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Scaling relations for percolation in the 2D high temperature Ising Model
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1 Ising model
1.1 Definition

We define the Ising model on the two-dimensional square lattice Z2: The spin con-
figuration space is denoted by Q := {-1, —|—1}Z2. This model has two parameters; the
temperature 7' € [0,00) and the external magnetic field h € R. For a finite region
V C Z? and a boundary condition w € €, the interaction energy for a spin configuration
o € Qy = {-1,+1}V is given by

” 1
Hip(0) = =5 Yoo oo = [kt Y ww) | o),
u,WEV, lu—v|=1 veV ugV, lu—v|=1
where |z| := |z}|+|2?| for = (2!, 22) € Z2. The function Hy, (o) is called Hamiltonian.
The finite volume Gibbs distribution is defined by

@Wrn(0) = (Zy1p) " exp{—H{ 1 (0)/(RT)},

where

w — w /

VIR = Z exp{—Hy,(0")/(RT)}

o/ eQy
is a normalizing constant called the partition function, and & denotes the Boltzmann
constant.
Let Fy denote the o-algebra generated by the spin variables in V C Z2, and F := Fya.

Then we have

v nlo(W) = +1| Fryel(o)

-1
= |1+4exp ,;‘;—12‘ h+ Z o(u) + Z w(u) }il )

ueV, lu—vl=1 ugV, lu—v|=1

Note that the case T' = oo corresponds to the independent site percolation problem:
Letting T — oo with h/(RT) — H, we can see that o(v) = +1 with probability p =
1/(1 4+ e72H), independent of each other. This probability law is denoted by P,.
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1.2 Phase transition in Ising model

A probability measure u on Q is called the Gibbs measure if it satisfies the following
Dobrushin-Lanford-Ruelle equation:

p( | Fre)w) = gyrp( ) for p-almost all w.

e Every limit point of the finite volume Gibbs distribution ¢y 1, as V N Z%is a
Gibbs measure.

e By using stochastic monotonicity, the following limiting Gibbs measure with pure
boundary conditions exist:

Both u4 and g are invariant under spatial translations. Moreover, we have
p_ < p < py for any Gibbs measure p.

e The set of Gibbs measures is a convex set, and its extremal points correspond to
‘pure phases’; 4 and p. are among them.

e There exists the critical temperature T, € (0, 00):

» If T <T,and h =0, then uy # p_.
» Otherwise not only uy = p— but also there is a unique Gibbs measure.
Aizenman (1980), and Higuchi (1981) showed that for the Ising model on 72, there

are only two extremal Gibbs measures 4 and p_, and for any Gibbs measure y, there
is an « € [0, 1] such that

apt + (1 —a)u-.

For higher dimensional cases, there are non translation-invariant Gibbs measures (Do-
brushin (1972)) , but every translation-invariant Gibbs measure is a convex combination
of py and p— (Bodineau (2006)).

2 Percolation in the high-temperature Ising model

We consider the percolation problem in the high-temperature regime. (See Higuchi
(1997) for a survey.) First we prepare basic terminologies for the percolation theory.

o A path [resp. (x)-path] is a sequence z1,Z2,...,Zs I 72 with |z; —z;—1| = 1 [resp.
|Zi — Zi_1|oo = 1] for 1 < @ < s, where |7|o := max{|z!|, |£?|} for z = (z!,2%) € Z2.

e A path on which all spin variable are + is called a (+)-path. We define (—x)-path
in a similar manner.

> Let {z i y} denote the event that there is a (+)-path between z and y.



> More generally, for V,V' C Z2, let {V & v } denote the event that some
point in V is connected by a (+)-path to some point in V”.

e A sequence z1,Zy,...,, in Z2 is called a circuit if

{(6,3) o =231 = 1} = {(,5) s i = 5 = T or {ir 5} = {L,s}}.
We define a (+)-circuit and a (—x)-circuit as above.

e The (+)-cluster containing z € Z?2 is defined by C} = {y € 7% : x & y}. We
often write {z & oo} for {#C} = co}. We adopt a similar notation for — spins.

e For each extremal Gibbs measure u, it is known that /L( UZ2{#C: = oo}) is
TE

either 0 or 1. If it is equal to 1, then we say that (+)-percolation occurs. We define
(—)-percolation similarly.

