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1 Introduction
In empirical demand analysis, the almost ideal demand system (AIDS) model proposed
by Deaton and Muellbauer (1980) has been widely used. This $mo$del assumes that market
demand can be thought of as if it were the outcome of decisions by a rational representative
consumer. In the previous studies on the structural shifts in demand, Moosa and Baxter
(2002) developed the time-varying coefficient AIDS model. They introduced the stochastic
trend and seasonality terms into the linear approximated AIDS ($LA$-AIDS) model so that
it can be applied to unstable demand structure in the alcoholic beverage market in the
U.K. Ishida et al. (2006, 2010) employed the gradual switching AIDS model. They set the
transition functions into the AIDS model to capture the gradual shifts following Bovine
Spongiform Encephalopathy (henceforth BSE) and bird flu outbreaks in the Japanese
meat market. The latter model assumes that researchers know the structural change
points in demand in advance.

Obviously modeling abrupt changes in demand caused by the unique exogenous events
and estimating these change points are the next step. Allais and Nich\‘ele (2007) seem to be
the first to propose a Markov-switching almost ideal demand system ( $MS$-AIDS) model
extending the idea of Hamilton (1989) 3. This model enables us to determine when
the regime shifts occurred and to estimate parameters characterized across the different
regimes. Moreover, degree of belongingness to each of the regimes and transitions between
regimes are quantified by the probabilities. They analyzed the French meat and fish
demands over the period 1991-2002 and detected the abrupt changes due to the two
BSE crises in France. Kabe and Kanazawa (2012) also assessed the structural change
points in the Japanese meat market during 1998-2006 via $MS$-AIDS model. They $fo$und
the structural change point coinciding with the timing of first reported case of BSE, but
not of bird flu. In both of these instances, $MS$-AIDS model is found to be quite effective
in detecting abrupt changes in demand using monthly aggregate data.

In Allais and Nich\‘ele (2007), they estimate the parameters including transition proba-
bilities via maximum likelihood ($ML$) estimation. However, when the variance-covariance
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2Professor of Statistics, Email: kanazawa@sk.tsukuba.ac.jp.
3Hamilton (1989) proposed the Markov-switching model to date the tilning of recessions and booms

with real gross national product (GNP) data in U.S. He found that the regime shift from positive to
negative growth rate has a recurrent feature of the U. $S$ . business cycle.
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matrices differ between regimes, a singularity problem arises when the determinant of
variance-covariance matrix is close to zero, sending $\log$-likelihood of $MS$-AIDS model to
infinity, and making numerical optimization methods (e.g., Newton-Raphson method)
break down. This problem is well-known in the literature on estimation of mixture of
normal distributions. They also estimate the transition probabilities via $ML$ estimation
without any constraints, although the transition probabilities have to lie between zero
and one inclusive.

To avoid the singularity problem, subjective judgment is required in deciding what
constitutes a suitable region for plausible value of the variance-covariance matrices, so
that Hamilton (1990, 1991) suggests the Bayesian estimation as a simple solution of
the singularity problem. Hamilton (1991, p.37) stated that “the [Bayesian] approach is
intuitively appealing and trivial to implement. Monte Carlo analysis suggests that this
approach can consistently improve the MSE’s for a wide variety of underlying models.”

Bayesian estimation enables us to incorporate the prior information on the variance-
covariance matrices to the conjugate prior distributions. Moreover, Bayesian estimation
can provide us with the posterior distributions of transition probabilities in the unit inter-
vals, avoiding problems associated with unconstrained $ML$ estimation. Finally, Bayesian
estimation is able to replace the messy calculations entailed in the score functions of log-
likelihood for $MS$-AIDS model with computationally simple Gibbs sampler. To the best
of our knowledge, no Bayesian estimation method is proposed to solve theses problems
associated with the $MS$-AIDS model. In this paper, we propose a Bayesian method to
estimate parameters in $MS$-AIDS model along with the transition probabilities. To illus-
trate its applicability, we take the proposed method to the Japanese meat market data
and examine the regime shifts caused by the food safety concems such as BSE and bird
flu.

The rest of this paper is organized as follows. Section 2 briefly describes the Markov-
switching AIDS model and introduces the necessary notations. Then section 3 proposes
the Bayesian estimation, and section 4 presents the empirical study on the Japanese meat
market via the proposed Bayesian estimation method. Finally, section 5 discusses the
merits of the proposed Bayesian method relative to the $ML$ estimation we employed in
Kabe and Kanazawa (2012), and then we point to future directions of the research.

2 Markov-Switching AIDS model
Suppose that $s_{t}$ is an unobserved random variable that takes an integer value in 1, 2, . . . , $K$

to express “regime” or “state” at time $t$ , then budget share of i-th product at time $t,\overline{w}_{it}$

which is defined as $p_{\’{i} t}q_{it}/m_{0t}$ with price $p_{it}$ , quantity $q_{it}$ and expenditure (or budget) $m_{0t}$

$(= \sum_{i}p_{it}q_{it})$ takes the following form:

$\overline{w}_{it}=\alpha_{i,s_{t}}+\sum_{j=1}^{N}\gamma_{ij,s_{t}}\log p_{jt}+\beta_{i,s_{t}}\log(\frac{m_{0t}}{P_{t}})$ (2. 1)

where $P_{t}$ is a price index which is defined by

$\log P_{t}=\alpha_{0,s_{t}}+\sum_{k=1}^{N}\alpha_{k_{St}},\log p_{kt}+\frac{1}{2}\sum_{k=1}^{N}\sum_{j=1}^{N}\gamma_{kj,s_{t}}\log p_{kt}\log p_{jt}$ (2.2)
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and $\alpha_{0,s_{t}},$ $\alpha_{i,s_{t}},$ $\gamma_{ij_{)}s_{t}}$ and $\beta_{i,s_{t}}(i,j=1,2, \ldots, N)$ are regime-dependent parameters.
The parameters in (2.1) and (2.2) have the theoretical constraints 4 as follows

