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We use LVDSMC (low-variance deviational Monte Carlo) simulations to calculate,
under linearized conditions, the second-order temperature jump coefficient for a dilute
gas whose temperature is governed by the Poisson equation with a constant forcing
term, as in the case of homogeneous volumetric heating. Both the hard-sphere gas
and the BGK model of the Boltzmann equation, for which slip/jump coefficients
are not functions of temperature, are considered. The temperature jump relation and
jump coefficient determined here are closely linked to the general jump relations for
time-dependent problems that have yet to be systematically treated in the literature;
as a result, they are different from those corresponding to the well-known linear and
steady case where the temperature is governed by the homogeneous heat conduction
(Laplace) equation.
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1. Introduction
Slip-flow theory is a powerful tool that enables the continued use of the

Navier–Stokes description as the characteristic flow length scale (L) approaches
the molecular mean free path (λ) (Beskok & Karniadakis 2002). It can be
rigorously derived from an asymptotic solution of the Boltzmann equation in the
limit Kn = λ/L� 1; such an analysis shows that, in this limit, the Navier–Stokes
description remains valid in the bulk, but fails near the boundaries (Sone 2002, 2007).
Fortunately, the kinetic effects associated with the inhomogeneity introduced by the
walls are only important within a layer of thickness O(λ) near the boundaries (known
as the Knudsen layer) and can be accounted for by a boundary-layer type of analysis
where an inner kinetic solution is matched to the outer Navier–Stokes solution (Sone
2002, 2007). Slip/jump boundary conditions and the associated non-adjustable slip
coefficients emerge from this analysis as the matching condition between the inner and
outer solution (Sone 2002, 2007). Carrying out such an analysis to second order in
Kn yields models that are generally expected to improve the accuracy of first-order
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slip-corrected Navier–Stokes solutions, and in many cases allow use of the
Navier–Stokes description in the early transition regime (0.1 . Kn . 0.4), provided
the existence of Knudsen layers in the vicinity of the boundaries, which cannot be
captured by the Navier–Stokes description, is accounted for (Hadjiconstantinou 2006).

Accurate determination of slip coefficients using this rigorous procedure is quite
challenging in general and becomes increasingly more challenging as the order of the
expansion increases. Original studies focused on the BGK model of the Boltzmann
equation (Cercignani 1962; Sone 1969, 1971), for which all first-order and second-
order coefficients are known (Sone 2002, 2007). The first-order coefficients for the
hard-sphere gas have also since been calculated (Ohwada, Sone & Aoki 1989a,b; Sone,
Ohwada & Aoki 1989). However, although the form of the slip expression is known
to second order in Kn, second-order slip coefficients for the hard-sphere gas are mostly
unknown.

As a companion paper (Takata et al. 2012) shows, the reciprocity relations
recently developed by Takata (2009, 2010) can be used to calculate these coefficients.
Alternatively, slip coefficients can be obtained from hydrodynamic fields by comparing
the Boltzmann equation with Navier–Stokes solutions (Hadjiconstantinou 2003, 2006).
In these approaches, in addition to high accuracy (including low statistical uncertainty
if a stochastic method is used for solving the Boltzmann equation), care needs to be
exercised to avoid comparison of the two solutions in the Knudsen layer, where the
Navier–Stokes solution is not equivalent to the Boltzmann solution (Hadjiconstantinou
2006).

In this paper we use this process to calculate the second-order temperature
jump coefficient for a dilute gas when the temperature field is governed by
the Poisson equation with constant forcing term; as shown in the companion
paper and further discussed below, our results are closely related to the second-
order slip/jump description of time-dependent problems. Here, we calculate jump
coefficients using the low-variance deviational Monte Carlo (LVDSMC) method
(Homolle & Hadjiconstantinou 2007a,b; Radtke & Hadjiconstantinou 2009; Radtke,
Hadjiconstantinou & Wagner 2011), which is naturally suited to low-signal problems
and thus allows calculations at infinitesimal temperature differences. The latter are
necessary because finite temperature variations may alter the result through density
gradients or the temperature dependence of transport coefficients.

In the following section we review temperature jump boundary conditions for steady
problems. In § 3 we describe the problem formulation that allows us to extract the new
temperature jump coefficient. In § 4 we describe the computational method and in § 5
we present our simulation results. We close with a discussion of the significance of our
results and ways in which they can be generalized.

