社団法人 電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS

信学技報 IEICE Technical Report SDM2011-146(2011-12)

長方形断面 Si ナノワイヤの伝導帯構造の断面形状およびサイズ依存性

森 誠語 森岡 直也 須田 淳 木本恒暢

京都大学工学研究科電子工学専攻 〒615-8510 京都府京都市西京区京都大学桂

E-mail: {mori, morioka}@semicon.kuee.kyoto-u.ac.jp, {suda, kimoto}@kuee.kyoto-u.ac.jp

あらまし 強束縛近似法を用いて,長方形断面を有する[001]および[110]Si ナノワイヤの伝導帯構造を計算し,断 面形状の違いによるバンド構造の変化を検討した. バルク Si のフルバンド分散との比較解析により,一辺が 4 nm 以上の断面をもつナノワイヤのサブバンド構造を,バルク Si 伝導帯の非放物線性に基づいて定量的に説明できた. また,両辺が 3 nm 以下の断面を有する[110]方向のナノワイヤでは,縮退した谷の分裂によって有効質量が減少し, この効果は断面形状に大きく依存することを見出した. このようなサイズの[110]ナノワイヤを n チャネルとして用 いることで, MOSFET の性能向上が期待できる.

キーワード Si ナノワイヤ, 強束縛近似法, 伝導帯, 非放物線性, 有効質量, 谷分裂

Shape and Size Effects on Conduction Band Structure

of Si Nanowires with Rectangular Cross Section

Seigo MORI Naoya MORIOKA Jun SUDA and Tsunenobu KIMOTO

Department of Electronic Science and Engineering, Kyoto University

Kyotodaigaku-katsura, Nishikyo, Kyoto, 615-8510 Japan

E-mail: {mori, morioka}@semicon.kuee.kyoto-u.ac.jp, {suda, kimoto}@kuee.kyoto-u.ac.jp

Abstract We calculated the conduction band structures of [001]- and [110]-oriented Si nanowires with rectangular cross section using a tight-binding approximation and investigated the dependence of the band structures on those cross-sectional shapes. By comparing them with the full-band distribution of bulk Si, the subband structures of Si nanowires with the width over 4 nm can be quantitatively explained by nonparabolicity of the conduction band of bulk Si. In addition, the effective mass of very narrow (< 3 nm) [110] nanowires is decreased by a valley splitting and it depends on the cross sectional shapes of the nanowires. It is expected that n-MOSFETs with such nanowires have superior characteristics.

Keyword Si Nanowire, Tight-Binding Approximation, Conduction Band, Nonparabolicity, Effective Mass, Valley Splitting

1. 背景

近年のCMOS集積回路における素子の微細化に伴い, MOSFETの短チャネル効果によるリーク電流の影響が 無視できなくなってきている.このため,今後 CMOS デバイスのさらなる性能向上を実現するためには,従 来のプレーナ型 MOSFET とは異なる構造が必要であ る.中でも Si ナノワイヤをチャネルとして用いる MOSFET[1,2]は、マルチゲート化とチャネル領域の完 全空乏化によりゲートの高い静電制御性が期待できる ため,次世代 CMOSデバイスとして注目を集めている.

Si ナノワイヤ MOSFET の動作特性を評価するため には、チャネル内でのキャリアの振る舞いを理解する ことが重要である.そのためには、Siナノワイヤのバ ンド構造を知る必要があり、これまで数値計算による 多くの研究が行われてきた[3-6].これらの報告の多く は、正方形や円形のような単純な断面構造を仮定して 計算を行っているが、実際に作製されているナノワイ ヤの断面形状は、長方形に近い形が多い.しかしなが ら、長方形断面を有する Si ナノワイヤのバンド構造に ついて、その幅依存性を検討した報告は非常に少なく [5]、さらなる検討が必要であるといえる.

そこで本研究では、長方形断面を有する Si ナノワイ ヤの伝導帯に着目し、強束縛近似法によるバンド計算 を行った.特に MOSFET の特性を決定づける移動度 (長チャネルの場合)あるいは注入速度(電子のバリ スティック伝導が可能な短チャネルの場合)の両方に 関わる重要なファクターである有効質量について、ナ ノワイヤの幅に対する依存性を検討した.この際、有 効質量近似と共に、バルク Si の伝導帯の非放物線性を 考慮した手法[6]との比較解析を行うことで、Si ナノワ

NCopyright @2013 by BEICE Service

イヤのサブバンド構造の起源の解明を行った.その上で, n チャネル MOSFET への応用上有利であると考えられる構造の検討を行った.

