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Abstract

MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like
receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88
is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and
promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the ‘‘sorting adaptor’’ for MyD88. In
this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was
demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the
interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further
demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings
suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction.
The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal.
MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18
receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.
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Introduction

Toll-like receptors (TLRs) are representative innate immune

receptors that recognize pathogen-associated molecular patterns

(PAMPs). MyD88, a cytosolic adaptor protein, is involved in the

signaling pathways initiated by all of the reported TLRs with the

exception of TLR3 [1]. Usually, PAMPs first bind to the

extracellular domain of the TLRs, and the cytosolic region of

TLRs then interact with MyD88, which allows the signal to be

transmitted to the downstream kinase Interleukin (IL) -1 receptor

associated kinase 4 (IRAK4). The resulting activation of IRAK4

eventually leads to the activation of the transcription factors NF-

kB and AP-1 via conserved phosphorylation cascades [2]. MyD88

is composed of two functional domains: an N-terminal death

domain (DD) and a C-terminal Toll/Interleukin-1 receptor

homology (TIR) domain [3]. The DD is a protein interaction

module that is involved in a variety of cellular events. Similar to

the DD, the TIR domain also mediates protein-protein interac-

tions via homotypic TIR-TIR interactions. In contrast to the DD,

the TIR domain is almost exclusively found in the TLR related

cytosolic adaptors or in the cytosolic regions of the TLRs, IL-1 and

IL-18 receptors. Homotypic interactions of these protein in-

teraction modules play a pivotal role in transmitting the signals

downstream from the TLR; the TIR of MyD88 interacts with the

TIR of the TLRs, and the DD of MyD88 interacts with the DD of

IRAK4, which forms a large protein complex called the

Myddosome [4].

TLR4 signaling, the best characterized signaling pathway

among a dozen of known TLR pathways, is activated by

lipopolysaccharide (LPS) from gram-negative bacteria, and the

pathway plays a major role in endotoxin shock. Two modes of the

signaling have been described: the MyD88-dependent and

MyD88-independent pathways. In the MyD88-dependent TLR4

signal transduction pathway, another TIR domain-containing

adaptor protein, Mal (also called TIRAP), plays an important role.

Mal binds MyD88 via a homotypic TIR interaction and then

associates with the plasma membrane using its PIP2-binding

domain. Thus, Mal has been suggested to serve as a ‘‘sorting

adaptor’’ that recruits the ‘‘signaling adaptor’’, MyD88, to the

membrane region where the activated TLR4 resides [5]. Mal is

not an essential factor for the signaling because signal transduction

can occur even without Mal [6,7], but Mal can substantially

facilitate the signaling. A pair of TIR domain-containing adaptors,

TIR domain-containing adaptor inducing IFN-b (TRIF) and

TRIF-related adaptor molecule (TRAM), is known to play

important roles in the MyD88-independent TLR4-signaling
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pathway in which TRIF and TRAM function as the signaling and

the sorting adaptors, respectively. This pathway transmits signals

from TLR4 at early endosomes after the LPS-induced internal-

ization of TLR4 [8,9]. TRAM is known to deliver TRIF to the

endosomes via a specific region of the plasma membrane by using

its myristoylation site and polybasic region [10]. These findings

indicate that the specific combinations of the sorting and the

signaling TIR-containing adaptors define the specific signal

transduction pathways.

MyD88 is also involved in acquired immune responses because

it mediates the signals from the inflammatory cytokines IL-1 and

IL-18; ligand-activated IL-1/IL-18 receptors that subsequently

interact with MyD88 to trigger downstream protein kinase

cascades that eventually activate the transcription factors NF-kB
and AP-1 in a similar manner to TLR signaling. Although the

intracellular signaling pathway is similar to the MyD88-dependent

TLR4 pathway, the sorting-adaptor Mal is not involved [11]. As

mentioned above, TLR4 signaling is facilitated either by Mal

(MyD88-dependent pathway) or TRAM (MyD88-independent

pathway) in a pathway-dependent manner. The former mainly

localizes in PIP2 rich plasma membrane regions, while the latter is

found not only in the plasma membrane but also in the

internalized early endosomes that dispatch the signals. Thus,

different sorting adaptors recruit MyD88 to different membrane

regions and create distinct types of signal initiation complexes. In

contrast to TLR signals, IL-1/IL-18 signaling has not thus far

been thought to require such sorting adaptors. Interestingly,

Kagan et al. reported that an engineered MyD88 that is endowed

with PIP2 binding ability could rescue the LPS-TLR4 signaling in

mouse embryonic fibroblast (MEF) cells from MyD88 and Mal

double knockout mice, although it failed to rescue IL-1 signaling in

the cells [5]. This observation suggests that TLR4 and IL-1R are

located in distinct regions of the plasma membrane, which then

raises the hypothesis that unidentified sorting adaptors selectively

bring MyD88 to the appropriate membrane region to form signal

initiation complexes with activated IL-1 and IL-18 receptors.