[Adding up] $\sum_{i=1}^{N}\alpha_{i,s_{t}}=1,$ $\sum_{i=1}^{N}\gamma_{ij,s_{t}}=0,$ $\sum_{i=1}^{N}\beta_{i,s_{t}}=0$ , (2.3a)

[Homogeneity] $\sum_{j=1}^{N}\gamma_{ij,s_{t}}=0,$ (2.3b)

[Symmetry] $\gamma_{ij,s_{t}}=\gamma_{ji,s_{t}}$ . (2.3c)

Following the previous studies (Rickertsen, 1996; Allais and Nich\‘ele, 2007; Ishida et al.,
2010), we include a trend effect, seasonal effect and habit effect into the intercept term
$\alpha_{i,s_{t}}$ as

$\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{t}}+v_{i,s_{t}}t+\delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}+\sum_{j=1}^{N}\phi_{ij}\overline{w}_{j,t-1}$ (2.4)

where $d_{1,t}$ and $d_{2,t}$ are dummy variables

$d_{1,t}=\{\begin{array}{l}1 if t is August\{\end{array}$
$0$ otherwise

1 if $t$ is December
$d_{2,t}=$

$0$ otherwise.

As for seasonal effect, we set the dummy variables to adjust the seasonality in budget
shares. The budget shares for meat and fish are considered to shift due to the seasonal
habits (e.g., summer camp, gift-giving tradition, year-end party and so forth) in August
and December. Furthermore, we include a habit effect which is defined as alinear function
of one-lagged budget shares (Rickertsen, 1996; Allais and Nich\‘ele, 2007). In order to
satisfy the adding up condition, we impose the restriction $\sum_{i=1}^{N}\overline{\alpha}_{i,St}=1,$ $\sum_{i=1}^{N}\nu_{i,s_{t}}=0,$

$\sum_{i=1}^{N}\delta_{1,i}=\sum_{i=1}^{N}\delta_{2,i}=0$ and $\sum_{i=1}^{N}\phi_{ij}=0$ . We also impose the restriction $\sum_{j=1}^{N}\phi_{ij}=0$

to avoid the identification problem.
Using the theoretical constraints in (2.3a), (2.3b) and (2.3c), the $MS$-AIDS model

(2.1) can be rewritten as

$\overline{w}_{it}=\alpha_{i,s_{t}}+\sum_{j=1}^{N-1}\gamma_{ij,s_{t}}\log(\frac{p_{jt}}{p_{Nt}})+\beta_{i,s_{t}}\log(\frac{m_{0t}}{P_{t}})$ (2.5)

where $i=1,2,$ $\ldots,$ $N-1$ . Imposing the restriction $\sum_{j=1}^{N}\phi_{ij}=0$ , intercept term $\alpha_{i,s_{t}}$ in
(2.5) is expressed as

$\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{t}}+\nu_{\’{i},s_{t}}t+\delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}+\sum_{\prime,J^{=1}}^{N-1}\phi_{ij}(\overline{w}_{j,t-1}-\overline{w}_{N,t-1})$ .

4‘Adding up” guarantees that the total expenditure is equal to the sum of expenditures on the
category of products under consideration. “Homogeneity” guarantees that if prices of products increase
to $\tau p_{1t},$

$\ldots,$ $\tau p_{Nt}$ for a scalar $\tau>0$ , representative consumer has to increase his expenditure from $m_{0t}$ to
$\tau m_{0t}$ to keep his utility level. “Symmetry” guarantees that the substitution effect in the Slutsky equation
is symmetric.
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The $MS$-AIDS model employs the Markov switching mechanism which is developed
by Hamilton (1989). The Markov switching mechanism can express switching of regimes
by using the unobserved random variables that follow the Markov process. To apply the
Markov switching mechanism, we assume that transitions between regimes are govemed
by a $K$-state Markov chain with transition probabilities:

$Pr(s_{t}=j|s_{t-1}=i)=\pi_{ij}, i,j=1,2, \ldots, K$ (2.6)

and the transition matrix is defined as

$\Pi=\{\begin{array}{llll}\pi_{11} \pi_{21} \cdots \pi_{K1}\pi_{12} \pi_{22} \cdots \pi_{K2}\vdots \vdots \ddots \vdots\pi_{1K} \pi_{2K} \cdots \pi_{KK}\end{array}\}$ (2.7)

where $\pi_{i1}+\pi_{i2}+\cdots+\pi_{iK}=1,$ $i=1,2,$ $\ldots,$
$K.$

3 Bayesian Estimation
Let $w_{t}$ be $a(N-1)\cross 1$ vector of budget shares at time $t,\overline{w}_{it}(i=1,2, \ldots, N-1)$ and we
define the matrix of explanatory variables for regime-dependent parameters $\overline{\alpha}_{i,s_{t}},$ $\gamma_{i1,s_{t}},$

$\gamma_{i2,s_{t}},$ $\ldots,$ $\gamma_{iN-1,s_{t}},$ $\beta_{i,s_{t}},$
$\nu_{i,s_{t}}$ as $X_{t}^{(1)}$ and for regime-independent parameters $\delta_{1,i},$ $\delta_{2,i},$ $\phi_{i1},$

$\phi_{i2},$

$\ldots,$
$\phi_{i,N-1}$ as $X_{t}^{(0)}.$

Given the value of price index (2.2), the $MS$-AIDS model (2.5) can be first rewritten
by separating the parts that depend on regimes and by including the error term $\epsilon_{it}$ as