2. 計算方法

2.1. バンド構造の計算

伝導帯構造の計算には、最近接 $sp^3 d^3 s^3$ 強束縛(TB) 近似法[7]を取り入れた自作プログラムを用いた[8].こ の方法では、基底となる波動関数として、Siの s 軌道, 3 つの p 軌道, 5 つの d 軌道, そして励起状態の s 軌道 に対応する s^3 軌道の計 10 個を考えている.使用した パラメータはバルク Si のバンド構造にフィッティン グされた値を採用し[9], Si 結晶の格子定数として、室 温でのバルクの値 $a_0 = 0.5431$ nm を用いた[10].また, 結晶表面のダングリングボンドは、対応する sp^3 混成 軌道のエネルギーを引き上げることで失活化した[11].

バルク Si の伝導帯における有効質量の実験値は、電子の静止質量を m_0 として、縦有効質量 $m_1 = 0.916m_0$ 、 横有効質量 $m_t = 0.191m_0$ であるが[10]、TB 法で計算す ると、 $m_1 = 0.891m_0$ 、 $m_t = 0.201m_0$ であった.この違い は使用したパラメータによる誤差であり、本計算では、 後者の値を用いることにする.また以下では、バルク Si の伝導帯のエネルギー最小値をエネルギーの基準と している.

2.2. 計算に用いた結晶構造

本計算では、[001]および[110]の方位を有する Si ナ ノワイヤについて計算を行った.ナノワイヤ断面の結 晶構造は図 1 のようになっており、それぞれ側面とし て(010)/(100)、(110)/(001)を有する.

3. Si ナノワイヤ伝導帯におけるサブバンド構 造の解析手法

TB 法によるバンド構造の計算結果を解析する上で, 以下の 2 つの方法を考える.

Siナノワイヤにおける電子の量子閉じ込め状態を解 析するための簡便な手法として,有効質量近似(EMA)

図 1: ナノワイヤの断面における結晶構造. (a) [001]ナノワイヤ. (b) [110]ナノワイヤ.

がよく用いられる[11]. EMA は,周期的な格子ポテン シャルの影響を有効質量で表し,この有効質量を用い て書き直したシュレディンガー方程式(有効質量方程 式)を解くことで電子状態を計算する方法である.バ ルク Siの伝導帯の底付近での等エネルギー面は図2の ように 6 つの等価な回転楕円体で表される.図中の V₁ 付近でのバルク Si のエネルギー-波数(*E-k*)分散は次 式のようになる.

$$E = \frac{\hbar^2}{2} \left[\frac{\left(k_{[100]} - k_{\Delta}\right)^2}{m_{\rm l}} + \frac{k_{[010]}^2}{m_{\rm t}} + \frac{k_{[001]}^2}{m_{\rm t}} \right]$$
(1)

ここで \hbar はプランク定数/2 π , k_{Δ} は伝導帯でエネルギー 最小値をとる波数である.量子構造における *E-k* 分散 は、図 3 のように、閉じ込め方向の波数を定在波の波 数によって離散化することで得られる.したがって、 [100]および[010]方向の幅がそれぞれ $w_{[100]}$, $w_{[010]}$ であ る、[001]方向のナノワイヤを考えると、 $k_{[100]} - k_{\Delta} =$ $n_{[100]}\pi/w_{[100]}$, $k_{[010]} = n_{[010]}\pi/w_{[010]}$ ($n_{[100]}$, $n_{[010]} = 1, 2, \cdots$) とすることで V_1 起因の分散関係が得られ、次のように なる.

$$E = \frac{\hbar^2 k_{[001]}^2}{2m_t} + \frac{\hbar^2 \pi^2}{2} \left[\frac{n_{[100]}^2}{m_t w_{[100]}^2} + \frac{n_{[010]}^2}{m_t w_{[010]}^2} \right]$$
(2)

これを V₁以外の谷に対しても行うことで,[001]ナノ ワイヤの *E-k* 分散関係が得られる.[110]ナノワイヤに ついても,波数空間の座標変換を用いることで同様の 解析が行える.

EMA はバルク Si のバンドを放物線で近似している が,一般的に波数がバンドの底から離れるほど E-k 曲 線が放物線からずれるため,図 3(a)から,幅の小さい 構造(数 nm オーダー)では誤差が大きいと考えられ る.今回用いる方法では,図 3(a)におけるバルク Si の E-k分散を,放物線で近似するのではなく,TB 法で計 算したフルバンド分散を用いることを考える(この方

図 2: バルク Siの第1ブリュアンゾーンにおける伝導帯底付 近の等エネルギー面.