2. Background
We consider a dilute hard-sphere gas of molecular mass m and molecular diameter

σ , in contact with a planar diffusely reflecting boundary at temperature TB. We also
consider the BGK model of such a gas, with collision frequency τ−1. In the case of

the hard-sphere gas, λ = (√2πn0σ
2)
−1

, while for the BGK gas λ = 2c0τ/
√
π, where

c0 =
√

2RT0 is the most probable speed based on the reference temperature T0, n0

is a reference number density, R = kB/m is the gas constant and kB is Boltzmann’s
constant.

Although the theory discussed here is valid for flowing gases, in the interest of
simplicity, we limit our discussion to flows that are quiescent under no-slip boundary
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conditions. The additional terms introduced in the temperature jump conditions by flow
stresses are known for steady problems and can be found in Sone (2002).

The first-order temperature jump condition at the gas–wall interface is given by

T̂|B − T̂B = d1k
∂T̂

∂ n̂

∣∣∣∣
B

, (2.1)

where T̂ = T/T0 − 1, k = (√π/2)Kn= (√π/2)(λ/L), |B denotes the boundary location,
n̂ is the unit (inward) normal direction and L is the characteristic system length scale;
the numerical constant d1 has the non-adjustable values of 2.4001 for a hard-sphere
gas and 1.30272 for a BGK gas (Sone 2002) for diffusely reflecting boundaries.

The first-order result (2.1) is typically adequate for Kn< 0.1. Asymptotic expansion
to second order in k (Sone 2002, 2007) for linear and steady problems extends (2.1) to

T̂|B − T̂B = (d1 + d5κ̄k)k
∂T̂

∂ n̂

∣∣∣∣
B

+ d3k2 ∂
2T̂

∂ n̂2

∣∣∣∣
B

. (2.2)

Here κ̄/L is the mean boundary curvature and d5 = 1.82181 for the BGK model
(Sone 2002); for the hard-sphere gas the value of d5 is unknown. We emphasize that
according to the analysis that yields this condition, for linear and steady problems,
energy conservation reduces to

∇2T̂ = ∂
2T̂

∂ x̂2
+ ∂

2T̂

∂ ŷ2
+ ∂

2T̂

∂ ẑ2
= 0, (2.3)

where (x̂, ŷ, ẑ) = (x/L, y/L, z/L). In the special case of one-dimensional problems,
(2.3) further reduces to

∇2T̂ = d2T̂

dn̂2
= 0, (2.4)

which makes the value of d3 irrelevant. This is utilized below to calculate the jump
coefficient due to a forcing term in the temperature equation.

In summary, jump condition (2.2) is to be used when the governing equation is
(2.3). Within this approximation, d3 is only known (d3 = 0) for the special case of
the BGK model (Sone 2002, 2007). We also note that Deissler’s result (Deissler
1964) for second-order velocity slip and temperature jump is based on approximate
mean-free-path arguments and does not correspond to a self-consistent solution of the
Boltzmann equation; as a result, it captures neither the correct form of the slip/jump
relation nor the correct values of the slip coefficients (e.g. compare (3.40)–(3.42) in
Sone (2007) to (24a) and (51) in Deissler (1964)).

3. Calculation of the temperature jump coefficient
To extract the jump coefficient in a dilute gas governed by the Poisson equation

with constant forcing term, we simulate the steady state of a one-dimensional gas
layer bounded by two isothermal, diffuse walls at x = ±L/2 and at temperature T0,
subject to volumetric heating at a constant rate Q̇; a discussion of the kinetic-level
formulation of this problem can be found in the next section. In dimensionless form,
the one-dimensional heat equation with constant volumetric heating can be written as

∇2T̂ = d2T̂

dx̂2
=− 5ε

4γ2k
, (3.1)
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where γ2 is a dimensionless form of the thermal conductivity equal to 1.92228 for
hard spheres and unity for BGK (Sone 2007), and

ε = L Q̇

c0P0
� 1 (3.2)

is the dimensionless form of the volumetric heat addition rate. Here, P0 = n0kBT0 is a
reference pressure.