In this study, we sought the sorting adaptor for IL-18 signaling

and discovered that TRAM is responsible for this function.

TRAM was demonstrated to directly interact with MyD88 in in

vitro binding experiments in which a homotypic TIR-TIR

interaction plays a vital role. The efforts to identify the interacting

sites in the MyD88-TIR interaction revealed that two surface sites

of MyD88-TIR are direct interfaces with TRAM-TIR. Interest-

ingly, these interaction sites overlap with the sites for Mal binding

[12]. Furthermore, cellular assays demonstrated the functional

involvement of TRAM in the IL-18 signal transduction, and

TRAM changed the localization of MyD88 from the cytosol to the

membranous regions. These new findings strongly suggest that

TRAM is the membrane-sorting adaptor for MyD88 in IL-18

signaling and plays a critical role in transmitting the signal. Thus,

the mechanism of signal initiation is more conserved between the

MyD88-dependent TLR4 pathway and IL-18 signaling than

previously thought.

Results

Binding of TRAM to MyD88
Five TIR containing adaptor proteins have been previously

identified: MyD88, Mal, TRIF, TRAM and SARM. Mal and

TRAM were reported to be the sorting adaptors for MyD88 and

TRIF, respectively [13]. Because a model structure of the TIR

domain of TRAM represents a substantially large negatively

charged surface area (Figure S1), while the TIR domain of MyD88

is covered by positive charge, we expected some interaction

between these two adaptor molecules. We thus further hypothe-

sized that TRAM also functions as the sorting adaptor for MyD88

in the IL-18 signaling pathway. To test these ideas, we first

examined the direct interaction between MyD88 and TRAM. As

both of the adaptors contain the TIR domain, which mediates the

protein-protein interaction generally via homomeric or hetero-

meric TIR-TIR interactions, the direct interaction between the

MyD88-TIR and the TRAM-TIR was examined with a GST-pull

down assay. The results indicated that the wild-type MyD88-TIR

directly bound the TRAM-TIR with a higher affinity than Mal,

while the interaction between MyD88-TIR and TLR1-TIR,

which had been shown not to bind the MyD88-TIR [14], was not

detected in this method (Figure 1A). We then examined the

interaction between MyD88 and TRAM in cells using a co-

immunoprecipitation analysis. When Myc-MyD88 and FLAG-

TRAM were co-expressed in HEK293 cells, the Myc-MyD88

constitutively associated with the FLAG-TRAM (Figure 2), which

is consistent with our GST-pull down assay. Strikingly, upon

stimulation of the cells with IL-18, the MyD88-TRAM complex

gradually dissociated over a 30- to 120-minute time course. The

HEK293 cells inherently express IL-18Ra (formerly called IL-

1Rrp), which is a necessary component for IL-18 signaling, but

lack IL-18Rb (formerly called IL-1AcPL). Thus, we additionally

co-expressed IL-18Rb in the cells for this experiment.

Binding of TRAM to IL-18 Receptors
For the activation of IL-18 signaling, the heterodimerization of

two IL-18 receptors, IL-18Ra and IL-18Rb, has been shown to be

required [15]. These receptors belong to the IL-1 receptor

superfamily and are thus structurally homologous to one another.

The extracellular region contains immunoglobulin (Ig)-like chains,

while the cytosolic region has a TIR domain that interacts with the

TIR domain of MyD88. To test the interaction of TRAM with

these IL-18 receptors, we performed GST pull-down assays using

the TIR domains of the IL-18 receptors and TRAM. The results

showed that the TIR domains from both IL-18Ra and IL-18Rb
directly bound the TRAM-TIR (Figure 1B).