$\overline{w}_{it}=\overline{\alpha}_{i,s_{t}}+\sum_{j=1}^{N-1}\gamma_{ij,s_{t}}\log(\frac{p_{jt}}{p_{Nt}})+\beta_{i,s_{t}}\log(\frac{m_{0t}}{P_{t}})+v_{i,s_{t}}t$

$+ \delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}+\sum_{j=1}^{N-1}\phi_{ij}(\overline{w}_{j,t-1}-\overline{w}_{N,t-1})+\epsilon_{it}$ (3. 1)

and thus can further be rewritten as the matrix form:

$w_{t}=X_{t}^{(1)}\theta_{s_{t}}+X_{t}^{(0)}\theta_{0}+\epsilon_{t}$ (3.2)

where $\epsilon_{t}\sim \mathcal{N}(0, \Sigma_{s_{t}})$ and $\Sigma_{s_{t}}$ is also regime-dependent parameter such that $\Sigma_{s_{t}}=\Sigma_{j}$ if
time $t$ belongs to regime $j$ . The size of the matrices $X_{t}^{(1)}$ and $X_{t}^{(0)}$ are $(N-1)\cross[3(N-$

$1)+N(N-1)/2]$ and $(N-1)\cross(N-1)(N+1)$ .

Example

Let us consider the case that the number of products $N$ is four. Then $3\cross 15$ matrix $X_{t}^{(1)}$

is defined as
$X_{t}^{(1)}\equiv[I_{3} P_{t} M_{t} T_{t}]$
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where $I_{3}$ is a $3\cross 3$ identity matrix,

$M_{t}\equiv\{log(^{m_{P_{t}}}-\Delta L)0 log(\mathscr{X}) 0log(^{m_{P_{t}}}-\Delta t)\}, T_{t}\equiv\{t0 t 0t\},$

and

$P_{t} \equiv[00 \log_{0}\log(\frac{}{})(\frac{p_{1t}p_{2t}p^{4t}}{p_{4t}}) \log(\frac{p_{1t}}{p_{4t}})\log(\frac{p_{3t}}{p_{4t}})0 \log(_{p}\frac{2t}{4t})00_{R} \log(\frac{}{})\log(\frac{p_{3t}}{pp_{4t}^{4t}p_{2t}})0 \log(\frac{p_{3t}}{p_{4t}})00]$

The 15 element parameter vector $\theta_{s\iota}$ is defined as

$\theta_{St}\equiv\{\begin{array}{l}\overline{\alpha}_{s_{t}}\sqrt{}\gamma_{s_{t}}s_{t}v_{s_{t}}\end{array}\}$

where $\overline{\alpha}_{s_{t}}\equiv[\overline{\alpha}_{1,s_{t}}\overline{\alpha}_{2,s_{t}}\overline{\alpha}_{3,s_{t}}]’,$ $\gamma_{s_{t}}\equiv[\gamma_{11,s_{t}}\gamma_{12,s_{t}}\gamma_{13,s_{t}}\gamma_{22,s_{t}}\gamma_{23,s_{t}}\gamma_{33,s_{t}}]’,$ $\beta_{s_{t}}\equiv[\beta_{1,s_{t}}$

$\beta_{2,8t}\beta_{3,s_{t}}|’$ and $\nu_{s_{t}}\equiv[v_{1,s_{t}}v_{2,s_{t}}\nu_{3,s_{t}}]’.$

The $3\cross 15$ matrix $X_{t}^{(0)}$ is defined as

$X_{t}^{(0)}\equiv[D_{1t} D_{2t} W_{1t} W_{2t} W_{3t}]$

where

$D_{1t}\equiv\{d_{1,t}0 d_{1,t} 0d_{1,t}\}, D_{2t}\equiv\{d_{2,t}0 d_{2,t} 0d_{2,t}\},$

and

$W_{jt}\equiv\{\overline{w}_{j,t-1}-\overline{w}_{4,t-1}0 \overline{w}_{j,t-1}-\overline{w}_{4,t-1} 0\overline{w}_{j,t-1}-\overline{w}_{4,t-1}\}$

The 15 element parameter vector $\theta_{0}$ is defined as

$\theta_{0}\equiv\{\begin{array}{l}\delta_{1}\delta_{2}\phi_{1}\phi_{2}\phi_{3}\end{array}\}$

where $\delta_{1}\equiv[\delta_{11}\delta_{12}\delta_{13}]’,$ $\delta_{2}\equiv[\delta_{21}\delta_{22}\delta_{23}]’$ and $\phi_{j}\equiv[\phi_{1j}\phi_{2j}\phi_{3j}]’.$

Since the $MS$-AIDS model is parameterized nonlinear due to the price index (2.2), the
estimate cannot be written as closed form. Instead, we assume that value of price index
is already known and draw samples of parameters via Gibbs sampler. Afterward, these
samples are used to update the value of price index and then samples of parameters are
generated with the new price index. We repeat this process until convergence.

131



To obtain the likelihood function of $MS$-AIDS model, we denote the set of variables
obtained from $t=1$ through time $t$ as

$\mathcal{Y}_{t}\equiv\{w_{1}, w_{2}, \ldots, w_{t}\}, S_{t}\equiv\{s_{1}, s_{2}, \ldots, s_{t}\},$

$\mathcal{X}_{t}\equiv\{x_{1}, x_{2}, \ldots, x_{t}\}$

where $x_{t}$ is a $1\cross(2N+3)$ vector of explanatory variables at time $t$ in (3.1): $x_{t}\equiv[1$

$\log(p_{1t}/p_{Nt})\cdots\log(p_{N-1t}/p_{Nt})\log(m_{0t}/P_{t})td_{1,t}d_{2,t}\overline{w}_{1,t-1}-\overline{w}_{N,t-1}\cdots\overline{w}_{N-1,t-1}-$