NII-Electronic Library Service

図 3: 電子の量子閉じ込めによってサブバンドができる様子.(a) 閉じ込め方向の波数に着目したときのバルクの E-k 分散. (b) 幅 wの量子井戸に閉じ込められた電子の波動関数.(c) 量子閉じ込めによって得られるサブバンド構造.(b)から得られた 定在波の波数によって(a)の波数を離散化する.それぞれの波数におけるエネルギーが(c)のサブバンドのエネルギーシフトに 対応し,このとき,輸送方向の波数に注目したバルクの E-k 分散がそのまま量子構造の E-k 分散になる.

法を BD とする). これにより, バンドの非放物線性の 影響を取り入れることができ, ナノワイヤのサブバン ド構造が EMA よりも正確に求まる. BD は, EMA と 同じく, 閉じ込め方向にも周期的な格子ポテンシャル を仮定しているため, 周期性が崩れるような幅の小さ な構造では, 実際の値との誤差が大きくなると思われ る.

以上をまとめると、TBを用いるとSiナノワイヤの 正確なバンド構造が計算でき、EMAは簡便だが誤差が 大きく、BDはTBほどの精度はないが、バルクSiの バンドの非放物線性を考慮することでEMAよりも正 確なサブバンド構造が得られる.

4. [001]ナノワイヤの伝導帯構造の計算結果

[001]方向のSiナノワイヤの伝導帯構造を図4に示 す.図4では、谷が2か所にできることが確認でき、 いずれの断面サイズにおいても「点で最低エネルギー をとる.この「点の谷(「谷)は図2のV₁,V₂,V₃, V₄が投影されてできたものであり、もう一方の谷(off-「谷)は、V₅によって構成される(V₆起因の谷は、波 数が負の領域に存在するため、図4では示されていな い).長方形断面では「谷はV₁とV₂,V₃とV₄によっ てそれぞれ2重に縮退しており、特に正方形断面とな る図4(a)と(c)ではこれらが重なって4重に縮退するこ とが確認できた.また、off-「谷は縮退していない. 「谷と off-「谷のエネルギー差に着目すると、アスペ クト比の大きい図4(b)で大きくなっていることがわか った.このエネルギー差が小さいと、有効質量の大き な off-「谷の影響を強く受けるので好ましくない.

そこで、 Γ谷を基準にしたときの、 Γ谷と off-Γ谷 のエネルギー差の幅依存性を図 5 に示す. 図 5 は[010] 方向の幅が 2.0 nm と 4.2 nm に固定して[100]方向の幅 を変化させたものである. TB 法による結果と共に、前 節で考えた BD と EMA の結果を同時に示している. TB 法による結果から,断面が正方形になるときにエネ ルギー差が最小となることがわかる.BD でもこのこ とが読み取れるが,EMA では極小値をとらないことか ら,バンドの非放物線性の影響を受けていることが確 認できた.[010]方向の幅が 2.0 nm のときに TB と BD の誤差が大きくなっているのは,閉じ込め方向の波動 関数をブロッホ関数で表すことができないことが原因 であると考えられる.また EMA では,[010]方向の幅 が 4.2 nm のときでも TB との誤差が大きいが,BD で は非常にいい一致をみせている.

次に,電子の伝導有効質量の幅依存性を図6に示す. EMA では有効質量はバルクの値と同じ 0.20m₀で一定 である. [010]方向の幅を 2.0 nm としたときの有効質

図 4: 強束縛近似法を用いて計算した Si[001]ナノワイヤの 伝導帯構造. ナノワイヤの断面サイズは, (a) 2.0 nm×2.0 nm, (b) 2.0 nm×6.0 nm, (c) 6.0 nm×6.0 nm である.

図 5: Si[001]ナノワイヤについて, [010]方向の幅を 2.0 nm と 4.2 nm に固定して, [100]方向の幅を変化させたときの Г谷 と off- Г谷のエネルギー差.

図 6: Si[001]ナノワイヤについて, [010]方向の幅を 2.0 nm と 4.2 nm に固定して, [100]方向の幅を変化させたときの Г谷 の電子伝導有効質量.

量は、断面が正方形となるときに最大となる.また [010]方向の幅を 4.2 nm とした場合には、[100]方向の 幅が 4 nm 以上で、BD は TB と非常にいい一致を見せ ている.一方で[100]方向の幅が 4 nm より小さい領域 では異なる傾向を示すことがわかった.EMA では、有 効質量は幅の変化によらないことを考えると、図 6 の 有効質量の変化も主にバンドの非放物線性によるもの であると結論付けられる.