When T > T, there exists a unique Gibbs measure for each h € R:

For every w € Q lim ¢% = )
y ' voage Ay, T.n = KT ,h

The origin in Z? is denoted by O. We write C{ for the (+)-cluster containing O, and
define

he(T) :=inf{h : prp(#C§ = c0) > 0}.

It is shown in Higuchi (1993a) that h.(T) > 0 whenever T > T.. (It is also known that
he(T) = 0 for T < T,.) When T > T, the percolation transition at h = h(T) is sharp
(Higuchi (1993b)). Hereafter we fix a T > T, and abbreviate urp to us, and he(T) to
hc. The expectation under yy, is denoted by Fj,.

3 Scaling relations

We investigate the critical behavior of principal quantities in percolation. We adopt
the following notation:

log f(n)

o~ C 3 —
e f(n) = ns means that lim —=~~ =,
f(n) Jm Seen ¢

o f(n) < g(n) means that Cig(n) < f(n) < Cag(n) for some positive constants C;
and Cs.
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3.1 Conjectured power laws and scaling relations
[Near the critical point]

B The percolation probability 8(h) := pp (#Cg = o).

O(h) ~ (h — he)? | as B\ he.

B The expected size of the finite cluster x(h) := Ex[#Cg : #C¢ < oo].

x(h) = |h — he|™7|as b N\ he.

% Gap exponent A

En[(#Cg)* : #CJ < 0]
En[(#C)*1: #CF < o0

For any k > 2, ~ |h — he|™® | as h = he.

B Correlation length
- 1/2

1 Z |v|2p,h(0 S, #CF < )

E(h) = Lm 2

£(h) ~ |h — he| ™" | as h — he.

[At the critical point] Let S(n) := [~n,n|? and 8S(n) = {z € Z? : |z|c = n}.

B The l-arm probability m4(n) := up(O & 8S(n)).

Th(n) ~n~1% |as n — oo,

B The connectivity function 74(n) := s (O & (n,0)).

Th.(n) = n~"|as n = oo.

B The size distribution of the finite cluster

pn,(#CF > n) ®n~Yoas n — c.

[Scaling relations)
B+ =v+28=40+8, y=v(2-1).
[Hyperscaling relations] (only for small d)

dv=B06+1)=v+28=A+0, dé=456+1
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3.2 Finite-size scaling correlation length

Let A™(n,m) be the event that there exists a (4)-path between the left side and right
side of [—n,n] x [-m,m]; the (+)-path is called the horizontal (+)-crossing. Similarly
we define A™*(n,m). The finite-size scaling correlation length L(h,eq) by

min{n D lh (A""(n,n)) >1- 60} (h > he),
L(h,e0) = { o0 (h = he),
min{n : up (AT (n,n)) <eo} (h < he).

Here €q is a small positive constant. It is known that £(h) < L(h, &p).
The following theorems play important roles in deriving scaling relations. For the
independent percolation, these theorems are proved by Kesten (1987b).

mh(n)

The(n)

Theorem 3.1. (i) For any n < L(h,&g), C1 < < Cs.
(i1) As h ™\ he,
H(h) = ﬂ'h(L(h, 60)) = th(L(h,,Eo)).

From this theorem, we can obtain a scaling relation involving 8,4, and v, if they
exist.

Theorem 3.2. (i) For t > 1, as h — h,,
Ep [(#CE)E: #CF < oo] x L(h, g0)* 1p, (L(h, £0))" .
(ii) For t =1, as h — h,

Ep [#C{ : #Cf < 0o] & L(h, g0)*mh, (L(k, €0))*.

21th.(n).

This theorem suggests that the volume of a “large critical cluster” in S(n) = n
Theorem 3.3. As 2\, 0, L(h. — x,€e0) < L(he + z,€p).

This implies the symmetry of critical exponents on the left and right of k..

3.3 Scaling relations

We can show the following relations between critical exponents (Higuchi, Takei, and
Zhang (2010, 2011)); those are obtained by Kesten (1986, 1987a,b) for the independent
percolation on periodic lattices.