$\overline{w}_{N,t-1}].$

Then likelihood function $\mathcal{L}(\cdot|\cdot)$ is defined as
$\mathcal{L}(\theta, \pi|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T})=\mathcal{L}(\pi|\mathcal{S}_{T})\mathcal{L}(\theta|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T})$ (3.3)

where $\theta\equiv\{\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{K}, \Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{K}\}$ and $\pi\equiv\{\pi_{ij} : i,j=1,2, \ldots, K\}$ . Given
a prior distribution $p(\theta, \pi)=p(\theta)p(\pi)5$ , we obtain the posterior distributions with
respect to $\theta$ and to $\pi$ as

$p(\theta, \pi|\mathcal{Y}_{T}, S_{T}, \mathcal{X}_{T})\propto \mathcal{L}(\theta, \pi|\mathcal{Y}\tau, S_{T}, \mathcal{X}_{T})p(\theta, \pi)$

$=\mathcal{L}(\pi|S_{T})p(\pi)\cross \mathcal{L}(\theta|\mathcal{Y}\tau, S_{T}, \mathcal{X}_{T})p(\theta)$

$\propto p(\pi|\mathcal{S}_{T})\cross p(\theta|\mathcal{Y}\tau,S_{T}, \mathcal{X}_{T})$ . (3.4)

Now we compute each of the terms on the right hand side of (3.4). To be able to do this,
we first need to generate discrete latent variables $s_{1},$ $s_{2},$

$\ldots,$
$s_{T}$ to represent regimes.

3.1 Sampling of latent variables $s_{1},$ $s_{2},$
$\ldots,$

$s_{T}$

Since $S_{T}\equiv\{s_{1}, s_{2}, \ldots, s_{T}\}$ is a sequence of unobservable finite discrete random variables,
we need to generate samples $s_{1},$ $s_{2},$

$\ldots,$
$s_{T}$ to compute the posterior distributions in (3.4).

To generate samples of latent variables $s_{1},$ $s_{2},$
$\ldots,$

$s_{T}$ , we apply the multi-move sampler
(e.g., Carter and Kohn, 1994; Chib, 1996): Given the data obtained through time $t,$ $\Omega_{t}\equiv$

$as\{\mathcal{Y}_{t}, \mathcal{X}_{t}\}$

and set of parameters $\Theta\equiv\{\theta, \pi\}$ , we consider ajoint distribution $f(\mathcal{S}_{T}|\Omega_{T}, \Theta)$

$f(\mathcal{S}_{T}|\Omega_{T}, \Theta)=f(s_{1}, s_{2}, \ldots, s_{T}|\Omega_{T},\Theta)$

$=Pr(s_{T}|\Omega_{T}, \Theta)Pr(s_{T-1}|s_{T}, \Omega_{T-1}, \Theta)\cdots Pr(s_{1}|s_{2}, \Omega_{1}, \Theta)$

$= Pr(s_{T}|\Omega_{T}, \Theta)\prod_{t=1}^{T-1}Pr(\mathcal{S}_{t}|s_{t+1}, \Omega_{t}, \Theta)$ (3.5)

if $S_{T}\equiv\{s_{1}, s_{2}, \ldots, s_{T}\}$ is assumed to follow Markov process. This usage of Markovian in
reverse order is justified by virtue of Bayes theorem as we see below

$Pr(s_{t}|s_{t+1}, \Omega_{t}, \Theta)=\frac{Pr(s_{t+1}|s_{t})Pr(s_{t}|\Omega_{t},\Theta)}{Pr(s_{t+1}|\Omega_{t},\Theta)}$

$= \frac{Pr(s_{t+1}|s_{t})Pr(s_{t}|\Omega_{t},\Theta)}{\sum_{s_{t}=1}^{K}Pr(s_{t+1}|s_{t})Pr(s_{t}|\Omega_{t},\Theta)}$ (3.6)

where $Pr(\mathcal{S}_{t+1}|s_{t})$ is a transition probability. Notice that $Pr(s_{t}|\mathcal{S}_{t+1}, \Omega_{t}, \Theta)$ in (3.5) can be
computed from (3.6). The quantity $Pr(s_{t}|\Omega_{t}, \Theta)$ can be derived by using the Hamilton
filter (Hamilton, 1989).

5That is, the prior of $\theta$ and the prior of $\pi$ are independent.
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3.2 Sampling of transition probabilities $\pi_{ij}$

Given the samples of latent variables $s_{1},$ $s_{2},$
$\ldots,$

$s_{T}$ , the likelihood function $\mathcal{L}(\pi|S_{T})$ ap-
pears on the right hand side of (3.4) is defined as

$\mathcal{L}(\pi|\mathcal{S}_{T})=\prod_{\iota’=1}^{K}\prod_{j=1}^{K}\pi_{ij}^{n_{ij}}$

where $n_{ij}$ is the total number of transitions from $i$ to $j$ from $t=1$ to $t=T.$
Suppose that the i-th column vector of transition matrix (2.7) is denoted by $\pi_{i}=$

$[\pi_{i1}\pi_{i2}\cdots\pi_{iK}]’$ and let the prior distribution of $\pi_{i}$ , independently of $\pi_{j}(j\neq i)$ be a
$K$-dimensional Dirichlet distribution 6 :

$\pi_{i}\sim Dir(u_{i1}, u_{i2}, \ldots, u_{iK})$ ,

then posterior distribution of $\pi_{i}$ is given as

$p(\pi_{i}|\mathcal{S}_{T})\propto \mathcal{L}(\pi_{i}|\mathcal{S}_{T})p(\pi_{i})$

$\propto\prod_{j=1}^{K}\pi_{ij}^{n_{ij}}\cross(\prime K$

$=\pi_{i1}^{n_{i1}+u_{i1}-1}\pi_{i2}^{n_{i2}+u_{i2}-1}\cdots\pi_{iK}^{n_{\iota K}+u_{iK}-1}$ (3.7)

Therefore we have

$\pi_{i}|S_{T}\sim Dir(n_{i1}+u_{i1}, n_{i2}+u_{i2}, \ldots, n_{iK}+u_{iK}) , i=1,2, \ldots, K.$

This corresponds to the first term on the right hand side of (3.4).