Involvement of TRAM in IL-18 Signaling
After obtaining the evidence that TRAM interacts with MyD88

both in vitro and in cells, we then examined the possible

involvement of TRAM in IL-18 signaling. We knocked-down

the endogenous TRAM expression in HEK293 cells using siRNA

techniques and then performed NF-kB reporter assays for the IL-

18 signal transduction in the cells. The shRNA for the TRAM

expressing vector was generated based on the previously reported

target sequence [16]. When the expression of TRAM was

knocked-down (Figure 3A), NF-kB activity after IL-18 stimulation

was markedly decreased relative to the negative control experi-

ments that used scrambled shRNA (Figure 3B). This result

indicates that the knock-down of TRAM expression actually

impaired the IL-18 signal transduction. We confirmed the knock-

down effect of this shRNA sequence for TRAM via the LPS-

stimulated activation of IFN-b promoter, which is presumably due

to the suppression of the MyD88-independent TLR4 pathway

mediated by TRAM and TRIF (Figure 3C). The effect was similar

when compared to the results obtained from a dominant negative

form of TRAM (C117H). TRAM (C117H) showed an almost

complete shutdown of the LPS/TLR4/IFN-b signaling in the cells

(Figure 3D) and the decrease of the enhancement of NF-kB
activity induced by IL-18 (Figure 3E). To further confirm the

involvement of TRAM in the IL-18 signaling pathway, we

evaluated the cytokine production from helper type 1 differenti-

ated T (Th1) cells isolated from TRAM-deficient mice and

Interaction of MyD88 with TRAM
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MyD88-deficient mice. IL-18 did not produce IFN-c from not

only MyD88-deficient Th1 cells but also TRAM-deficient Th1

cells, significantly. And, IL-18 alone or IL-18 and IL-12 co-

stimulated TRAM-deficient Th1 cells produced significantly lower

IFN-c levels than those of wild-type Th1 cells (Figure 4).

IL-18 Modulates MyD88-TRAM Subcomplex in Human
Cells
Next, we further investigated whether MyD88 actually inter-

acted with TRAM in human HEK293T cells by live cell

fluoroimaging. When we transiently transfected a DsRed-TRAM

construct into HEK293T cells, the protein localized to the plasma

membrane region, which was consistent with a previous report

[10] (Figure 5A). In contrast, GFP-MyD88 was dominantly found

as foci in the cytosol in the cells expressing the protein; this has also

been shown by others [17] (Figure 5B). Strikingly, when

HEK293T cells were co-transfected with expression plasmids for

GFP-MyD88 and DsRed-TRAM, MyD88 proteins moderately

co-localized with TRAM in the membrane regions (Figure 5C).

These data strongly suggest that this transient interaction between

the two proteins dramatically altered the localization of GFP-

MyD88 from the cytosol to the membranes. Thus, TRAM both

bound and endowed MyD88 with membrane targeting properties

as has been previously demonstrated for Mal [5].

Identification of Important Amino Acid Residues of the
MyD88-TIR in IL-18 Signaling
Having established that MyD88 and TRAM directly interact

and that the interaction is critical in IL-18 signaling, we next

carried out experiments to identify the amino acid residues of

MyD88 that are important in this interaction. A cell-based

reporter assay system was utilized to examine various mutations in

Figure 1. Protein interaction assays. (A) GST pull-down assay investigating the direct interactions between the GST-MyD88-TIR and the TRAM-TIR
or TLR1-TIR. (B) GST pull-down assay between the GST-IL-18 receptor TIRs and TRAM-TIR.
doi:10.1371/journal.pone.0038423.g001
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the MyD88-TIR as previously reported [12]. The results are

shown in Figure 6A. An alanine substitution of any one of eight

residues (Arg196, Asp197, Lys214, Arg217, Lys238, Arg269,

Lys282 or Arg288) caused significantly reduced dominant negative

inhibitory effects on IL-18 signaling indicating that these residues

are involved in the signal transduction. These eight residues are

mapped on the protein structure of the MyD88-TIR (PDB code:

2z5v) (Figure 6B). In our previous experiments for LPS/TLR4

signaling using the same luciferase reporter system, three discrete

functional sites were found on the surface of the MyD88-TIR,

which we designated Site I, Site II, and Site III (Figure 6B) [12].

