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Abstract 

A finite-difference time-domain technique for nonlinear elastic media is 
proposed, which can be applied to analyze finite amplitude elastic waves in solids. 
The kinematic and the material nonlinearities are considered, employing a general 
expression for the strain energy of an isotropic solid containing the second- and 
third-order terms of the strain components. The accuracy of the proposed technique 
is demonstrated by comparison with the analytical solution for the plane 
longitudinal wave propagation with finite amplitude. Two-dimensional simulations 
are performed to demonstrate the effectiveness of this formulation for Lamb waves. 
First, numerical simulations without the nonlinear effects are carried out, and the 
spectral peaks obtained from the calculated waveforms are shown to agree well 
with the theoretical dispersion curves of Lamb waves. As an example with the 
nonlinear effects, the harmonic generation in Lamb wave propagation is also 
demonstrated. The results show that the growth of the second-harmonic mode 
occurs for an incident-wave frequency selected in accordance with the analytical 
phase matching condition. 
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1. Introduction 
There have recently been a number of studies of elastodynamic problems using the 

finite-difference time-domain (FDTD) method1-6). This method is also referred to as the 
velocity-stress finite-difference or staggered grid finite-difference formulation7), where Navier’s 
equations are decomposed to a set of first-order partial differential equations with respect to velocity 
and stress. The staggered grid finite-difference formulation has practical advantage for its stability 
and accuracy8). Most of previous studies of the FDTD simulation, however, assumed linear elastic 
bodies. Recent research has demonstrated that nonlinear features of ultrasonic waves can be used to 
evaluate the material degradation sensitively9-12). In this regard, it is important to gain understanding 
of nonlinear response in ultrasonic wave propagation. Especially, numerical methods are 
indispensable for the analysis of guided wave modes such as Lamb waves which are characterized 
by frequency-dispersion and multiple-mode existence. 

In the present study, a formulation to deal with finite amplitude waves based on the FDTD 
method is presented. The kinematic as well as the material nonlinearities are considered in this 
formulation, employing a general expression for the strain energy of an isotropic solid containing the 
second- and third-order terms of the strain components.  

Some results of numerical simulation applied to Lamb waves are shown based on this 
formulation. The dispersion curves constructed by the numerical results are compared to the 
analytical ones given by the Rayleigh-Lamb frequency equations13). Furthermore, in the situation 
where a condition14) of phase matching of fundamental and harmonic Lamb modes holds, cumulative 
harmonic generation is demonstrated as one of nonlinear effects in Lamb waves.  

 
2. Fundamental Equations of Nonlinear Elastodynamics 

To deal with finite amplitude waves, two sources of nonlinearity should be taken into account: 
the material nonlinearity and the kinematic nonlinearity. Accounting for the contribution of the terms 
which are cubic in the strains, the strain energy density W is given by 
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where ρ0 is the mass density in the unstressed configuration, Eij are the components of the 
Lagrangian strain tensor, Eij = 1/2 (∂ui/∂Xj + ∂uj/∂Xi + ∂uk/∂Xi ∂uk/∂Xj), and Cijkl and Cijklmn are the 
components of the second- and the third-order stiffness tensors, respectively. The equations of 
motion, the displacement-velocity relation, and the stress-strain relation can be written by 15) 
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where Xi are the Lagrangian (or material) coordinates, vi the velocities, ui the displacements and Pij 
the components of a non-symmetric tensor known as the first Piola-Kirchhoff stress tensor. When the 
solid is isotropic, the stiffness tensors in eqs. (1) and (4) are given15) as 

 ,2 ijklklijijkl IC   (5) 
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where λ and μ are the Lamé elastic constants and A, B and C are the third-order elastic constants in 
isotropic media used by Landau and Lifshitz16), ik is the Kronecker’s delta and 

  2/jkiljlikijklI   .  

 
3. Formulation of FDTD Scheme for Nonlinear Elastic Media 
3.1 Discretization 

In this section we introduce a two-dimensional FDTD scheme for finite amplitude elastic waves. 
Figure 1(a) shows the conventional FDTD staggered grid, where the nodes for velocity and stress are 
only considered. For the nonlinear problems considered in this paper, the time derivative of the stress 
cannot be expressed only by the velocity gradients as in the conventional FDTD formulation. For 
this reason, the nodes of the particle displacements are also required in the grid for nonlinear 
simulations as shown in Fig. 1(b). This grid corresponds to the X1-X3 plane of the material 
coordinates. 