3.3 Sampling of parameters $\theta_{0},$ $\theta_{j},$ $j=1,2,$ $\ldots,$
$K$

To evaluate the posterior distribution $p(\theta|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T})$ in (3.4) via Gibbs sampler, we need
$theformu1ationc1eai^{onsof\{\theta_{j}\}_{j=0}^{K}given\{\Sigma_{j}\}_{j=1}^{K}andof\{\Sigma_{j}\}_{\theta^{=1}}^{K}given\{\theta_{j}\}_{j=0}^{K}.To}weassumethatpriordistributionp(\theta)canbewrittenasConditiona1$distribut, make

$p(\theta)\equiv p(\{\theta_{j}\}_{j=0}^{K}, \{\Sigma_{j}\}_{j=1}^{K})$

$=p(\{\theta_{j}\}_{j=0}^{K})p(\{\Sigma_{j}\}_{j=1}^{K})$ .

Since posterior distribution $p(\theta|\mathcal{Y}_{T}, S_{T}, \mathcal{X}_{T})$ in (3.4) can be rewritten as

$p( \theta|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T})\equiv p(\{\theta_{j}\}_{j=0}^{K}, \{\sum_{j}\}_{j=1}^{K}|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T})$,
6The Dirichlet distribution for $\pi_{i}$ is defined as

$p( \pi_{i}|u_{i1},u_{i2}, \ldots,u_{iK})=\frac{\Gamma(u_{i0})}{\Gamma(u_{i1})\cdots\Gamma(u_{iK})}\pi_{i1}^{u-1}\cdots\pi_{iK}^{u-1}i1:K$

where $0\leq\pi_{ij}\leq 1,$ $\sum_{j=1}^{K}\pi_{ij}=1,$ $u_{ij}>0$ , and $u_{i0}= \sum_{j=1}^{K}u_{ij}.$

7In other words, we assume that the prior distribution’s location parameters $\{\theta_{j}\}_{j=0}^{K}$ and scale-like
parameters $\{\Sigma_{j}\}_{j=1}^{K}$ can be freely moved and form a $K$-dimensional rectangular parameter space.
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we have
$p(\{\theta_{j}\}_{j=0}^{K}, \{\Sigma_{j}\}_{j=1}^{K}|\mathcal{Y}\tau, S_{T}, \mathcal{X}_{T})$

$\propto \mathcal{L}(\{\theta_{j}\}_{j=0}^{K}, \{\Sigma_{j}\}_{j=1}^{K}|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T})p(\{\theta_{j}\}_{j=0}^{K})p(\{\Sigma_{j}\}_{j=1}^{K})$ . (3.8)

Given $\{\Sigma_{j}\}_{j=1}^{K},$ $\mathcal{Y}\tau,$ $S_{T}$ , and $\mathcal{X}_{T}$ , conditional posterior distributions for $\{\theta_{j}\}_{j=0}^{K}$ is ex-
pressed by dividing both sides of (3.8) by $p(\{\Sigma_{j}\}_{j=1}^{K})$

$p(\{\theta_{j}\}_{j=0}^{K}|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T}, \{\Sigma_{j}\}_{j=1}^{K})$

$\propto \mathcal{L}(\{\theta_{j}\}_{j=0}^{K}, \{\Sigma_{j}\}_{j=1}^{K}|\mathcal{Y}_{T}, S_{T}, \mathcal{X}_{T})p(\{\theta_{j}\}_{j=0}^{K})$. (3.9)

Given the samples of latent variables $s_{1},$ $s_{2},$
$\ldots,$

$s_{T}$ obtained in section 3.1 and variance-
covariance matrices $\Sigma_{j}(j=1,2, \ldots, K)$ to be described in (3.13), we re-express the
$MS$-AIDS model (3.2) as

$w_{t}=X_{t}\theta^{*}+\epsilon_{t}$ (3.10)

where $\epsilon_{t}\sim \mathcal{N}(0, \Sigma_{s_{t}})$ . The matrix $X_{t}$ in (3.10) is defined as

$X_{t}=[1\{s_{t}=1\}X_{t}^{(1)}$ $1\{s_{t}=2\}X_{t}^{(1)}$ . . . $1\{s_{t}=K\}X_{t}^{(1)}$ $X_{t}^{(0)}]$

with indicator function $1\{s_{t}=j\}$ taking scalar value 1 if $s_{t}=j$ , or $0$ otherwise 8, and
parameter vector $\theta^{*}$ is defined as

$\theta^{*}\equiv\{\begin{array}{l}\theta_{1}\theta_{2}\vdots\theta_{K}\theta_{0}\end{array}\}$

To generate samples of $\theta^{*}$ , we derive the posterior distribution of $\theta^{*}$ conditional on
$\Sigma_{1},$ $\Sigma_{2},$

$\ldots,$
$\Sigma_{K}$ from (3.9). Applying the multivariate normal distribution $\mathcal{N}(\mu, V)$ as

a conjugate prior $p(\theta^{*})$ , conditional posterior distribution of $\theta^{*}$ in (3.9) is derived as
$p(\theta^{*}|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T}, \{\Sigma_{j}\}_{j=1}^{K})$

$\propto\prod_{t=1}^{T}[(2\pi)^{-\frac{N-1}{2}}|\Sigma_{s_{t}}|^{-\frac{1}{2}}\exp\{-\frac{1}{2}(w_{t}-X_{t}\theta^{*})’\Sigma_{s_{t}}^{-1}(w_{t}-X_{t}\theta^{*})\}]$