Five out of the eight residues, Arg196 (Site II), Asp197 (Site II),

Arg217 (Site I), Lys282 (Site III) or Arg288 (Site III) were

previously found to be important in the LPS/TLR4 signaling. We

then examined the direct binding of the representative mutants of

each functional sites of MyD88-TIR to the TRAM-TIR using

GST pull-down assays (Figure 6C). The results indicate that the

binding between the MyD88-TIR and TRAM-TIR is dependent

on Sites II and III because the alanine substitution of either

Arg196 or Arg288 resulted in decreased binding. Furthermore, the

interaction between the MyD88-TIR and TRAM-TIR was

completely abrogated when both Arg196 and Arg288 were

mutated. Additionally, co-immunoprecipitation assay also showed

the reduction of interaction between MyD88 R196A-R288A

mutant and TRAM (Figure 6D). In contrast, a Site I mutant,

R217A, did not show a significant decrease in binding affinity.

Overall, these interactions are very similar to those observed

between the MyD88-TIR and Mal-TIR [12], indicating that

TRAM and Mal share the same binding sites on MyD88-TIR.

Discussion

Involvement of TRAM in the IL-18 Pathway
Mal has been reported to function as the sorting adaptor in the

TLR4 signaling that brings MyD88 to the plasma membrane to

mediate the interactions between TLR4 and MyD88 [5]. Because

the IL-1 and IL-18 receptors also form signal initiation complexes

that contain MyD88, presumably at distinct membrane regions

from TLR4, the existence of currently unidentified sorting

adaptors that recruit MyD88 to specific membrane regions and

mediate the interactions between MyD88 and the IL-1/IL-18

receptors has been hypothesized [5]. Although several reports

have been published to date, the involvement of TRAM in IL-1

signaling remains controversial [16,18,19,20]. Using TRAM-

deficient mice, Yamamoto et al. showed that TRAM is not

involved in IL-1 signaling. Despite the homology between IL-1

and IL-18, the relationship between TRAM and IL-18 had not yet

been elucidated. In this study, we sought the sorting adaptor that

acts in IL-18 signaling and found that TRAM fulfils this role. It

was proposed that the electric potential is important for the

specific interactions between the TIR domain proteins [21].

According to the electric surface potentials of the TIR domain

structures, the TRAM-TIR and Mal-TIR both have a largely

acidic surface patch, while the MyD88-TIR has a largely basic

surface patch (Figure S1). Therefore we hypothesized that TRAM

interacts with MyD88 and works as the sorting adaptor that

recruits MyD88 in IL-18 signaling. In fact, TRAM has already

been reported as the sorting adaptor in the MyD88-independent

TLR4 pathway in which TRAM recruits TRIF to specific

membrane regions [10,22]. Nonetheless, in this work we obtained

multiple results that indicate that TRAM functions as the sorting

adaptor for IL-18 signals as we initially hypothesized. First,

TRAM bound to MyD88 in vitro and in cells (Figure 1A, 2, and

5C). Second, the intracellular TIR domains of IL-18 receptors also

bound to TRAM-TIR (Figure 1B). Finally, the shRNA knock-

down of TRAM expression and knock-out of TRAM caused

a significant decrease in the cellular response to IL-18 stimulation

(Figure 3 and 4). These findings strongly suggest that TRAM

functions as the sorting adaptor for MyD88 in IL-18 signaling. On

Figure 2. Assay of the interaction between MyD88 and TRAM in IL-18 signaling. (A) MyD88 and TRAM were co-expressed in HEK293T cells
along with IL-18Rb. IL-18 stimulation was carried out as indicated. MyD88 was immunoprecipitated using the Myc-tag antibody; co-
immunoprecipitated TRAM was also detected. (B) The opposite direction co-immunoprecipitation assay between MyD88 and TRAM. Myc-MyD88
was detected with immunoprecipitated FLAG-TRAM.
doi:10.1371/journal.pone.0038423.g002
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the other hand, recent reports have shown that TRAM is

associated not only with TLR4 but also with the TLR2 and

TLR5 signaling pathways [23,24]. These findings suggest that the

conventionally accepted definition of the functions of the TIR

domain-containing adaptor proteins in the TLR and IL-1/18

signaling pathways should be reconsidered.