Also, the nodes of the stress tensor in the conventional staggered grid should be replaced with 
those of the first Piola-Kirchhoff stress tensor in this grid. Since the first Piola-Kirchhoff stress 
tensor is generally not symmetric, P13 and P31 are stored separately. Figure 1(b) shows the schematic 
of the staggered grid for nonlinear simulations. 

The stresses and the velocities in the conventional FDTD scheme are alternately updated. In the 
FDTD scheme with nonlinear effects, the displacements and stresses (u1, u3, P11, P33, P13, P31) are 
updated when the time step index is integer and the velocities (v1, v3) are updated when it is 
half-integer. The updated displacements are given as follows by discretizing eq. (3):  
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Fig. 1 Geometry of (a) the conventional FDTD grid and (b) the FDTD grid for nonlinear simulation.  
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where i and j are the indices of a grid point in the X1 and X3 direction, respectively. The superscript 
index n denotes the time step and Δt is its increment. By substituting the updated displacements to eq. 
(4), the components of the first Piola-Kirchhoff stress tensor are given by 
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where commas are used to denote the partial derivatives with respect to the material coordinates, 
whose discretized forms are defined in eqs. (A·1) and (A·2) in the Appendix. The coefficients c11, c13, 
c55, d1, d2, d3, and d4 are the linear combinations of the second- or third-elastic constants in isotropic 
media defined as follows: 
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Equation (2) gives the velocities of the next time step:  
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where the spatial gradients of the first Piola-Kirchhoff stress tensor are defined in the Appendix [eq. 
(A·3)]. Using eqs. (7)-(12), (14), and (15), we alternately calculate the stresses and velocities 
according to when the time step index is integer or half-integer, respectively. 

The above discretization procedure applies to nodes in the interior of the elastic solid. At the 
boundaries, the computation of the stress components requires different expressions of the 
displacement gradients from those for the interior points given in the Appendix. Namely, at the 
boundaries the central finite-differences are replaced by certain forward (or backward) 
finite-differences using the displacements of interior nodes. 

 
3.2 Verification of the accuracy of nonlinear simulation 

To confirm the accuracy of the proposed FDTD scheme for nonlinear elastic media, we 
demonstrate a nonlinear simulation of plane longitudinal wave propagation in aluminum. Due to the 
one-dimensional nature of the problem, each variable is computed at 20,000×1 grid points, and the 
same numerical values are assigned to the corresponding grid points located one-grid above and 
below (Fig. 2). The longitudinal and transverse wave speeds of aluminum are cL=6350 m/s and 

 

Fig. 2 Schematic of the grid for plane longitudinal wave simulation. 
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cT=3130 m/s, respectively (λ = 56.0 GPa, μ = 26.5 GPa, ρ0 = 2700 kg/m3), and their third-order 
elastic constants are A = -2.96×1011 Pa, B = -1.15×1011 Pa and C = 9.35×1010 Pa17). The excitation is 
made by imposing a continuous sinusoidal displacement with the frequency 1.8MHz and the 
amplitude 10 nm to the left boundary. After collecting the computed displacement waveforms at 
different spatial locations, we obtain the displacement distribution u1(X1, t). The displacement 
distribution is analyzed by two-dimensional Fourier transform in the frequency-wave number plot 
U(K, f), where K and f are the wave number (inverse of wave length) and the frequency, respectively. 
The two-dimensional Fourier transform is calculated as  
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In this analysis, we choose X = 45 mm and T = 5 μs. Figure 3 shows a result of the two-dimensional 

Fourier transform analysis at X 88 mm, t 26 μs. Because the temporal and spatial widths of 

the window function are finite, the peaks are not sharp but show some spread. We can observe the 
second harmonic (3.6 MHz) generated from the fundamental wave (1.8 MHz) in Fig. 3. The 
amplitude ratios of the second harmonic and the fundamental wave are shown in Fig. 4 as a function 
of the propagation distance X1. The plotted points appear to align on a straight line. When fitted by a 
quadratic function which passes through the origin, the plots give the slope of 4.17×10-4 m-1 at the 
origin. 