$\cross|V|^{-\frac{1}{2}}\exp\{-\frac{1}{2}(\theta^{*}-\mu)’V^{-1}(\theta^{*}-\mu)\}$

$\propto\exp\{(\theta^{*}-b)’B^{-1}(\theta^{*}-b)\}$

where

$b=B( \sum_{t=1}^{T}X_{t}’\Sigma_{s_{t}}^{-1}w_{t}+V^{-1}\mu), B^{-1}=\sum_{t=1}^{T}X_{t}’\Sigma_{s_{t}}^{-1}X_{t}+V^{-1}$

Then the conditional posterior distribution of $\theta^{*}$ is

$\theta^{*}|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T}, \{\Sigma_{j}\}_{j=1}^{K}\sim \mathcal{N}(b, B)$ . (3.11)

8That is, when $s_{t}=k$ , the matrix $X_{t}$ consists of $k-1$ of matrices of size $(N-1)\cross[3(N-1)+N(N-1)/2]$

whose elements are all zero, $X_{t}^{(1)}$ , and $K-k$ of matrices of size $(N-1)\cross[3(N-1)+N(N-1)/2]$ whose
elements are all zero, and $X_{t}^{(0)}$ , all aligned from left to right.
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3.4 Sampling of parameters $\Sigma_{j},$ $j=1,2,$ $\ldots,$
$K$

We assume that $\Sigma_{1},$ $\Sigma_{2},$

$\ldots,$
$\Sigma_{K}$ are independent, then conditional posterior distribution

for $\{\Sigma_{j}\}_{j=1}^{K}$ is expressed as

$p( \{\Sigma_{j}\}_{j=1}^{K}|\mathcal{Y}_{T}, S_{T}, \mathcal{X}_{T}, \{\theta_{j}\}_{j=0}^{K})=\prod_{j=1}^{K}p(\Sigma_{j}|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T}, \{\theta_{j}\}_{j=0}^{K})$

$\propto\prod_{j=1}^{K}\mathcal{L}(\Sigma_{j}, \{\theta_{j}\}_{j=0}^{K}|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T})p(\Sigma_{j})$ . (3.12)

To generate samples of $\Sigma_{j},$ $j=1,2,$ $\ldots,$
$K$ , we derive the conditional posterior dis-

tribution of $\Sigma_{j}$ from (3.12). Applying the inverse Wishart distribution $\mathcal{I}\mathcal{W}(v_{j}, \Lambda_{j})$ as a
conjugate prior $p(\Sigma_{j})$ , conditional posterior distribution of $\Sigma_{j}$ is derived as

$p(\Sigma_{j}|\mathcal{Y}\tau, \mathcal{S}_{T}, \mathcal{X}_{T}, \theta^{*})$

$\propto\prod_{tt\in\{t:s=j\}}[(2\pi)^{-\frac{N-1}{2}}|\Sigma_{j}|^{-\frac{1}{2}}\exp(-\frac{1}{2}\epsilon_{t}’\Sigma_{J}^{-1}\prime\epsilon_{t})]$

$\cross|\Sigma_{j}|^{-\frac{\nu_{j}+(N-1)+1}{2}}\exp(-\frac{1}{2}$tr $\{\Sigma_{j}^{-1}\Lambda_{j}\})$

$\propto|\Sigma_{j}|^{-\frac{\nu_{J}\prime+(N-1)+1+n_{7}}{2}}\exp(-\frac{1}{2}$tr $\{\Sigma_{j}^{-1}(\sum_{t=1}^{T}\epsilon_{t}\epsilon_{t}’1\{s_{t}=j\}+\Lambda_{j})\})$

where $n_{j}$ is the total number of time $t$ belonging to regime $j$ . Then conditional posterior
distribution of $\Sigma_{j}$ is

$\Sigma_{j}|\mathcal{Y}_{T}, \mathcal{S}_{T}, \mathcal{X}_{T}, \theta^{*}\sim \mathcal{I}\mathcal{W}(\nu_{j}+n_{j}, \sum_{t=1}^{T}\epsilon_{t}\epsilon_{t}’1\{s_{t}=j\}+\Lambda_{j})$ (3.13)

where $j=1,2,$ $\ldots,$
$K.$

From (3.11) and (3.13), we are able to construct Gibbs sampler algorithm by generating
$\theta^{*}$ and substituting these into (3.13) and then generating $\Sigma_{j}$ with the generated $\theta^{*}$ and
substituting those back into (3.11).

4 Empirical study on Japanese meat market
The Ministry of Internal Affairs and Communications in Japan provides us with the
household expenditure survey data (i.e., Family Income and Expenditure Survey). The
household expenditure survey data includes the monthly time series data about average
expenditure and price of meat and fish products along with others. In this study, we used
the average expenditure and price data of beef, pork, chicken and fish over January 1998
to December 2006 (108 months). Figure 1 plots the budget shares of meat products from
January 1998 through December 2006.
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Figure 1: Plot of budget share data

4.1 Estimation Results
We estimate parameters of $MS$-AIDS model (2.1) with the intercept parameters in (2.4).
The Gibbs sampling algorithm is run so that the first 5, 000 samples are discarded as
burn-in and then the next 25, 000 samples are recorded. The prior distributions are
parameterized by setting $\mu=0,$ $V=10^{4}I_{45},$ $\nu_{j}=10,$ $\Lambda_{j}=10^{-3}I_{3}(j=1,2),$ $u_{11}=$

$u_{22}=5$ , and $u_{12}=u_{21}=2$ . We also restrict a priori that, in our observed data, at least
40% of observations lie in each regime in order to avoid identification problem within the
Gibbs sampling algorithm.

In this study, we examine the following four models: $mo$del 1 only includes intercept
parameter $\overline{\alpha}_{i,s_{t}}$ . Mode12 includes seasonal effects on August and December into model
1, and mode13 adds a habit effect into mode12. Finally, mode14 further incorporates a
trend effect into mode13.

