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1 Introduction
This article is a short review of probabilistic representation of quantum particle
system interacting with a quantum field considered in [6]. To analyze quantum
physics model mathematicaly, the state space $\mathcal{H}$ ofthe system is given by a Hilbert
space. In many cases, the total Hamiltonian $H$ ofthe system is a self-adjoint oper-
ator on $\mathcal{H}$ . Here assume that $H$ is self-adjoint and bounded from below. Functional
integral representation of $H$ is a probabilistic representation of the strongly con-
tinuous semi-group $\{e^{-tH}\}_{t\geq 0}$ generated by $H$. It is seen that the spectral analysis
of$H$ can be stochastically investigaed by using functional integral representations.
For the details of functional integral representation and its applicaion of quantum
physics model, refer to [5].

We investigae the system ofa semi-relativistic particle interacting with a Klein-
Gordon field. Here we assume that the particle ovey the relativistic Schr\"odinger
operator and the ultraviolet cutoffcondition is imposed on the Klein-Gordon field.
The functional representation of relativistic Schr\"odinger operator is investigated
in [2]. The particle in the electromagnetic potential with spin is considered in [3]
and the spatial decay of the bound states is estimated in [4]. In the following sec-
tion, the functional integral representation ofthe relativistic Schrodinger operator
is deriven by Levy subordinator according to [3]. In constructive quantum field
theory, Klein-Gordon field is constructed by the methods of stochastic process,
and the functional integral representation is derived by using Eucilidean field. By
using the functional integral representations of relativistic Schr\"odinger operator
and Klein-Gordon field, the functional integral representation of the interacting
system between semi-relativistic particle and the Klein-Gordon field is derived.
From the obtained functional integral representation, we see that if the ground
states exist, it is unique and its decay rate can be estimated.
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2 Relativistic Schr\"odinger Operator and Klein-Gordon Field

We assume that the partilcle’s Hamiltonian is given the relativistic Schr\"odinger
operator with potential $H_{p}=\sqrt{-\triangle+M^{2}}-M+V$ on the Hilbert space $L^{2}(R_{x}^{d})$ .
Here $M>0$ is the rest mass of the particle. Let us set $h_{re1}(s)=\sqrt{s+M^{2}}-M,$

$s>0$ . Since $h_{re1}$ is a Bemstein function, it is seen that there exists a L\’evy sub-
ordinator $\{T_{t}\}_{t\geq 0}$ on a probability space $(\Omega_{re1}, \mathfrak{B}_{re1},P_{re1})$ satisfying $\mathbb{E}_{re1}[e^{-sT_{t}}]=$

$e^{-th_{re1}(s)}$ where $\mathbb{E}_{re1}[X]=\int_{\Omega_{re1}}X(\eta)dP_{re1}(\eta)$ . Let $\{B_{t}\}_{t\geq 0}$ be $d$-dimensional Brow-
nian motion starting $x$ on the probability space $(\Omega_{BM}, \mathfrak{B}_{BM},P_{BM}^{x})$ . We introduce
the probability space $(\Omega_{p}, \mathfrak{B}_{p},P_{p}^{x})=(\Omega_{re1}\cross\Omega_{BM},\mathfrak{B}_{re1}\otimes \mathfrak{B}_{BM},P_{re1}\otimes P_{BM}^{x})$. Then
the following functional integral representation for the semi-relativistic particles
holds.(See [3]; Theorem 3.8):

$e^{-tH_{p}}\psi(x)=\mathbb{E}_{p}^{x}[\psi(X_{t})e^{-\int_{0}^{t}V(X_{s})ds}]$ , (1)

where $X_{t}((\eta, \omega))=B_{T_{t}(\eta)}(\omega)$ and $\mathbb{E}_{p}^{x}[Z]=\int_{\Omega_{p}}Z(\xi)dP_{p}^{x}(\xi)$ .

Klein-Gordon field is constructed as follows. The Hilbert space $\mathfrak{X}_{KG}$ is de-
fined by the completion ofthe pre-Hilbert space which consists ofreal valued tem-
pered distribution $f\in S_{rea1}’(R^{d})$ satisfying $\Vert\omega^{-1/2}f\Vert_{L^{2}}<\infty$ . Here the inner prod-
uct is given by $(g,f)_{JC_{KG}}=(\omega^{-\iota/2}g, \omega^{-1/2}f)_{L^{2}}$ . Then from a general theorem on
Gausian random process indexed by Hilbert spaces, there exist a probability space
$(Q_{KG}, \mathfrak{B}_{KG},R_{G})$ and a random process $\{\phi_{f}\}_{f\in 5\mathcal{K}_{KG}}$ which satisfies $\mathbb{E}[e^{-it\phi_{f}}]=$