Theorem 3.4. (i) If one of

mh, (n) s n Y or Tho(n) = n7" (1)
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holds, then both statements as well as
pn, (#C§ > n) mn~1/0
hold, and

8(h) < L(h,e0) /% = L(h, o)~ */(**D),

6 =26, — 1,
_2__ 4
n_ér_5+1'

If, in addition, for some v > 0,
§(h) = |h = he|™ (2)
holds, then

2v
S+1°

ﬁ =
(i)
En[(#C5)" : #CF < o]

e Fort > 2,
Enl(#C3)1 : #CF < o

~ &(h)?mn. (§(h)),

1
x(h)

In addition, if (1) and (2) hold, then

1/t
e For t >0, Z v|tun (0 & v, #CF < oo)jl = £(h).

veZ?

Eh[(#cg)k : #CBL < OO] ~ |h - hcl_Aka

e For k > 2, ~
ER[(#CE)F1: #CF < o0

1/k
e For k> 1, L S vl un(0 S v, #CF <o) |~ |h— ke[,
X<h) veZ?
and
0—1 0
= = > - > .
vy 2u5+1, Ay 21/5+1 (k > 2), vp=v (k>1)

4 Sketch of the proof

In this section, we present typical techniques to prove scaling relations.
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4.1 RSW-type estimates for crossing probabilities

In the independent percolation, the RSW lemma (Russo (1978), Seymour and Welsh
(1978)) gives the following estimate for crossing probabilities:

sl )= (n (1),

——

kn n

where fi(6) = 1 as § — 1. The following is an important consequence from the RSW
lemma. It can be obtained for Ising percolation also.

Lemma 4.1 (RSW-type estimates). For each integer k > 0, there exists a constant J;
such that for n < L(h, g¢),

pn (AT (kn,n)) = pp n /\/ > Ok,

h (A_*(im, n)) = lp - > Oy
kn

(Since py, is invariant under the rotation by right angle, same estimate can be obtained
for vertical crossings.)

By the duality uy, (A+(n,n)) + tp (A_*(n, n)) =1, for any n,
0<é < /.LhC(A+(n,n)) <1-4; <1,

which suggests a kind of scale invariance.

Another standard tool in percolation is the Fortuin-Kasteleyn-Ginibre (FKQG) inequal-
ity (For the independent case, Harris (1960) already noticed the inequality.) For two
configuration 0,0’ € Qy, we say 0 < ¢’ if o(v) < o'(v) for all v € V.

e An event A € Fy is called increasing if 14(c) < 14(0’) whenever ¢ < ¢’. For
example, A*(kn,n) is increasing.

e An event A € Fy is called decreasing if 14(c) > 14(c’) whenever o < ¢’. For
example, A7*(kn,n) is decreasing.

Lemma 4.2 (the FKG inequality). If A and B are both incresing [or both decreasing},
then pp(AN B) > pp(A)un(B).

As an application, we derive a power law estimate of the 1-arm probability mp_(n) at
the critical point (especially it does not decay exponentially).

Proposition 4.3. There are positive constants C1, Cs, « such that for all n,

C’lnhl < th(n) < Con™°.
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Proof. First we give the upper bound. (The idea is related to that of Harris (1960).)
For j > 1, we put A; := S(4/t1)\ (2 4%), and

1 If there exists a (—%)-circuit surrounding O in A4;,

j= _
0 otherwise.

By the mixing property and the RSW-type estimate, we can find an integer j* and a
positive number 4 such that for j > j*,

phe(Xj =1 X1,...,X;1) 26

llogy n—1]
The(n) < P, ﬂ {X;=0}]| <(1- §)logan—1]=s"+1
j=3*

Now we turn to the lower bound. By the RSW-type estimate, we have
phe (A% (n,n)) > 61 > 0.
On A*(n,n), we look at the lowest (+)-crossing L, in S(n), and put
H(L,) :=max{y € [-n,n|: (0,y) € L,}.
Then we have

(AT () = 3 (H(L,) =)

y€[-n,n]

< Y i ((0,9) B 8(0,) + 5(m))
y€[—n,n] '

= (2n + 1)my (n).

Remark 4.4. Two disjoint (+)-paths and one (—x)-
path start from neighbors of (0, H(Ly)). In the inde-
pendent percolation, we can obtain a better bound
by the van den Berg-Kesten-Reimer inequality (see
Kesten (1987b)). The trouble is that the inequality
is not available for Ising percolation.