A simple perturbation analysis15,18) shows that the longitudinal wave excited by u1(0,t) = u0sinωt 

 

Fig. 3 f-K distribution of the longitudinal wave simulation at the propagation distance of 88 mm. The 
color is based on natural logarithm of the amplitude U(K, f).  
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produces the following wave containing the second harmonic component as 
 

),(2cos
4

)sin(),( 11

2

L

0
1011 kXtX

c

u
kXtutXu 








   (18) 

 
,

2

262

2

3
2

L0









 


c

CBA


  (19) 

where u1(X1, t) denotes the particle displacement and k = ω/cL. From eq. (18), the amplitude ratio of 
the second harmonic and the fundamental components R(X1) is proportional to the propagation 
distance X1. The amplitude ratio R(X1) is written as 
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where k0 = 4.16×10-4 m-1 in the case of the 1.8MHz longitudinal wave propagation in aluminum with 
the above-mentioned parameters. The difference of the spatial slope of the relative second harmonic 
amplitude obtained by the numerical simulation and by the perturbation analysis is only 0.3%. 
Therefore, the proposed numerical simulation scheme has enough accuracy in respect of the 
amplitude of the second harmonic generation. 
 
4. Application to Lamb Wave Propagation  

Two examples of numerical simulations for Lamb wave propagation are demonstrated, one 
without nonlinear effects and one with nonlinear effects. Both examples are for a two-dimensional 
cross section of an aluminum plate (2 mm thick, 400 mm long). A schematic of the simulation model 
is displayed in Fig. 5. The grid size is Δd=0.02 mm and the number of the grid points is 20000×100. 
The size of time step Δt is 0.79 ns, which satisfies the stability condition. 3) The incident wave is 
excited from one side of the plate by prescribing velocities and/or stresses. The zero-stress 
formulation3,19) is applied to three other surfaces which are assumed to be traction-free. 

 

 

Fig. 4 (Color online) Variation of the relative amplitude of the second harmonics with the propagation 
distance. The plotted circles are the result of the numerical simulation. The solid line and the red dashed 
line are the perturbation solution and the fitted function of the numerical results, respectively.  
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4.1 Example of linear simulation 
A linear simulation based on the above formulation, omitting the second-order terms of the 

spatial gradient of the particle displacements in eqs. (9) to (12), is performed to confirm the validity 
of the proposed technique. The excitation is given in terms of the stress P11 at one surface of the 
model as shown in Fig. 5. The excitation stress with the amplitude P0 is expressed as 

 ).()( 3011 XBtAPP   (21) 

The temporal waveform A(t) is a continuous sinusoidal wave which initially increases its amplitude 
as Gaussian function expressed as  
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where tc = 6 μs. In order to perform numerical simulations of symmetric and antisymmetric modes of 
Lamb waves separately, the thickness profile of the excitation stress B(X3) is given in the forms 
shown in Figs. 6(a) and 6(b). The simulation was performed by increasing the frequency f0 of the 
incident wave from 0.5 to 5.0 MHz. The computed snapshots of P11/P0 at different time steps are 
shown in Fig. 7, for the antisymmetric-mode excitation at 3.0 MHz.  

After collecting the computed surface displacement waveforms at different spatial locations, the 
results are analyzed by two-dimensional Fourier transform in the frequency-wave number (f-K) plot. 

The plotted points in Fig. 8 denote the peaks of the f-K plot at X  45 mm, t  23 μs from the 

 

Fig. 5 The configuration of the model of Lamb wave simulation used for both linear and nonlinear 
simulations. The upper and the bottom sides of the plate are free of stress. 

 
                (a)                             (b) 

      

Fig. 6 Schematics of thickness profile of the excitation stress B(X3) where d denotes the thickness of the 
plate, for the excitation of (a) symmetric and (b) antisymmetric Lamb waves. 
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numerical simulation and the solid and dashed lines are the theoretical dispersion curves given by 
the Rayleigh-Lamb frequency equations. The plotted points generated by the numerical simulation 
show good agreement with the theoretical curves. The standard deviation of the difference between 
the numerical simulation and the theoretical dispersion curve is 1.4% in the wave number for given 
frequencies.  This indicates the validity of the present FDTD technique. 

 
4.2 Example of nonlinear simulation 

While higher harmonics in dispersive Lamb waves do not generally grow with the propagation 
distance, it is known that certain special types of Lamb waves exhibit monotonic growth of the 
harmonics with the propagation distance. The fundamental wave and the second harmonic of 
theseLamb wave modes have identical phase velocity, and therefore the second harmonic Lamb 

 
Fig. 7 (Color online) The computed snapshots of P11/P0 (0 ≤ X1 ≤ 20 mm) at the elapsed times (a) 4 μs, (b) 6 
μs, (c) 8 μs, (d) 10 μs, and (e) 12 μs.  