The asymptotic analysis yielding (2.2) does not apply to the non-homogeneous
equation (3.1). A rigorous derivation which takes the inhomogeneous term into
account by considering an equivalent unsteady problem can be found in the companion
paper (Takata et al. 2012), which shows that in a quiescent gas, in one spatial
dimension, the resulting second-order slip relation is given by

T̂|B − T̂B = d1k
∂T̂

∂ n̂

∣∣∣∣
B

+ d′3k2 ∂
2T̂

∂ n̂2

∣∣∣∣
B

. (3.3)

We emphasize that, although the structure of the slip relation is the same as in
(2.2), the second-order coefficient is different. It is also convenient that (3.3) does not
contain d3; this allows calculation of d′3 from volumetric heating calculations without
explicit knowledge of d3. This last feature, as well as the similarity of (2.2) and
(3.3) is due to fortuitous cancellation; as discussed further in § 6, under more general
conditions (e.g. higher spatial dimensions), this cancellation does not take place and
terms containing both d3 and d′3 appear.

The solution to (3.1) subject to boundary condition (3.3) is

T̂ = 1
2

4ε
5γ2k

[(
1
4
− x̂2

)
+ d1k − 2d′3k2

]
. (3.4)

Comparison of this solution to LVDSMC simulations away from the Knudsen layer
allows us to calculate the coefficient d′3. Here, we extract the value of d′3 from the
slope of

5γ2

4ε
T̂(x̂= 0)− 1

8k
− d1

2
(3.5)

as a function of k for k→ 0.

4. Computational method
The low-variance deviational simulation Monte Carlo (LVDSMC) method (Homolle

& Hadjiconstantinou 2007a,b; Radtke & Hadjiconstantinou 2009; Hadjiconstantinou,
Radtke & Baker 2010; Radtke et al. 2011) efficiently simulates (Wagner 2008) the
Boltzmann equation

∂f

∂t
+ c ·

∂f

∂x
=
[
∂f

∂t

]
coll

(4.1)

written here in the absence of external body forces, by simulating only the deviation
(f d = f − f MB) from an equilibrium state f MB. Here, f = f (x, c, t) is the single-particle
distribution function (Sone 2002) and

f MB = ρMB

π3/2c3
MB

exp
(
−‖c− uMB‖2

c2
MB

)
, (4.2)
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based on local (cell-based) mass density ρMB, velocity uMB, temperature TMB, and most
probable velocity cMB =

√
2RTMB. Because f d can take positive and negative values,

it is represented by signed deviational particles. Deviational methods exhibit greatly
reduced statistical uncertainty for low-signal problems compared to the standard
DSMC (Bird 1994) approach and are therefore well suited to the present application.

Volumetric heating is modelled by simulating the augmented Boltzmann equation

∂f

∂t
+ c ·

∂f

∂x
=
[
∂f

∂t

]
coll

+ Q̇

P0

(
2
3

c2

c2
0

− 1
)

f 0, (4.3)

where f 0 = ρ0 (
√
πc0)

−3
exp[− ‖c‖2 /c2

0] and ρ0 = mn0. Here we note that the heat
generation term – that directly leads to the source term in (3.1) – is not unique,
in the sense that, in general, different source terms are expected to yield different
jump conditions. The one used here was chosen because it naturally lends itself
to a physical interpretation in terms of the time-dependent problem studied in the
companion paper (Takata et al. 2012). This also serves to explain the connection
between our results and the general theory of high-order slip/jump in time-dependent
problems.

As in DSMC, LVDSMC solves the Boltzmann transport equation through time-
splitting using a time step 1t. Although different derivations are possible, here we
take f MB 6= f MB(t), as originally proposed (Homolle & Hadjiconstantinou 2007b) and
theoretically analysed (Wagner 2008). In other words, and as also further discussed
in § 4.2, although ρMB, uMB and TMB vary during the simulation, their variation is
attributed to a ‘quasi-static change of basis’ that occurs once every time step and not
an explicit time dependence of f MB. The resulting advection and collision substeps are
described below.