$\exp(-\Vert f\Vert_{j\mathcal{K}_{KG}}^{2}t^{2}/4)$ . Let $H_{KG}=d\Gamma(\omega)$ be the second quatization of $\omega$ . Then
Klein-Gordon field is defined by the triplet $(L^{2}(Q_{9C_{KG}}), H_{KG}, \{\phi_{f}\}_{f\in!\mathcal{K}_{KG}})$ . Let $0C_{E}$

be the completion ofthe pre-Hilbert space which consists ofreal-valued tempered
distribution $u\in S_{rea1}’(R^{1+d})$ satisfying $\Vert\omega^{-1}u\Vert_{L^{2}}<\infty$ . Here the inner product is
given by $(v,u)_{9C_{KG}}=(\omega^{-1}v, \omega^{-1}u)_{L^{2}}$ . Then similar to the constmction of the
Klein-Gordon fied, it is seen that there exist a probability space $(Q_{E}, \mathfrak{B}_{E},b)$ and
a Gaussian random process $\{\phi_{u}^{E}\}_{\mathcal{U}\in:\kappa_{E}}$ satisfying $\mathbb{E}[e^{-it\phi_{u}^{E}}]=\exp(-\Vert u\Vert_{\mathfrak{X}_{E}}^{2}t^{2}/4)$ .
Then the next functional integral representation follows : (Refer to e.g. [1]; The-
orem 7.19).

$(\Phi,e^{-t(H_{b}+P(\phi(f)))}\Psi)_{L^{2}(Q_{KG})}=\mathbb{E}_{E}[\overline{(J_{0}\Phi)}(J_{t}\Psi)e^{-\int_{0}^{t}P(\phi_{\delta_{S}\otimes f}^{E})ds}]$ . (2)

where $J_{t}$ is an isometric operator from $L^{2}(Q_{0C_{KG}})$ to $L^{2}(Q_{0C_{E}})$ and $P= \sum_{j=1}^{2n}c_{j}\lambda^{j}.$
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3 Main Theorem
The interaction system between the semi-relativistic particle and a scalar Bose
fields is defined as follows. The state space for the system is given by $\mathcal{H}=$

$L^{2}(R_{x}^{d})\otimes L^{2}(Q_{b})$ . The total Hamiltonian ofthe system is defined by form sum of
the free Hamiltonian and interaction

$H_{\kappa}=H_{0}+\kappa H_{I}, \kappa\in R$ , (3)

where $H_{0}=H_{p}\otimes I+I\otimes H_{KG}$ and $H_{I}=P(\phi_{\rho_{\Lambda.x}})$ with $P( \lambda)=\sum_{j=1}^{2n}c_{j}\lambda^{j},$ $c_{j}\in R,$

$j=1,$ $\cdots,2n-1,$ $c_{2n}>0$ and $p_{\Lambda,x}$ satisfies that $\hat{\rho}_{\Lambda,x}(k)=\hat{p}_{\Lambda}(k)e^{l\cdot x}l$ with the
characteristic funcion $\rho_{\Lambda}$ on $R^{d}.$

By appling Feynman-Kac formula of relativistic Shr\"odinger operator and Klein-
Gordon and Trotter-Kato product formula, the functional integaral representation
of $H_{\kappa}$ is derived.

Theorem 1
Assume that $V$ is relativistic Kato-class. Then it follows that

$( \Phi,e^{-tH_{\kappa}}\Psi)_{\mathcal{H}}=\int_{R^{d}}\mathbb{E}_{p\cross E}^{x}[\overline{(J_{0}\Phi(X_{0}))}(J_{t}\Psi(X_{t}))e^{-\int_{0}^{t}V(X_{s})ds}e^{-\kappa P(\phi^{E}(\int_{0}^{t}\delta_{s}\otimes\rho_{x_{s}}ds))}]dx.$

It is seen that $e^{-tH_{p}}$ and $e^{-tH_{KG}}$ are positivity improving operators. In addition,
the exponetial decay ofthe bound states with respect to spacial variable is proven
in [4]. Then from the functional integral representation of $H$, the next corollary
immediately follows.

Corollary 2
Assume that $V$ is relativistic Kato class and $H_{\kappa}$ has the ground state. Then, fol-
lowing (1) and (2) holds.
(1) The ground state is unique.
(2) If $V(x)arrow 0$ or $\infty$ as $|x|arrow\infty$ , the bound state has exponential decay with re-
specto to spatial vaiable.
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