3S(n)
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Proposition 4.5. m,, (2n) < m (n).

Proof. Obviously 7, (2n) < 7, (n). On the other hand, by the RSW-type estimate and
the FKG inequality, we have

T \

The (21) > p, 53 .! > 65(8s) 7 (n).

\ 08(2n) /

The following is the Ising version of Lemma in Kesten (1987a).

1

it follows from the translation-invariance and the mixing property that

Proposition 4.6. 75,_(n) < 7, (n)2.

Proof. For the upper bound, noting that

The(T) = phe

< . ((0,0) & 85(n/4), (n,0) & 0((n,0) + 5(n/4)))

< mh(n/4)? + C (n/4)? - (n/2) - e=@/2,

For the lower bound, using the RSW-type estimate and the FKG inequality,

(] )

7'hc(n) > Mh, > (54)47l’hc(2n)7rhc (371)

95(2n) /

O
. . : : 2
If we assume that the critical exponents 7 and 4, exist, then a scaling relation 7 = 5

follows from Proposition 4.6.
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4.2 Ising version of Russo’s formula

Theorem 3.1 relates the on-critical regime to the off-critical regime, and finite regions
to the whole plane. To prove it, we estimate the derivative of m4(n). Let H = h/(RT),
and ,uﬁ denote the finite volume Gibbs distribution on S(NN) with periodic boundary
condition. For n < N and A € Fg(p), we have

d

T (A) = D Covun(o(2),14(0))
zeS(N)
= 3 Eul{o(@) - Bylo()]} - 4],
z€S(N)

A site z is pivotal for the event A in the configuration o if 14(0%) # 14(0), where o®
is obtained from o by flipping the spin at z. Let

Pivy A := {0 € Qg(y) : z is pivotal for A in o}.

For example,

Pivy A*(n,n) = 72|, Piv.{0&aSm)}=| /& \Te

Note that Piv, A € fS(n)\{x}-
We assume that A is an increasing event. Note that

A= (ANPiv, A) U (AN (Piv, A)°)

= ({w(z) = +1}N Piv; A ) U \(An(Pviv,A)C)J :

E-F{:x:} E]:S("‘)\(I} Efs(n)\{l},increasing

In the independent percolation, we have

d . . : .

d—pPp(A) = Z P,(Pivy A) = Ep, [#(pivotal sites for A)],

z€S(n)
which is called Russo’s formula (Russo(1981)). In the Ising percolation, we can obtain
d N N (p;
d—H}l,H(A) Z C Z MH(PIVI A),
z€S(n)

since
E~ [{o(z) - Ex [o(z)]} : AN (Pivz A)] >0

by the FKG inequality.
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We show the strategy of the proof of Theorem 3.1(i) for the independent percolation
(Kesten (1987b)).

d d o >
—J—ﬁp(n) = d—Pp i = Z Pp / 5/ \\;7“1:
p P zeS(n) . -
dS(n) 5(n)
///,—\\\\\ \
“N i rw A
S P
P y, (0} \ R
z€8(n) / J L | R(z)
M - -~
\ S(n)

If n < L(h,€p), then both the (+)-crossing probability and the (—x)-crossing probability
are bounded away from 0 as in the critical case; in a similar manner as in Proposition

4.5, we have

/// \\ ‘ -,
2N : :
R(z) y .

) 1l < CP, ‘A 2 | < Cmp(n).

P, - ;

-~ —

S(n)

The key idea in Kesten (1987b) is to extend (+)-paths and (—x)-paths simultaneously:

Roughly,

\ .
By —¥ \R( ) <C'P, /T{ < CP,(Pivz AT (n,n)).
z

\
// S(n)

By independence,
d d
—logmp(n) < C” Z P,(Pivz A% (n,n)) = C"@Pp (4% (n,n)).

dp z€S(n)
Integrating it from p. to p(# p.), we have

mp(n)
Tp.(n)

In the Ising case, when A is the l-arm, 4-arm, or crossing events, we can prove

log < C"|Py(AT(n,n)) — P, (At (n,n))].