4.1. Advection substep

Substituting f = f d + f MB into the left-hand side of (4.1) with f MB 6= f MB(t), yields

∂f d

∂t
+ c ·

∂f d

∂x
=−c ·

∂f MB

∂x
. (4.4)

This implies that the advection step in LVDSMC can be treated by collisionless
advection of deviational particles (solution of the homogeneous equation) plus a
correction due to the spatial variation of f MB (particular solution). In the LVDSMC
methods used here, f MB is either constant throughout the computational domain, or
piece-wise constant in each cell. In the former case no particular solution is required,
while in the latter case the solution can be shown (Homolle & Hadjiconstantinou
2007b) to require particle generation at the cell boundaries. Generated particles are
sampled from the distribution

c ·n
(
f MB
− − f MB

+
)
1Aint1t d3c, (4.5)

where 1Aint is the area of the interface, f MB
± are the equilibrium distributions in

adjacent cells, and n points from f MB
− to f MB

+ . Particles are generated every time step
and advected for a random fraction of the time step, after which they become part of
the deviational particle population.

A stationary domain boundary is a special case of the above solution where a
discontinuity is formed between the distribution imposed by the boundary and the
f MB of the cell adjacent to it. In this case particles need to be generated from the
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distribution

c ·n
(
ρBφ

B − f MB
)
1A1t d3c, (4.6)

where 1A is the surface area element at the boundary, f MB is the equilibrium
distribution in the cell adjacent to the boundary, and φB = (πc2

B)
−3/2 exp[−c2/c2

B] is
the ‘boundary distribution’, where the cB =

√
2RTB; the ‘boundary density’ ρB is

evaluated from the mass conservation statement (Radtke & Hadjiconstantinou 2009)

ρB

∫
c·n>0

c ·nφB d3c=−
∫
c·n<0

c ·n f MB d3c. (4.7)

4.2. Collision substep

The collision substep treatment is based on published LVDSMC implementations
(Radtke & Hadjiconstantinou 2009; Radtke et al. 2011), suitably modified to include
the effect of volumetric heating. We first discuss the BGK collision operator and the
corresponding volumetric heating implementation; the hard-sphere case follows. Owing
to the small deviations from equilibrium, here we consider the linearized form of these
operators; methods for simulating the corresponding nonlinear versions can be found
in Homolle & Hadjiconstantinou (2007b), Wagner (2008) and Hadjiconstantinou et al.
(2010).

4.2.1. BGK model
In the case of the BGK model, the collision operator is given by[

∂f

∂t

]
coll

=− f − f loc

τ
, (4.8)

where f loc is the local equilibrium distribution given by

f loc = ρ(x, t)

[2πRT(x, t)]3/2 exp
(
−‖c− u(x, t)‖2

2RT(x, t)

)
, (4.9)

and ρ(x, t), u(x, t) and T(x, t) are the local density, flow velocity and temperature.
By adding and subtracting the term 1f MB, the equation governing the collision

substep can be written (Radtke & Hadjiconstantinou 2009) as[
∂f

∂t

]
coll

1t = 1t

τ

[
f loc − f MB

]−1f MB︸ ︷︷ ︸
generation

+ 1f MB︸ ︷︷ ︸
shift in fMB

− 1t

τ
f d︸ ︷︷ ︸

deletion

, (4.10)

which can be decomposed into a source term for new particles, a shift in the
equilibrium state and a sink term for deleting existing particles. As discussed above,
the shift term effects a ‘change of basis’ in which the previous equilibrium distribution
(f MB) is replaced by a new equilibrium distribution (f MB + 1f MB), while particles
sampling −1f MB are generated and added to f d (f = f MB+1f MB−1f MB+f d). Although,
in principle, this update happens after the collision substep, in the interest of efficiency
and in order to maximize particle cancellation (see below), this update is integrated
into, and happens simultaneously with, the collision substep.
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It can be shown (Radtke & Hadjiconstantinou 2009) that when the equilibrium state
(for each cell) is updated according toρMB

uMB

TMB

 (t +1t)=

ρMB

uMB

TMB

 (t)+ 1t

τ

ρ − ρMB

u− uMB

T − TMB

 (t) (4.11)

cancellation between f loc − f MB and 1f MB causes the generation term to vanish. This is
in agreement with the physical interpretation of the collision operator in the relaxation-
time approximation, namely that collisions drive the distribution towards the local
equilibrium. This is exploited here to significantly simplify step (4.10).

