tokyo
Bay), and (b) I4 (covering the waterfront along the midstream and downstream of the Tone River).

over time, as described previously (Fig. 6(A)). On the other
hand, the threshold in agricultural areas along the river is
lower than in the urban area (Fig. 8(f)). This means that
it is difficult to detect small surface changes caused by the
earthquake in these areas. However, in the urban area along
the Tone River, the coherence remains stable enough to de-
tect surface changes (Fig. 8(d, e, f)).

To confirm this association of surface scatter changes
with soil liquefaction, we compared our result with surveys

conducted on foot, or based on aerial photography, soon
after the earthquake (KRDB and JGS, 2011). The survey
clarified soil liquefaction areas in the Kanto region, check-
ing the existence of sand boils or water spouts associated
with the liquefaction. The walking survey was mainly per-
formed along roads, and inaccessible areas such as indus-
trial plants were covered by aerial photography. These are
plotted in Fig. 9(a2, b2), using red and blue to indicate liq-
uefaction and non-liquefaction locations, respectively. Yel-
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Fig. 11. Local surface displacements near the waterfront along (a1) Tokyo Bay and (b1) the Tone River. Local surface displacements in the liquefaction
areas along (a2) Tokyo Bay and (b2) the Tone River.

low and orange areas in Fig. 9(a1, a2, b1, b2) indicate neg-
ative values of phase-corrected coherence, under the esti-
mated threshold. Significant decorrelation due to disas-
ter in areas where the coherence of the preseismic pair is
lower than the threshold value cannot be detected in prin-
ciple. These areas are plotted in gray in Fig. 9(a1, a2, b1,
b2). Comparison shows that 85% and 61% of liquefaction
locations detected by the field survey of KRDB and JGS
(2011) in areas along Tokyo Bay and the Tone River, respec-
tively, are consistent with the present results. Because of
this consistency, negative coherence corresponds to surface
changes from soil liquefaction caused by the 2011 earth-
quake. Agreement in areas along the bay is slightly greater
than along the river, probably because coherence was tem-
porally stable in those areas (Fig. 6), resulting in easy de-
tection of coherence change.
3.2 InSAR-derived surface displacement

Figures 10 and 11 show local surface displacement in-
ferred by InSAR, after the removal of global surface dis-
placement. Magnitudes between about −30 to 3 cm were
detected in the soil liquefaction areas along Tokyo Bay and
the Tone River. Although local changes in the positive range
are also found outside the soil liquefaction areas, we cannot
completely determine whether these changes reflect surface
displacement or other effects (e.g., quadratic fitting error or
atmospheric artifacts) (Fig. 10). Nevertheless, the magni-
tude of these changes (less than 3 cm) is much smaller than
that of local surface displacement in soil liquefaction ar-
eas. Previous studies have shown that decorrelation leads
to an increase of phase variance (Rodriguez and Martin,
1992; Just and Bamler, 1994). In the soil liquefaction areas,
there are certainly decorrelation-induced phase discontinu-
ities (e.g., A in Fig. 11(a1), C in Fig. 11(b1)); however, we

partly obtained a spatially-continuous displacement (e.g., B
in Fig. 11(a1)). Since most of the SAR data in liquefaction
areas were collected in only one direction (not both ascend-
ing and descending orbits), we cannot explicitly determine
whether these local surface displacements were subsidence.
We inferred that local displacement may be ground subsi-
dence, because soil liquefaction can cause soil grains to re-
arrange into a more dense packing due to the phenomena
that a mass of soil loses its shear resistance and pore water
pressures increase, and such displacement is at liquefaction
locations where the ground surface is flat.

Estimated local ground displacements demonstrate char-
acteristics of local displacement in each area. Along Tokyo
Bay, this displacement was particularly widespread and
continuous in the Narashino area (B in Fig. 11(a1)). A
continuous fringe pattern predominates in the Narashino
(B in Fig. 11(a1)) and Chiba areas, whereas a discontin-
uous fringe pattern dominates in the Urayasu area (A in
Fig. 11(a1)). These observations suggest that continuous
fringe pattern areas are uniformly deformed over a rela-
tively wide area, but this is not true of discontinuous areas.

4. Conclusions
We detected changes of surface scattering properties

caused by the 2011 Tohoku earthquake, using the differ-
ence of phase-corrected coherence between preseismic and
coseismic SAR data pairs. To retrieve the significant decor-
relation signal attributable to the earthquake, we proposed
the use of a coherence change threshold estimated from pre-
seismic datasets. We also revealed local surface displace-
ments using InSAR analysis. The results are consistent with
field surveys. Therefore, these surface changes are associ-
ated with soil liquefaction. The areal extent of soil lique-
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faction inferred from our analysis is difficult to obtain from
ground-based measurements. This study shows that SAR
data is effective for investigating the extent and detail of
soil liquefaction.

In selecting the SAR data, Massonnet and Feigl (1998)
reported that the maximum detectable deformation gradi-
ent is one fringe per pixel. Thus, long-wavelength, high-
resolution SAR data are better for detecting high deforma-
tion gradients associated with soil liquefaction. This means
that L-band SAR data are superior to C-band and X-band
data, given the same spatial resolution. We performed SAR
interferometry analysis and then compared the result with
field survey results. However, InSAR analysis carried out
immediately after an earthquake shows promise in effec-
tively guiding subsequent field surveys.
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