以上の結果から、Siの[001]ナノワイヤでは、正方形 断面において、 Γ谷と off-Γ谷のエネルギー差が最小 値をとり、同時に伝導有効質量は最大値をとるので、 MOSFET応用上不利であると考えられる.したがって、 [001]ナノワイヤは断面のアスペクト比が1から離れ た形状を用いるのが良いと結論付けることができる.

5. [110]ナノワイヤの伝導帯構造の計算結果

[110] 方向のナノワイヤについて伝導帯構造を計算 した結果を図7に示す.[110] ナノワイヤでは,図2の $V_5 \ge V_6$ に起因する Γ 谷, $V_1 \ge V_3$ に起因する off- Γ 谷 が存在し,それぞれ2重に縮退しているが,特にサイ ズの小さなナノワイヤでは,縮退している谷が分離し ているのが確認できる.これは谷分裂(Valley Splitting) と呼ばれ,電子の強い閉じ込めにより起こる現象であ る[13].図7(a)では分裂幅が56 meV と非常に大きいた

図 7: 強束縛近似法を用いて計算した Si[110]ナノワイヤの伝 導帯構造. ナノワイヤの断面サイズは, (a) 1.9 nm×2.0 nm, (b) 1.9 nm×6.0 nm, (c) 6.0 nm×2.0 nm, (d) 6.0 nm×6.0 nm である.

め、MOSFETの影響に大きく関わってくると考えられ る. 伝導帯構造の断面サイズ依存性を考えると、[001] 方向の幅を大きくした図 7(b)では、off- Γ谷が大きく下 がり、この谷でエネルギー最小値をとることがわかる. off- Γ谷は有効質量が大きいため、このような状態は 好ましくない. 一方で[110]方向の幅を大きくすると図 7(c)のように、 Γ谷と off- Γ谷のエネルギー差はあまり 変わらない. このことから、[110]ナノワイヤの幅に対 する異方性が確認できる.

次に、 Γ谷を基準にした時の、 Γ谷と off- Γ谷のエ ネルギー差の幅依存性を検討する. 図8に、[110]方向 の幅を固定して[001]方向の幅を変化させたときのエ ネルギー差を示す. [110]方向の幅を 1.9 nm と4.2 nm とした場合のどちらも、[001]方向の幅を大きくすると Γ谷と off- Γ谷が入れかわかることがわかる.また、 [001]方向の幅を固定して[110]方向の幅を変化させた ときのエネルギー差を図9に示す.TB の結果から、 [001]方向の幅がどちらの場合でも、極小値をとってい ることがわかるが、これは EMA では見られず、BD で はこの傾向が読み取れることから、バンドの非放物線 性の影響を受けた現象であるといえる.

[110]ナノワイヤのΓ谷における有効質量を計算すると、図 10 と図 11 のようになる.図 10 は、[110]方

向の幅を固定して[001]方向の幅を変化させたときの 結果であり、図 11 は[001]方向の幅を固定して[110]方 向の幅を変化させたときの結果である. EMA では,有 効質量は幅に依存性せず、[001]ナノワイヤと同じく 0.20m₀で一定である.また,有効質量の変化は, [110] 方向の幅の変化に対してはあまり敏感でないのに対し, [001] 方向の幅の変化に対しては比較的敏感であるこ とが読み取れる.このことから、有効質量に対しても [110]ナノワイヤの幅に対する異方性が確認できた.図 10 に着目すると、TB では[001]方向の幅の減少に従っ て有効質量が下がっているのに対し, BD では逆に有 効質量が大きくなることが確認できる.これは、BD と EMA では縮退していると考えた谷のエネルギー準 位が、谷分裂によって分離したことが原因である. Γ 点での谷分裂は、両辺が3 nm 以下の断面となるナノ ワイヤで顕著であることが確認できた.特に 1.9 nm× 2.0 nmの断面を有する[110]ナノワイヤでは、有効質量 が 0.14mo と小さな値をとることがわかった. 一方, 図 11 では、TB・BD 共に幅の減少に従って有効質量が減 少することがわかった.