The same change-of-basis argument can be used to treat the heat generation term

Q̇= ρ0
d
dt

(
3
2

RTMB

)
, (4.12)

resulting in the following update (every time step) for the temperature parameter of the
equilibrium distribution:

1TMB = 2Q̇1t

3ρ0R
. (4.13)

4.2.2. Hard-sphere model
The hard-sphere collision operator can be written as[

∂f d

∂t

]
coll

=
∫ [

2K(1) − K(2)
]
(c, c∗)f (c∗) d3c∗︸ ︷︷ ︸

generation

− ν(c)f (c)︸ ︷︷ ︸
deletion

(4.14)

allowing the collision step to be processed as a series of Markov particle generation
and deletion steps as proposed by Wagner (2008); the specific algorithms employed
are discussed in detail in Wagner (2008) and Radtke et al. (2011). Denoting
ξ = ‖c− uMB‖/cMB we obtain

K(1)(c, c∗)= σ 2ρMB√
πmcMB‖c− c∗‖ exp

(
−[(c− uMB) · (c− c∗)]2

c2
MB ‖c− c∗‖2

)
, (4.15)

K(2)(c, c∗)= πσ
2

m
‖c− c∗‖f MB(c), (4.16)

ν(c)= πσ
2ρMBcMB

m

[
exp(−ξ 2)√

π
+
(
ξ + 1

2ξ

)
erf (ξ)

]
. (4.17)

Unlike the BGK case, f MB is not updated every time step because the hard-sphere
simulation algorithm used here is based (Radtke 2011; Radtke et al. 2011) on
the fixed global equilibrium distribution f 0. However, to improve accuracy for the
low values of Kn considered here, we have developed an algorithm which uses an
equilibrium distribution (f MB) that is spatially dependent (but not updated every time
step). (As shown in Radtke & Hadjiconstantinou 2009, LVDSMC methods with a
variable equilibrium distribution significantly outperform their counterparts with a fixed
equilibrium distribution in the limit Kn→ 0, because they are able to track the local
equilibrium distribution and thus minimize the number of particles required for the
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same solution fidelity.) Similarly to the BGK case, the objective of this algorithm is
to make f MB ≈ f loc; in the present case this is achieved using an iterative algorithm
in which ρMB and TMB are taken from the solution at the previous iteration, while the
velocity uMB is taken to be zero. This process is started with f MB = f 0 and iterated until
f MB no longer changes appreciably, which usually takes less than 2 iterations.

Since the heat generation term on the right-hand side of (4.3) represents the rate
of change of the distribution function due to the uniform heat generation, the latter is
implemented by generating particles from the distribution[

∂f d

∂t

]
heat

= Q̇

P0

(
2
3

c2

c2
0

− 1
)

f 0. (4.18)

The number of computational particles (of both signs) generated per unit time is given
by the integral of the absolute value of this expression over all molecular velocities
and the volume of interest, divided by the effective number (the number of deviational
particles simulated by each computational particle). Since the generation is uniform
in space, particles can be uniformly generated throughout the simulation domain.
Algorithms for efficiently sampling distributions of the form (4.18) are described in
Radtke & Hadjiconstantinou (2009), Radtke et al. (2011) and Radtke (2011).

5. Results
Following extensive numerical experiments, simulations of uniform heat generation

were performed using a cell size 1x 6 λ/10 and a time step 1t 6 1x/2c0. Hard-
sphere simulations were performed using a number of particles per cell that ranged
from approximately 1300 for Kn = 0.1 to approximately 2600 for Kn = 0.04. Owing
to their significantly smaller cost, BGK simulations were performed with more than
10 000 particles per cell.

The second-order jump coefficients are determined by comparing the simulated
centreline temperature T̂(x̂ = 0) with the prediction of (3.4) at x̂ = 0. Figure 1
shows our numerical data for −kd′3 and a linear least-squares fit passing through
the origin based on the data for k < 0.06, and the values d1 = 1.30272 for BGK and
d1 = 2.4001 for the hard-sphere gas (Sone 2007). These fits yield d′3 = −1.4 for BGK
and −3.1 for the hard-sphere model; the fit quality demonstrates that the leading-order
term in (3.5) is indeed proportional to k. The contribution of higher-order terms
starts to be noticeable as k increases. Incidentally, the complementary analysis of the
companion paper, based on a finite-difference analysis of the Knudsen-layer problem
of the linearized Boltzmann equation, yields d′3 = −1.4276 for the BGK model and
d′3 =−3.180 for the hard-sphere model.