. d .
¢ D wr(Pive A) < —up(A) < Crum(A)+ Cr Y i (Pive A).
z€8(n) zeS(n)
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This is sufficient for our purpose. The key idea of the proof for the 1-arm event is to
reduce

e e e N
5.9 L [5R

. | Py Ama ! : “ ..
PIVR(m)§ 3 P = ¢ ‘ to i Ly or &
i { . d | (. -

I * | Lo il

by extension arguments.

4.3 Connection lemma

Given a horizontal crossing v of S(n), we can divide S(n) into two regions; the upper
[resp. lower| one is denoted by S*(n,v) [resp. S™(n,7)]. On A% (n,n), let L, be the
lowest (+)-crossing in S(n). Note that {L, = v} € F,,5-(n~)- In the independent case,
L, plays the same role as the stopping time. This property together with the RSW
lemma gives a lower bound of the probability that there exists a (—x%)-path from the
top side of S(n) to some point above L,. It is important, for example, to estimate the
number of pivotal points for A*(n,n). In the Ising case, we can ‘approximately’ use this
property, summarized as in the following lemma.

Lemma 4.7 (Connection lemma). Let V(n) = [0,n] x [0,kn]. By a

horizontal crossing v of V(n), we can divide V(n) into two regions; 4
{
{
I
I
|
\
\
\
\
\
|
!
/
/
/
/
/
d

the upper [resp. lower| one is denoted by V*(n,~) [resp. V™ (n,7)]. *

Let 41 be a horizontal crossing of [0,n] x [0,n], and 72 be a horizontal
crossing of [0,n] x [(k — 1)n, kn]. There exists an integer ng such that
if L(h,eg9) > n > ng, then for any k and

E € Fymye, F € Fyiuv-(nm)umuv+(nm):

we have

(y1+(0,1)) & (32 + (0,-1)) |
h ( in V*(n,y) NV (n,72) ‘ EOF) > bgr/4, .

where s € {4, —x}.

4.4 Arm events

We have already introduced 7, (n) (1-arm probability) and Pivg A* (n,n) (4-arm event).
More generally, arm events refer that there exist some number of crossings (“arms”) of
S(N)\ S(n) (N > n). For an integer k > 1 and a sequence o = (071,...,0%) € {+,—}*,
we define the event

k,o

Apo(n.N) = {aS(n) %8 aS(N)}



that there exist k disjoint crossings in S(N)\ S(n), whose signs are those prescribed by o
in counterclockwise order. We also define k-arm events for half-planes: Let ST(n, N) :=
{S(N)\ S(n)} N (Z4 x Z) and

Bio(n,N) = {as+(n) %2 95+ (N) in s+(n,N)}.

A conjecture in Aizenman, Duplantier, and Aharony (1999) for the independent per-
colation is the following:

(k%-1)/12
For k4, k- > 1, Lh (Ak,o(n7N)) = (%) ’

(k(k+1))/6
For k> 1, ih. (Bro(n, N)) < (%) ,

where
ky =#{1<i<k:o;=+4}, andk_ =#{1<i<k:0;,=—}.

For the independent percolation on the planar triangular lattice, this conjecture is
proved to be true in the sense of ~ (Smirnov and Werner (2001), and Lawler, Schramm,
and Werner (2002)). For two-dimensional periodic lattices, using the RSW-type esti-
mates, the conjecture is verified for k = 2, 3 in the half-plane (essentially done by Zhang
(1995)) and k£ = 5 in the whole plane (Kesten, Sidoravicius, and Zhang (1998)). (See
also Nolin (2008) and Werner (2009).)

Theorem 4.8. In the Ising percolation case, we can prove the following:

——
P

nIo

2|3

:

e 2-arm in half-planes: up_ (Bz,(+,_)(n, N)) = pn,

N

2
e 3-arm in half-planes: pp. (Bs (4, +)(n, N )_) = [h, "l L X (-]1—:[—) .

o S-arm: ph (A5 (4,— +,-+)(n, N)) = pin,

N

®
S
i
:
i
,
,

We can use the above 2- and 3-arm estimates to control the boundary effect.
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We remark that our techniques are also applicable to the Ising percolation on the
triangular lattice, and they might be useful for studying the scaling limit problem, posed
by Bélint, Camia, and Meester (2010).
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