Time Dependent Change of the Interaction between
MyD88 and TRAM
A particularly interesting feature we observed in this study was

that the complex between Myc-MyD88 and FLAG-TRAM

expressed in HEK293T cells decreased after IL-18 stimulation

in a time-dependent manner (Figure 2). This observation suggests

that either the rearrangement of the signal initiation complexes or

the degradation of the components in the complexes is triggered

by the activation of the IL-18 signaling. A similar rearrangement

of the signal initiation complex has also been observed for the

TLR4 pathway in a previous report; upon activation of TLR4 by

LPS, TLR4 associated with MyD88 instantly, and the association

was lost within 15 min [25]. Thus, such transient interactions

between the receptors and adaptors and the subsequent loss of the

interaction may be common to both the TLR and the IL-18

pathways especially because they utilize many of the same

intracellular components. For the TLR4 complex, phosphoryla-

tion of TLR4 and Mal has been suggested to be involved in the

rearrangements [25,26]. TRAM has been shown to be phosphor-

ylated by Protein kinase C-e (PKC-e) upon stimulation by LPS,

and the phosphorylation has been implicated in regulating the

Figure 3. The knock-down effects of TRAM in IL-18 or LPS/TLR4 signaling. (A) RT-PCR of the TRAM mRNA knock-down in HEK293T cells by
the psiRNA-TICAM-2 but not by the nonspecific scrambled sequence coded psiRNA vector. ‘‘-‘‘ indicates cells not transfected with siRNA; ‘‘Actb’’
indicates the loading control (b-actin mRNA). (B–E) The effect of the knock-down of TRAM using shRNA or the dominant negative form of TRAM
(C117H) for the IL-18 or LPS induced NF-kB or IFN-b-promoter luciferase activity assay. The NF-kB and IFN-b-promoter activities with IL-18 or LPS
stimulation were significantly decreased in the IL-18Rb co-transfected HEK293T cells or HEK293-hTLR4-MD2-CD14 cells.
doi:10.1371/journal.pone.0038423.g003
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myristoylation state and thus the membrane targeting [10,27].

The membrane targeting of another myristoylated protein,

MARCKS, has been shown to be regulated by phosphorylation;

MARCKS is released from the plasma membrane upon the PKC

mediated phosphorylation of a serine near its myristoylation site

[28]. Similar to these examples, TRAM might be phosphorylated

in the IL-18-induced dissociation of the MyD88-TRAM complex

(Figure 2), although the mechanism underlying the dissociation

and its relevance to signal regulation remain to be elucidated.

The TRAM Interaction Sites of MyD88 are Similar to that
for Mal
According to our previous study [12], Sites I, II, and III on the

MyD88-TIR are functionally important in TLR4 signaling. These

sites also were recognized to be important in IL-18 signaling

(Figure 6A and 6B). We further demonstrated that Sites II and III

act as the TRAM binding sites of the MyD88 TIR domain

(Figure 6C), which overlap with the Mal binding sites [12]. The

two sites are distantly located from each other on opposite

molecular surfaces of the protein. Because of the molecular size of

the TIR domain, it is unlikely that both sites present a simultaneous

binding interface for a single TRAM-TIR to form a 1:1 complex.

It is more likely that each of these sites constitutes a distinct

interface for a different TRAM molecule in different binding

modes. Consistent with this hypothesis, a mutation of either

Arg196 or Arg288 leads to only moderate losses in the binding to

the TRAM-TIR in contrast to the fact that simultaneous

Figure 4. The IFN-c production from IL-18 and/or IL-12
stimulated Th1 cells from TRAM-deficient mice and MyD88
deficient mice. The IFN-c production levels were significantly reduced
in TRAM deficient mice and MyD88 deficient mice. The black bars show
the production levels from IL-18 and IL-12 co-stimulated Th1 cells, grey
bars show those from IL-18 solely stimulated Th1 cells, and the white
bars show those from no secondary stimulated Th1 cells.
doi:10.1371/journal.pone.0038423.g004

Figure 5. The localization of the MyD88 and TRAM complex in cells. (A–C) The localizations of the DsRed-TRAM (Red) and/or GFP-MyD88
(Green) in HEK293T cells. DAPI stained nuclei of HEK293T cells are shown in blue. Complexes of the DsRed fusion protein and GFP fusion protein are
shown in yellow.
doi:10.1371/journal.pone.0038423.g005
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mutations at both residues leads to a total loss of binding

(Figure 6C and 6D). With this dual binding mode via Sites II and

III, TRAM would be more efficient at recruiting MyD88 to

membrane regions. It should be noted that this dual binding mode

was also found in the binding between the MyD88-TIR and Mal-

TIR [12], which implies that this sort of multiple binding mode is

common to the TIR-containing adaptor proteins.