以上の結果から、[110]ナノワイヤでは、バルク Si のバンドの非放物線性および谷分裂の影響によって、 幅が小さくなるにつれて、有効質量が減少することが わかった.これは[001]ナノワイヤとは全く逆の現象で あり、[110]ナノワイヤが[001]ナノワイヤよりも n-MOSFETとして優れていることを示唆している.し かしながら、[110]方向の幅よりも[001]方向の幅が大き い場合には、有効質量の重い off- Г谷が最下谷となる ため、輸送特性が低下すると考えられる.また、両辺 が 3 nm 以下の断面を有する[110]ナノワイヤでは、Г 谷で大きな谷分裂が起こり、非放物線性から考えられ る以上に有効質量が減少するため、特性の向上が期待 できる.

6. 結論

[001]および[110]方向の長方形断面を有する Si ナノ ワイヤについて,強束縛近似法を用いて伝導帯構造を 計算し,解析を行った.特に幅が4 nm 程度以上のナ ノワイヤのサブバンド構造は,[001]・[110]ナノワイヤ 共に,バルク Si のバンドの非放物線性を考慮すること で精度よく表すことができた.幅が4 nm より小さい 場合には,エネルギー差と有効質量の値は強束縛近似 で得られた値からずれるが,幅依存性の傾向は再現さ れることがわかった.また,[110]方向のナノワイヤで は,幅が3 nm より小さくなると大きな谷分裂が現れ, 分離された谷は有効質量が小さくなるため,移動度(注 入速度)の向上が示唆された.

図 8: Si[110]ナノワイヤについて, [110]方向の幅を 1.9 nm と 4.2 nm に固定して, [001]方向の幅を変化させたときのΓ谷 と off-Γ谷のエネルギー差.

図 9: Si[110]ナノワイヤについて, [001]方向の幅を 2.0 nm と 4.2 nm に固定して, [110]方向の幅を変化させたときの Г谷 と off- Г谷のエネルギー差.

図 10: Si[110]ナノワイヤについて, [110]方向の幅を 1.9 nm と 4.2 nm に固定して, [001]方向の幅を変化させたときのΓ 谷の電子伝導有効質量.

- [1] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, High-performance fully depleted silicon-nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices, IEEE Electron Device Lett., vol. 27, no. 5, pp. 383-386, May 2006.
- [2] H. Majima, H. Ishikuro, and T. Hiramoto, Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET's, IEEE Electron Device Lett., vol. 21, no. 8, pp. 396-398, August 2000.
- [3] Y. M. Niquet, A. Lherbiner, N. H. Quang, M. V. Fernandex-Serra, X. Blase, and C. Delerue, Electronic structure of semiconductor nanowires, Phys. Rev. B, vol. 73, no. 16, 165319, April 2006.
- [4] E. Gnani, S. Reggiani, A. Gnudi, P. Parruccini, R. Colle, M. Rudan, and G. Baccarani, Band-Structure Effects in Ultrascaled Silicon Nanowires, IEEE Trans. Electron Devices, col. 54, no. 9, pp. 2243-2254, September 2007.
- [5] N. Neophytou, S. G. Kim, G. Klimeck, and H. Kosina, On the bandstructure velocity and ballistic current of ultra-narrow silicon nanowire transistors as a function of cross section size, orientation, and bias, J. Appl. Phys., vol. 107, no.11, 113701, June 2010.
- [6] N. Neophytou, A. Paul, M. S. Lundstrom, and G. Klimeck, Bandstructure Effects in Silicon Nanowire Electron Transport, IEEE Trans. Electron Devices, vol. 55 no. 6, pp. 1286-1297, June 2008.
- [7] J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters, Phys. Rev. B, vol. 57, no. 11, pp. 6493-6507, March 1998.
- [8] N. Morioka, H. Yoshioka, J. Suda, and T. Kimoto, Quantum-confinement effect on holes in silicon nanowires: Relationship between wave function and band structure, J. Appl. Phys., vol. 109, no. 6, 064318, March 2011.
- [9] T. B. Boykin, G. Klimeck, and F. Oyafuso, Valence band effective-mass expressions in the sp^3d^5s empirical tight-binding model applied to a Si and Ge parametrization, Phys. Rev. B, vol. 69, no. 11, 115201, March 2004.
- [10] O. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Splinger-Verlag, 1991.
- [11] S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures, Phys. Rev. B, vol. 69, no. 4, pp. 045316, January 2004.
- [12] M. Bescond, N. Cavassilas and M. Lannoo, Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented, Nanotechnol., vol. 18, no. 25, 255201, May 2007.
- [13] T. B. Boykin, G. Klimeck, and F. Oyafuso, Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models, Phys. Rev. B, vol. 70, no. 16, October 2004.