The disparity between the temperature jump coefficients of the two gases is in
part due to the difference in their thermal conductivities (γ2). If we account for
the difference in thermal conductivity (e.g. by taking kBGK = 1.92228kHS leading to
‘effective’ jump coefficients 1.92228d1 and 1.922282d′3 for the BGK model) the first-
order and second-order coefficients of the two gases differ by approximately 5 % and
66 %, respectively.

Figure 2(a) shows the temperature field for the hard-sphere case with Kn = 0.05
(equivalent to k = 0.0443) using the value obtained above (namely d′3 = −3.1),
demonstrating excellent agreement everywhere except in the Knudsen layer close to
the boundary, as expected. By comparing the first- and second-order jump theories,
it is clear that at Kn = 0.05 the second-order jump theory already provides an
improvement over the existing first-order theory. For Kn= 0.1 (figure 2b), the error in
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FIGURE 1. Fits used to extract the second-order jump coefficient d′3.

LVDSMC simulation
Second-order
First-order
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–0.5 0.5 –0.5 0.5

FIGURE 2. LVDSMC simulation results (symbols) are compared to the first-order (dashed
line) and second-order (solid line) jump theories ((3.4) with d′3 = 0 and d′3 = −3.1,
respectively): (a) Kn= 0.05; (b) Kn= 0.1.

the first-order solution is quite large, while the second-order solution is considerably
more accurate, provided we recall that Knudsen layers adjacent to the walls and
extending a few mean free paths (recall that x/λ = x̂/Kn) into the domain prevent the
slip/jump-corrected Navier–Stokes solution from matching the Boltzmann (LVDSMC)
solution there.

6. Discussion
Using LVDSMC simulations, we have extracted the second-order temperature jump

coefficient for a hard-sphere and a BGK gas in the case that the Navier–Stokes-
limit behaviour is captured by an inhomogeneous heat conduction equation, such as
the one appearing in the presence of constant volumetric heating. Our results have
been validated and put on a more firm theoretical footing by a companion paper
which provides a deterministic calculation of the same coefficient through a rigorous
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asymptotic analysis of the Boltzmann equation of a mathematically equivalent problem,
namely that of a quiescent gas confined between two parallel walls whose temperature
increases/decreases linearly in time at a constant (and small) rate. Owing to the
time-dependent nature of the latter problem, the analysis in the companion paper goes
beyond the asymptotic theory for steady problems (Sone 2002); this explains why the
jump coefficient (d′3) calculated here is not equivalent to the one (d3) appropriate for
steady problems.

Equations (3.1) and (3.3) can be generalized to two- and three-dimensional steady
problems as long as the heat generation is uniform in space and constant in time.
Specifically, for a quiescent gas, the governing equation and boundary condition in this
case become

∇2T̂ =− 5ε
4γ2k

(6.1)

and

T̂|B − T̂B = (d1 + d5κ̄k)k
∂T̂

∂ n̂

∣∣∣∣
B

+ d′3k2 ∂
2T̂

∂ n̂2

∣∣∣∣
B

+ (d′3 − d3)k
2

(
∇2T̂ − ∂

2T̂

∂ n̂2

)∣∣∣∣
B

, (6.2)

respectively. As explained in § 1, in the presence of gas flow, additional terms related
to the flow stress appear in (6.2). These terms can be found in Sone (2002).

More generally, d′3 is one of a set of unknown coefficients that extend the steady,
asymptotic theory of Sone (2002) – valid for Kn� 1 and Ma� Re� 1, where Ma
and Re are the Mach and Reynolds number, respectively – to unsteady phenomena
in the same limit. A complete discussion can be found in Takata & Hattori (2012).
Problems beyond the range of validity of such asymptotic theories (e.g. Kn 6� 1,
moderately/highly curved boundaries) or characterized by complex multidimensional
geometries can be treated by direct numerical solutions or simulations of the
Boltzmann equation (e.g. LVDSMC).
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