Additionally, in human, the deficiencies of TIR domain

containing adaptors, MyD88 and TRIF, have been recently

reported [29,30]. These deficiencies were categorized into the

innate immune defects. One of the mutations of MyD88, R196C,

is known to cause the severe pyogenic bacteria infection due to the

loss of interaction between TLR2, Mal and MyD88 [12].

According to the above-mentioned results, Arg196 is one of the

binding sites of MyD88 to TRAM. Therefore, the substitution of

Arg196 may abrogate not only an initial signaling of TLR

mediated by the interaction between Mal and MyD88 but also

a secondary enhancement of immune responses mediated by IL-

18 induced interaction between TRAM and MyD88 in T cells or

NK cells for etiology of human MyD88 deficiency syndrome.

In summary, we have established an unexpected connection

between TRAM and IL-18 signaling, which is mediated by a direct

TIR-TIR interaction between MyD88 and TRAM, and we

proposed that TRAM is the sorting adaptor for IL-18 signaling.

Based on the results obtained in this study, we present a schematic

model for signal initiation from activated IL-18 (Figure S2) that is

similar to the model for the LPS/TLR4 system.

Materials and Methods

Vector Preparations
The following recombinant protein expression cassettes were

subcloned into pGEX4T-1, pGEX5X-1 or pGEX5X-3 (GE

Healthcare, Buckinghamshire, England): IL-18, IL-1b, MyD88-

TIR (amino acid residues 148–296), TRAM-TIR (66–235),

TLR1-TIR (625–786), IL-18Ra-TIR (374–541), and IL-18Rb-
TIR (407–599). A cDNA encoding the MyD88 TIR domain

tagged at the N-terminus with a Myc-epitope was cloned into the

plasmid vector pcDNA3.1+ (Invitrogen, California, USA). IL-

18Rb and TRAM constructs tagged at the C-terminus with an

Figure 6. The interaction sites of MyD88 with TRAM. (A) Luciferase reporter gene activities with wild type and mutant types of the MyD88 TIR
domain after IL-18 stimulation. The black bars indicate that the residues show significant difference with wild type. (B) The functional assays of IL-18
signaling presented on the 3D structure of the TIR domain of MyD88. Results of the functional assays are mapped onto the molecular surface of the
MyD88 TIR domain. The amino acid residues judged to be significant by the luciferase assay are shown in red, while non-significant ones are shown in
light brown. The conserved motifs of boxes 1–3 (FDA of box1, VLPG of box2, FW of box3) are shown in blue. (C) Assay to study the binding of the wild
type or mutant TRAM TIR domain and MyD88 TIR domain. The representative alanine substitutions at Site II (R196A) or Site III (R288A) in MyD88
caused a reduced interaction with TRAM. The double alanine substituted mutant at Site II and Site III caused the complete abrogation of the
interaction with TRAM. (D) Immunoprecipitation assay between MyD88 wild or R196A–R288A mutant, and TRAM.
doi:10.1371/journal.pone.0038423.g006
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AU1- or FLAG-epitope, respectively, were also cloned into

pcDNA3.1+. Mutants of TRAM and the TIR domain of

MyD88 were generated using the GeneEditor in vitro Site-Directed

Mutagenesis System (Promega, Wisconsin, USA). A pGL3-Basic

Vector (Promega) containing four kB binding sites, which was

used in the NF-kB luciferase reporter assay, and a Renilla

luciferase reporter vector used as an internal control in the assay

were gifts from Dr. Sewon Ki and Dr. Tetsuro Kokubo

(Yokohama City University). An IFN-b promoter region sequence

containing pGL4-Luc (Promega) was generated. A pAcGFP-C1-

MyD88 (GFP-MyD88) and a pDsRed-Monomer-N1-TRAM

(DsRed-TRAM) were also generated (Takara Bio, Shiga, Japan).

Protein Expression and GST Pull Down Assay
The TIR domain of the MyD88 wild type and mutants (R196A,

R217A, R288A, and R196A–R288A) and the IL-18 receptors (Ra
and Rb) were purified as GST (glutathione S-transferase) fusion

proteins according to methods previously described (1). The TIR

domain of human TRAM and TLR1 was also obtained by

a similar procedure as previously described for the MyD88-TIR.