Modell $\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{t}}$

Mode12 $\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{1}}+\delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}$

Mode13 $\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{t}}+\delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}+\sum_{j=1}^{N}\phi_{ij}\overline{w}_{j,t-1}$

Mode14 $\alpha_{i,s_{t}}=\overline{\alpha}_{i,s_{t}}+\nu_{i,s_{t}}t+\delta_{1,i}d_{1,t}+\delta_{2,i}d_{2,t}+\sum_{j=1}^{N}\phi_{ij}\overline{w}_{j,t-1}$

Table 1 shows the logarithmic marginal likelihood of model $i,$ $\log-ML_{i}(i=1,2,3,4)$ as
diagonal elements and logarithmic Bayes factors, $\log-BF_{ij}$ for model $i$ against model $j$ as
off-diagonal elements. To obtain the marginal likelihoods for candidate models, we use the
method proposed by Newton and Raftery (1994). Although models 3 and 4 have large
logarithmic marginal likelihoods relative to the other models, logarithmic Bayes factor
for mode14 against $mo$de13, $\log-BF_{43}(=1.295)$ indicates “positive” (Kass and Raftery,
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Table 2: Estimated Parameters of $MS$-AIDS model in Regimel

1995, p.777) evidence in favor of mode14. Therefore we conclude that mode14 fits the
data best.

Tables 2 and 3 show the results of parameters for beef, pork and chicken. The pa-
rameters for fish are estimated from the adding-up condition (2.3a). Tables 2 and 3 show
the the posterior means, posterior standard deviations ( $SD$ ), 95% credible intervals, and
Geweke’s convergence diagnostic statistics ( $CD$ ) for all parameters in $MS$-AIDS model
(2.1) and variance-covariance matrices in regimes 1 and 2. To carry out the Geweke’s
convergence diagnostic, we used the first 10% and last 50% of the recorded simulated
data and Tables 2 and 3 show that all parameters pass the Geweke’s convergence di-
agnostic at 5% significant level. In the Bayesian framework, if a 95% credible interval
does not include zero, estimated parameters are interpreted as the significant parameters.
Thus $\overline{\alpha}_{1},\overline{\alpha}_{2},\overline{\alpha}_{3},$ $\beta_{2},$ $\sigma_{11}^{2},$ $\sigma_{22}^{2}$ , and $\sigma_{33}^{2}$ in Table 2 and $\overline{\alpha}_{2},\overline{\alpha}_{3},$ $\beta_{2},$ $\sigma_{11}^{2},$

$\sigma_{12},$ $\sigma_{13},$
$\sigma_{22}^{2}$ , and $\sigma_{33}^{2}$

in Table 3 are regarded significantly different from zero. These parameters in $MS$-AIDS
model (2.1) are used to calculate the price and expenditure elasticities.

To compare our proposed Bayesian estimation with the $ML$ estimation proposed in
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Table 3: Estimated Parameters of $MS$-AIDS model in Regime2

Allais and Nich\‘ele (2007) and employed in Kabe and Kanazawa (2012), we calculate the
mean squared errors (MSEs) for estimated budget shares. The MSEs of Bayesian estima-
tion are evaluated by the posterior means of estimates of budget shares generated within
the Gibbs sampler. The results of MSEs with respect to our proposed Bayesian estima-
tion (Bayes) and $ML$ estimation (MLE) are given in Table 4. Our Bayesian estimation
improves the MSEs for all products over $ML$ estimation. This result reflects the goodness
of fit to the budget share data of our Bayesian estimation.

Table 4: Mean squared errors (MSEs)

Figure 2 plots the probability of being regime 2 and budget share data of beef and
pork from January 1998 through December 2006 under the proposed Bayesian method.
We calculate the probability $Pr\{s_{t}=2\}$ . In Figure 2, regime shift from $s_{t}=1$ to $s_{t}=2$

is observed at the timing of first BSE case in Japan in September 2001 and then the
probability $Pr\{s_{t}=2\}$ gradually declines until the end of 2003 along with increase in
budget share of beef. With the timing of first BSE case in U. $S$ . in December 2003, we
observe a high probability of being regime 2 once again. Since then, structure of budget
share tends to stay in regime 2.

The first regime shift in Figure 2 reflects the switching of consumers’ preference from
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beef to pork triggered by the BSE scare in Japan in September 2001. The second regime
shift after the first BSE discovery in U. $S$ . in December 2003 might have arisen due to the
ban on import of American beef. Since the ban on importing U. $S$ . beef led to the shortage
of beef supply in the domestic meat market, consumers may have been forced to purchase
more pork instead of beef.

Figure 3 shows the results of probability of being regime 2, $Pr(s_{t}=2|\Omega_{t},\hat{\Theta})$ under
the $ML$ estimation. We estimated the probability from the Hamilton filter using data set
obtained through time $t,$ $\Omega_{t}$ , and $ML$ estimates $\hat{\Theta}$ in mode14 (see Kabe and Kanazawa,
2012). The regime shift at the timing of first BSE case in Japan in September 2001
is observed in Figure 3. Nevertheless, when compared with the result of regime shift
in Figure 2, the probability’s gradual decline due to the recovery of beef budget share
following the first BSE case in Japan observed in Figure 2 no longer can be observed in
Figure 3. Unlike Figure 2, we cannot identify the regime shift at the timing of first BSE
case in U. $S$ . in December 2003 in Figure 3.

$98 99 00 01 02 03 04 05 06 07$
Year

Figure 2: Probability of being regime 2, $Pr\{s_{t}=2\}$ and budget share data of beef and pork
under the proposed Bayesian estimation. Two vertical dashed lines indicate the first BSE case
in Japan on September 2001 and the first BSE case in U. $S$ . on December 2003.