 

 
Fig. 8 (Color online) f-K peaks of the numerical results and the analytical dispersion curves by the 
Rayleigh-Lamb equations. The plotted circles and crosses are the numerical results obtained by 
numerical simulation of symmetric and antisymmetric modes of Lamb waves, respectively. The solid and 
dashed lines are the theoretical dispersion curves given by the Rayleigh-Lamb frequency equations. 
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wave grows monotonically with the propagation distance as other elastic waves which have no 
dispersive nature20). Recently the authors derived four types of the special Lamb modes14) which are 
expected to generate higher harmonics in a cumulative manner. The four types are identified as (i) 
Lamé modes, (ii) symmetric modes with dominant longitudinal displacements, (iii) intersections of 
symmetric and antisymmetric modes and (iv) extra Rayleigh modes. As a specific example, the 1.8 
MHz S1-mode Lamb wave satisfies the condition for (ii) in an aluminum plate whose thickness is 2 

mm. Thereby we conducted numerical simulations when S1-mode Lamb wave was excited with the 
fundamental frequencies of 1.6, 1.8, and 2.0 MHz. The excitation is applied at one end of the plate in 
terms of both velocities and stresses with their thickness profiles given by an analytical Lamb wave 
solution at each frequency, with the incident temporal waveform expressed as eq. (22) with tc also 6 
μs. The maximum amplitude of the thickness profile is chosen so that the energy flux of the excited 
Lamb mode is equal to that of the plane longitudinal wave with displacement amplitude 10 nm. The 
simulation was performed with nonlinear terms. The third-order elastic constants are the same as 
those used in § 3.2. 

Figure 9(b) shows the result of the two-dimensional Fourier transform at X  100 mm, t  

70 μs when the incident wave frequency is 1.8 MHz. The corresponding result for the linear case is 
shown in Fig. 9(a), obtained with the same condition as Fig. 9(b) except that the coefficients d1, d2, 
d3, and d4 are switched to zeros. Solid and dashed lines in Fig. 9 denote the dispersion curves of the 
linear theory. In Fig. 9(b), we can observe the second harmonic (S2 mode, 3.6 MHz) generated from 
the fundamental mode, which is not seen in Fig. 9(a). The amplitude ratio of the second harmonic 
and the fundamental wave was computed and shown in Fig. 10 as a function of the propagation 
distance from the excitation area. The relative amplitude of second harmonic from the 1.8 MHz 
Lamb mode increases linearly as a function of the propagation distance, while those for other 
frequencies do not. This shows that the cumulative second harmonic generation of Lamb waves only 
occurs in special circumstances, and the present numerical analysis gives its occurrence at the 
theoretically predicted frequency. 

 

  (a)                       (b) 

    

Fig. 9 f-K distribution by the numerical simulation at the propagation distance of 100 mm, (a) without 
nonlinear effects and (b) with nonlinear effects. The color is based on natural logarithm of the amplitude 
of U(K, f). 
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5. Conclusions 
A numerical formulation of the FDTD method for finite amplitude ultrasonic waves has been 

presented. The kinematic and the material nonlinearities are considered employing a general form of 
the strain energy with the second- and third-order terms of the strains. The simulated results of Lamb 
waves based on this formulation show good agreement with the theoretical dispersion curves. With 
the proposed technique, the cumulative second harmonic generation in Lamb waves can also be 
simulated.  
 
Appendix  

The discretized expressions for the spatial gradients of the displacements and the stresses are 
shown here, only for nodes in the interior of the solid. Because the positions of the nodes for P11 and 
P33 are different from those for P13 and P31 in the staggered grid (Fig. 1(b)), we must consider the 
spatial gradients of the displacements on both kinds of positions. The spatial gradients of the 
displacements u1,1, u3,3, u1,3 and u3,1 centered at (i, j) are required to calculate P11 and P33, and those 
centered at (i+1/2, j+1/2) are required to calculate P13 and P31. The gradients u1,1, u3,3, u1,3 and u3,1 
centered at (i, j) are expressed as  

 

Fig. 10 (Color online) Variation of the relative amplitude of the second harmonics with the propagation 
distance. 
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where d denotes the grid size.  
On the other hand, the gradients u1,1, u3,3, u1,3 and u3,1 centered at (i+1/2, j+1/2) are expressed as  
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The spatial gradients of the first Piola-Kirchhoff tensor required in eqs. (14), (15) are discretized as  
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