These purified proteins were incubated with Glutathione Sephar-

ose 4B (GE Healthcare) for three hours at 4uC, and then these

resins were washed four times with wash buffer (20 mM potassium

phosphate buffer (pH 6.0), 100 mM KCl, 0.1 mM EDTA,

10 mM DTT, and 0.5% Triton X100), and then analyzed by

SDS polyacrylamide gel electrophoresis with Coomassie Brilliant

Blue staining. Experiments were performed in triplicate. The

mature form of human IL-18 and IL-1b were prepared using

E.Coli expression system according to previously reported

methods [15].

Cell Culture
HEK293-hTLR4-MD2-CD14 cells were purchased from In-

vivogen (California, USA), respectively. HEK293 cells were

cultured in Dulbecco’s Modified Eagle Medium (high glucose-

containing D-MEM, Invitrogen) supplemented with 10% heat-

inactivated fetal bovine serum (SIGMA-ALDRICH, Missouri,

USA), penicillin (100 U/mL) and streptomycin (100 mg/mL). All

cells were incubated at 37uC in a humidified atmosphere of 5%

CO2. The splenic pan T cells were isolated using Pan T Cell

Isolation Kit II (Miltenyi Biotec, Bergisch Gladbach, Germany)

from the spleen of TRAM-deficient mice, MyD88-deficient mice

and background mice (C57BL/6) supplied by Oriental Bio Service

(Kyoto, Japan). The purified splenic T cells were incubated with or

without 2 ng/ml recombinant murine IL-12 (p70) (PEPRO-

TECH, New Jersey, USA) on BIOCOAT anti-mouse CD3 T-

cell activation plates (BD Biosciences, Massachusetts, USA) in

order to be differentiated into Th1 cells. After 4 days of culture, T

cells were washed and restimulated with 20 ng/ml recombinant

murine IL-18 (MBL, Nagoya, Japan) and/or 2 ng/ml recombi-

nant murine IL-12 (p70) on anti-mouse CD3 T-cell activation

plates for 24 hours. All animal experiments were carried out in

accordance with the NIH Guide for Care and Use of Laboratory

Animals. These cells were cultured in RPMI1640 media

(Invitrogen) supplemented with 10% heat-inactivated fetal bovine

serum, penicillin (100 U/mL) and streptomycin (100 mg/mL).

Co-immunoprecipitation Analysis
HEK293T cells in 100 mm plates were transfected with 5.0 mg

of pcDNA3.1+ IL-18Rb, 5.0 mg of pcDNA3.1+ Myc-tagged

MyD88 (full-length) wild or R196A–R288A mutant and/or

5.0 mg of pcDNA3.1+ FLAG-tagged TRAM (full-length) using

Lipofectamine 2000 (Invitrogen). After 18 hours, the culture media

were replaced. After 24 more hours, the cells were incubated with

or without IL-18 (10 ng/mL). These cells were washed with cold

PBS and harvested with cell lysis buffer (Tris-HCl buffer (pH 7.5)

with 10 mM NaCl, 10 mM EDTA, 0.5% Triton-X100, a protease

inhibitor cocktail (Roche Diagnostics, Mannheim, Germany), and

a phosphatase inhibitor cocktail (PIERCE, Illinois, USA). The

soluble cell lysates including 1000 mg protein were incubated with

5 mg of anti-Myc antibody (Invitrogen) or anti-FLAG M2

monoclonal antibody (SIGMA-ALDRICH) for 60 minutes;

50 ml of MultiMACS Protein G MicroBeads (Miltenyi Biotec)

that had been equilibrated with cell lysis buffer for 30 minutes at

4uC was then added to the lysates. After incubation, the immune

complexes were applied to the magnetic columns. The protein

complex samples were then solubilized with 16 Laemmli sample

buffer after four washes with wash buffer. The samples were

analyzed by western blots using an anti-Myc antibody and an anti-

FLAG M2 monoclonal antibody.