We calculate the average budget share of i-th product at regime $s_{t}=j$ as

$\overline{w}_{i,s_{t}=j}=\frac{\sum_{t--1}^{T}1\{s_{t}=j\}\overline{w}_{it}}{\sum_{t=1}^{T}1\{s_{t}=j\}}.$

Table 5 shows that regime 1 is characterized by a higher beef budget share relative to
that of pork, while regime 2 is characterized by the reversal of these two budget shares.

Since substitution occurs mostly between beef and pork in regimes 1 and 2 (see Table
5 $)$ , we focus on the price and expenditure elasticities for beef and pork. We calculate

139



98 99 00 01 02 03 04 05 06

Year

Figure 3: Probability of being regime 2, $Pr(s_{t}=2|\Omega_{t},\hat{\Theta})$ and budget share data of beef and
pork under $ML$ estimation.

Table 5: Posterior mean of average budget share

the Marshallian price elasticity $\eta_{ij,s_{t}}^{P}$ and expenditure elasticity $\eta_{i,s_{t}}^{E}$ at regime $s_{t}$ for each
25, 000 samples generated via Gibbs sampler as

$\eta_{ij,s_{t}}^{P}=-\kappa_{ij}+\frac{\gamma_{ij,s_{l}}}{\overline{w}_{i,s_{t}}}-\frac{\beta_{i,s_{t}}}{\overline{w}_{i,s_{t}}}[\alpha_{j,s_{t}}+\sum_{k=1}^{N}\gamma_{kj,s_{t}}\log\overline{p}_{k,s_{t}}]$ , (4. 1)

$\eta_{i_{St}}^{E}=\frac{\beta_{i,s_{t}}}{\overline{w}_{i,s_{t}}}+1$ , (4.2)

where $\kappa_{ij}=1$ for $i=j$ and $\kappa_{ij}=0$ for $i\neq j$ , and $\overline{p}_{k_{8_{t}}}$, is an average price at regime $s_{t}.$

In Table 6, we show the posterior means and 95% credible intervals of price and
expenditure elasticities for beef and pork. Although own-price elasticities of pork have
significant negative impacts in both regimes, own-price elasticity of beef in regime 2
includes zero within the 95% credible interval. Since American beef was banned and in
short supply then, beef prices tended to increase in regime 2. Hence this price inelastic beef
purchasing behavior in regime 2 in Table 6 implies that those who had kept purchasing
beef in regime 2 did so regardless of its price.
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Table 6: Price elasticities and Expenditure elasticities
Regimel Price $(\eta_{i\dot{\eta}}^{P})$ Expenditure $(\eta_{i\gamma}^{E})$

Regime2 Price $(\eta_{ir}^{P})$ Expenditure $(\eta_{i\gamma}^{E})$

1 $)$ 95% credible interval in parentheses

5 Conclusion
In this paper, we proposed the Bayesian estimation for $MS$-AIDS model proposed by Al-
lais and Nich\‘ele (2007) and illustrated the applicability of our proposed method via real
data. The proposed Bayesian estimation has some important advantages. First, it enables
us to avoid the singularity problem suggested in Hamilton (1990, 1991). In the Bayesian
framework, we can use conjugate prior distributions to incorporate the prior information
about variance-covariance matrices in advance. On the other hand, $ML$ estimation via nu-
merical optimization methods (e.g., Newton-Raphson method) has to depend on sensible
selection of initial values of parameters to avoid singularity points on the parameter space.
Second, our proposed Bayesian estimation by design ensures that transition probabilities
be located between zero and one by generating the samples from the beta distributions
within the Gibbs sampler. Third, there is no need to calculate the score functions of
$\log$-likelihood, unlike $ML$ estimation which employed in Allais and Nich\‘ele (2007) and
Kabe and Kanazawa (2012), is computationally very intensive. In our Bayesian estima-
tion, posterior distributions of parameters are expressed as the standard formula (e.g.,
multivariate normal and inverse Wishart distributions). Thus each of parameters can be
easily simulated via Gibbs sampler.

In the empirical study on the Japanese meat market, we found that our Bayesian
estimation improves the mean squared errors for all meat products compared with the
$ML$ estimation. Moreover we found the regime shift in the budget shares of meat products
in Figures 2 depicts much more sophisticated and realistic picture of regime transition than
Figure 3. Specifically, in Figure 2, probability of being regime 2, $Pr\{s_{t}=2\}$ , estimated
via Bayesian estimation shows the regime shifts at the timing of first reported cases of
BSE both in Japan in September 2001 and also in U. $S$ . in December 2003. On the other
hand, Figure 3 shows a single regime shift at the timing of first BSE case in Japan. Since
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$ML$ parameter $estimates\wedge$ are given as the point solutions, the probability of being regime
2, $Pr(s_{t}=2|\Omega_{t}, \Theta)$ in Figure 3 ignores the uncertainty about parameters and making the
probability $Pr(s_{t}=2|\Omega_{t},\hat{\Theta})$ in Figure 3 closer to zero or one. Perhaps as Scott (2002,
p.345) observed, ignoring uncertainly about the parameter may have contributed to such
result.

Finally, we discuss the further extension of $MS$-AIDS model. Several studies have
extended the Hamilton $(1989)$ ’s Markov-switching model. In particular, they focused
on a useful $mo$dification of transition probabilities. For example, Diebold et al. (1994)
introduced the time-varying transition probabilities into the Markov-switching model, and
also they allowed the transition probabilities to evolve as logistic functions of economic
variables. Altematively, Markov-switching model assumes that latent variables controlling
regime shifts are exogenous. Kim et al. (2008) relaxed this exogenous regime-switching
assumption and proposed a Markov-switching regression model with endogenous regime
switching. The extensions to $MS$-AIDS model in these directions will be interesting for
future research.
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