Knock-down with shRNA or Dominant Negative Mutant
of TRAM
The shRNA expression vector psiRNA-h7SKgz-Scr (used as

a negative control because it contained a scrambled sequence) and

psiRNA-TICAM-2 were purchased from Invivogen. For the

reporter gene assays, HEK293T or HEK293-hTLR4-MD2-

CD14 cells were seeded at a density of 2.06105 cells/mL per

well in a 96-well plate. These cells were transfected with or without

pcDNA3.1+ IL-18Rb-AU1, NF-kB luciferase reporter vector, and

Renilla luciferase reporter vector with either the psiRNA-h7SKgz-

Scr or psiRNA-TICAM-2, pcDNA3.1+ TRAM-FLAG wild or

C117H mutant vector using Lipofectamine 2000. After 18 hours,

the culture media were replaced with fresh medium, and after an

additional 24-hour incubation, the culture media were replaced

with fresh medium containing recombinant human IL-18 (2.0, 5.0,

50.0 or 10.0 ng/mL) or LPSO127: B8, which is derived from E.

Coli strain (100 ng/mL) (SIGMA-ALDRICH), incubated for 6

hours. The luciferase reporter gene activities were analyzed using

a Dual-Luciferase Reporter Assay System (Promega). The

statistical significance of the differences in the luciferase activities

was determined using Dunnett’s multiple comparison test. The

statistical significance was assigned to be P,0.05.

RT-PCR
Total RNA from cells seeded in six-well plates was isolated with

ISOGEN (Nippon Gene, Toyama, Japan) according to the

manufacturer’s instructions. Reverse transcription was performed

with a 1st Strand cDNA Synthesis Kit (Roche Diagnostics)

according to the manufacturer’s instructions. The cDNA obtained

was used in PCR with Taq DNA polymerase (Toyobo, Osaka,

Japan) to determine the relative amount of TRAM mRNA.

ELISA
Culture supernatants in test tubes were centrifuged to remove

the cells and then stored at –80uC until analysis. The IFN-c
concentrations were measured using a Mouse IFN-c Quantikine

ELISA Kit (R&D Systems, Minnesota, USA). The statistical

significance of the differences in the cytokine productions between

the wild type cells and the TRAM or MyD88 deficient cells was

determined using two-way ANOVA with Bonferroni’s multiple

comparison test. The statistical significance was assigned to be

P,0.05.

Confocal Microscopy
For direct immunofluorescence, HEK293T cells co-transfected

GFP-MyD88 and DsRed-TRAM were washed in phosphate-
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buffered saline and fixed for 10 min in 4% paraformaldehyde in

phosphate-buffered saline. Cells were then permeabilizedwith 0.2%

Triton X-100 in phosphate buffered saline for 10 min at room

temperature. Samples were mounted onto coverslips with Pro-Long

Gold Antifade reagent (Invitrogen) and were examined on a Zeiss

LSM5 EXCITER confocal microscope. All images were acquired

using an aplan-Apochrom at 63X with a 1.4-N.A. objective or at

100X with a 1.4-N.A. objective.

The Screening Method of Functional Residues of MyD88-
TIR in IL-18 Signaling
HEK293T cells were transfected with pcDNA3.1+ control

vector or pcDNA3.1+ myc-MyD88 TIR domain (wild-type or

mutants), pcDNA3.1+ IL-18Rb-AU1, NF-kB luciferase reporter

vector, and Renilla luciferase reporter vector using Lipofectamine

2000 according to the manufacturer’s instructions. These

transfectants were stimulated with recombinant human IL-18

(100 ng/mL) for 6 hours. The luciferase reporter gene activities

were also analyzed using a Dual-Luciferase Reporter Assay System

(Promega). The statistical significance of the differences was

determined using Dunnett’s multiple comparison test. The

statistical significance was assigned to be P,0.05.

Supporting Information

Figure S1 The surface electrostatic potential of the TIR
domain structure models from the TIR domain contain-
ing adaptor proteins. These structure models were predicted

from the template structure of the MyD88-TIR (PDB code: 2z5v)

using Discovery Studio 2.6 software (Accelrys). TRAM and MAL

have a largely acidic surface patch, while MyD88 has a largely

basic surface patch.

(TIFF)

Figure S2 A schematic model of the two distinct
regulation patterns in LPS induced TLR4 signaling and
IL-18 signaling. MyD88 is efficiently delivered to receptor

specific membrane regions by the membrane binding activities of

the two associated molecules of Mal or TRAM so that it can form

signal initiation complexes with activated TLR4 or IL-18

receptors. Upon stimulation, MyD88 starts to transmit signals

through interactions with activated TLR4 or IL-18R, which

triggers the phosphorylation cascade mediated by IRAKs and

TRAF6.

(TIFF)
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